Foundations of Data Science

Probability Space

#F—i@, X 8A# Nanjing University, 2024 Fall



Probability Space




Sample Space (# A& % 7))

» Sample space €2: set of all possible outcomes of an experiment (samples).

 Example: all sides of a dice; all outcomes of a sequence of coin tosses; ...

« Each w € Qs called a sample (¥ #&) or elementary event (& K F#).

e An event (¥14) is a subset A C €2 of the sample space.

Pr(B) = 5/36




Discrete Probability Space

(€2, Pr)

» Sample space €2: set of all possible outcomes of an experiment (samples).

 Example: all sides of a dice; all outcomes of a sequence of coin tosses; ...

« Each w € Qs called a sample (¥ #&) or elementary event (& K F#).

 For discrete probability space (where €2 is finite or countably infinite):

_ probability mass function (omf) p : £2 — [0,1] satisfies Z pw) =1

=19,

_ the probability of event A C L2 is given by Pr(A) = 2 p(w)

w€EA




Sample Space and Events

» Sample space €2: set of all possible outcomes of an experiment (samples).

 Example: all sides of a dice; all outcomes of a sequence of coin tosses; ...

. A family T C 2% of subsets of Q, called events (¥ 44), satisfies:

« @ and €2 are events (the impossible event and certain event);
“Z:'Efﬁ“é %;/ft];” CC‘)‘A‘%%;{%”

. if A is an event, then so is its complement A© = Q\A;

+ if (countably many) A, A,, ... are events, thensois | J.A. (and [ ). A))



o-Algebra (o-/X, %)

o Afamily 2 C 242 of subsets of Q is called a o-algebra or o-field, If:

s JE X
c AE2X=—>AE X (where A€ = Q\A denotes A’s compliment in £2)

. Al,Az, L E L= UiAi € 2 (for countably many A}, A,, ... € %)

 Examples:
. ¥ =29
+ 2 =1{0,8;

e 2={0,A,A,Q} forany A C Q



Sets as Events

Notation Set interpretation Event interpretation
@ € Member of {2 Elementary event
A C Q) Subset of £2 Event A occurs
A€ Complement of A Event A does not occur
ANRAB Intersection Both A and B
AUBRB Union Either A or B or both
A\B Difference A, but not B
ADPB Symmetric difference Either A or B, but not both
% Empty set Impossible event
Q) Whole space Certain event
ACB Inclusion A implies B

ANB=g

Set disjointness

A and B cannot both occur




Probability Space (i % % 1))

(Q., X, Pr)

O Andrey Kolmogorov
¢ Let X Q 2> be a a-algebra. AHOpéen Konvoropos

(1903-1987)
A probability measure (#t % &), also called probability law (#t % 4%),
is a function Pr : 2 — [0,1] satisfying:

o (unitary/normalized) Pr(€2) = 1;
+ (0-additive) for disjoint (F48%) A, Ay, ... € Z: Pr(lJ;4;) = X Pr(A).

» The triple (€2, 2., Pr) is called a probability space.




Classical Examples of Probability Space

« LA (classic probability): discrete uniform probability law

Finite sample space €2, each outcome w € {2 has equal probability.

A

For every event A C Q: Pr(A) = W

o JUITHLR (geometric probability): continuous probability space such that

Vol(A)

For every event A € 2: Pr(A) =
Vol(£2)

 Bertrand’s paradox Proec 2

 Buffon’s needle problem




Buffon's Needle Problem (& F3% 4t 17 #2)

(Georges-Louis Leclerc de Buffon in 1733, and in 1777)

— /.~
» Suppose that you drop a short needle of length £ on —\ ?
ruled paper, with distance d between parallel lines. [ /\
N —
 What is the probabillity that the needle comes to lie N -
in a position where it crosses one of the lines? \ /=]
\ \ ‘g

» For £ < d, this probability is calculated as:
VOl(A) 9 Jﬂ Y ¥4 x € |0,7]: angle between the needle

. and the parallel line below it
Pr(A) = = — | —sin(x)dx = — PrEe
Vol(£2) dr 0 2 dn y € [0,d/2]: distance from the center

of the needle to the closest parallel line

e A Monte Carlo method for computing 7 ot A = {(x, ne o] x [0.4] 1y < ;Sm(x)}



Probability Space (i % % 1))

(Q., X, Pr)

O Andrey Kolmogorov
¢ Let X Q 2> be a a-algebra. AHOpéen Konvoropos

(1903-1987)
A probability measure (#t % &), also called probability law (#t % 4%),
is a function Pr : 2 — [0,1] satisfying:

o (unitary/normalized) Pr(€2) = 1;
+ (0-additive) for disjoint (F48%) A, Ay, ... € Z: Pr(lJ;4;) = X Pr(A).

» The triple (€2, 2., Pr) is called a probability space.




Basic Properties of Probability

All followings can be deduced from the axioms of probability space:

e Pr(A°) =1 - Pr(A)

e Pr(@) =0 Pr(A) > 0= A # @ (the probabilistic method)
e Pr(A\B) = Pr(A) — Pr(A N B)

« ACB = Pr(A) < Pr(B)

« Pr(AUB) =Pr(A) + Pr(B) — Pr(A N B)

 Not even wrong: “ g R G Z A9 BLE 4 1/27
(PR “[0,1] % 35 4 52 %2 A 22 A 6948 % 40" A2 1IETHRY)




Union Bound

» Union bound (Boole’s inequality): for events A, A,, ...A, € 2

Pr OAZ- < i Pr(A))
i=1 i=1

» Example: A system has n types of errors, each occurring with probability at most p

Let A; be the event that type-i error occurs.

Pr[ no error occurs | = Pr(ﬂA;‘) =1 - PY(UAi) >1—np

Holds unconditionally.
(tight if all bad events are disjoint)



Balls into Bins

. lhrowing n balls into n bins, every bin receives at most O (

w.h.p. (with high probability, with probability 1 — O(1/n))

» Proof: Define event A : some bin receives > k balls (k to be fixed)
and events A : bin-1 receives > k balls

Then by union bound: Pr(A) = PY(UAi) < ZPI‘(Ai) <— = PrA)>1—-—
=1 =1

n n
[n]

For each § € (
k

), define event A; ¢ : bin-i receives the balls in §

n k k |
By union bound: Pr(A,) = Pr U A o] < Z Pr(A;) = <n>i < (e—n> 1 < (E> < —
[n] | [n] | n2
Se(k) Se(k)
Choose k = 3Inn/Inlnn



Principles of Inclusion-Exclusion

» Principle of inclusion-exclusion: for events A, A,, ...A, € 2,

Pr(OAi) ZPr(A)— D PrA,nA)+ ) Pr(AnANA)— -
=1

i<j 1<j<k
= 3 (s
S C {517226"”} €S

 Boole-Bonferroni Inequality: for events A, A,,...A, € 2, forany k > 0

€S

—_— bl B { "’
1§|S|<2k 1 <|S| <2k+1



Derangement (42 3E)

(le probleme des rencontres, 1708)

» The probability that a random permutatlon 7 [n] =
(i.e. there isno i € |n] such that z(i) = 1).

onto

» Let A, be the event that 7(i) = 1. Pr<ﬂAi>: (= 15D

(08,2 () 20

k=1 SE (1:2,..m) =

> [n] has no fixed point

n n n _lk
Pr[ = has no fixed point ] =Pr<ﬂAi") =1—PY(UAi> =1+2(k') =Z — —asn —> o0

=1 =1



Continuity of Probability Measures*

« LetA; C A, C A; C ... be anincreasing sequence of events, and write A for their limit
0
A=|JA =limA4,.
i1 [— 00

Then Pr(A) = lim Pr(A)).

[— 00
» Proof: Express A as a disjoint union A = A; W (A,\A,) W (A;\A,) W ---. Then

Pr(A) = Pr(A) + ) Pr(A;,,\A)
=1

n—1
Pr(A,) + lim 2 [Pr(A,, ) — Pr(A)]

i=1
lim Pr(A,)

n—~odo



Continuity of Probability Measures*

« LetA; C A, C A; C ... be anincreasing sequence of events, and write A for their limit

A= OA,: lim A, .

, [— 00
=1

Then Pr(A) = lim Pr(A)).

[— 00

« LetB, 2 B, 2 B; 2 ... be an decreasing sequence of events, and write B for their limit

B:ﬁBi:IimBi.

, [— 00
=1

Then Pr(B) = lim Pr(B)).

[— 00

- Proof: Consider the complements B; C B; C B; C ... which is an increasing sequence.



Null and Almost Surely Events*

 AneventA € 2 is called null if Pr(A) = 0.
A null event is not necessarily the impossible event .

* Anevent A € 2 occurs almost surely (a.s.) if Pr(A) = 1.
» An event that occurs a.s., is not necessarily the certain event 2.

* A probabillity space is called complete, it all subsets of null events are events.

 Without loss of generality: we only consider complete probability spaces
(if we start with an incomplete one, we can complete it without changing the probabilities)



Conditional Probabili




Conditional Probability
e

* Frequently, we need to make such statement:

“The probability of A is p, given that B occurs.”

| AnB|  [AnB|/|Q] Pr(AnB)

., For discrete uniform law: —
Y] BI/1Q] Pr(B)

« Let A be an event, and let B be an event that Pr(B) > 0.
The conditional probability that A occurs given that B occurs is defined to be

Pr(A N B)
Pr(B)

Pr(A | B) =



Conditional Probability e@

» Let A be an event, and let B be an event that Pr(B) > O.
The conditional probability that A occurs given that B occurs is defined to be

Pr(A N B)
Pr(B)

Pr(A | B) =

« Pr( - | B) is a well-defined probability law:
« sample space is B
- Y8 ={ANB|A € X)isaoc-algebra

» the law Pr( - | B) satisfies the probability axioms



Fair Coins out of a Biased One

(von Neumann’s Bernoulli factory)

* John von Neumann (1951): “Suppose you are given a coin for which the

probability of HEADS, say p, is unknown. How can you use this coin to
generate unbiased (fair) coin-flips.”

* Protocol: Repetitively flip the coin until a HI or TH is encountered,
output H if HT is encountered, and output T if otherwise.

» Consider any two consecutive coin flips:

Pr(HT | {HT, TH}) = Pr(TH | {HT, TH}) = % — %



The Two Child Problem

(boy or girl paradox)

 Martin Gardner (1959): “Knowing that | have two children and at least one of
them is girl, what is the probability that both children are girls?”

« Consider a uniform law Pr over €2 = {BB, BG, GB, GG}

Pr({GG})
Pr({BG,GB,GG))

Pr({GG} | {BG,GB,GG)) =

14

T 3/4 3



Laws for Conditional Probability

* Chain rule:
 Law of total probability: For partition Bl, Bz, ..., B, of €,
Pr(A) = ZPr(A NB) = ZPr(A | B,) Pr(B))

 Bayes’ law: For partition B, B,, ..., B, of £2,

Pr(B, | A) = Pr(B)Pr(A | B) Pr(B;) Pr(A | B,)

Pr(A) ~ Pr(A | B)) Pr(B)) + - + Pr(A | B,) Pr(B,)



Chain Rule

(General Product Rule / Law of Successive Conditioning)

 Assuming that all the involved conditions have positive probabillities, we have

n n

Pr(ﬂA,.) = TIPr (a1 Nj<it)
i=1 i=1
* Proof: Due to the telescopic product

Pr((Vi=/'A)  Pr((ViztA) Pr (A) e



Birthday “Paradox”

“— IR ERREZ100% HARIER B PIAR —RTA R, 23 EAAIT30060A;
o ZEAAA LI FFRAEGTREAITION, MIELELFRBISTAKEAB T, ”

 Consider uniform random mapping f : [n] — |m]

Pr[ fis 1-1] = m!/(mn— n)! _ ﬁ(l - i—l)
i=1

m m

» Balls-into-bins model: throwing n balls into m bins one-by-one at random

Pr[every ball is thrown to an empty bin] = ¢ forn ~ 1/2mIn(1/¢)

n - .

1 — 1

— I I Pr[ball i is in thrown into an empty bin | every ball j < i is in an empty bin] = I I (1 — )
m

i=1

o , i=1
[ — n
X exp —Z ) xexp( )
( =1 m




Law of Total Probability

» Letevents B, B,, ..., B, be a partition of £2 such that Pr(B;) > 0 for all i.
Then:

Pr(A) = Z Pr(AN B,) = 2 Pr(A | B,) Pr(B,)
=1 =1

Proof: AnB,,ANB,,...,AN B, are disjointand A = U (AN B)
i=1

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

= Pr(A)= ) Pr(AnB) .

1 el
Moreover: Pr (A N B;) = Pr(A | B) Pr(B)). S .



Monty Hall Problem

(three doors problem)

e Suppose you’re on a game show, and you’re given the choice of three doors:
Behind one door is a car; behind the others, goats.

* You pick a door, say No.1, and the host, who knows what’s behind the doors,
opens another door, say No.3, which has a goat. He then says to you, “Do
you want to pick door No.27?” Is it to your advantage to switch your choice?

» Define event A : you win at last
event B : you pick the car at first

Pr(B) = 1/3 if not switching
Pr(A) =
Pr(A | B) Pr(B) + Pr(A | BY) Pr(B°) if switching

=0+1-2/3 =2/3



Gambler’s Ruin N

(Symmetric Random Walk in One-Dimension) ——————————

A gambler plays a fair gambling game: At each step, he flips a fair coin, earns
1 point if it’s HEADs, and loses 1 point if otherwise. He starts with k points,

and will keep playing until either his points reaches 0 (lose) or n > k (win).
» Define events A: the gambler loses; and B: the 1st coin flip returns HEADs

» Let Pr, be the law that the gambler starts with k points.

Pry(A) = > PriA | B) + > Pry(A | BY) = Pri, (A) + 5 Pr_ (A)

~(Priy (A +Pr_(A) =1 -~ if0<k<n

n

Pr;(A) = 1 fk=0
0 fk=n



Bayes’ Law

(Bayes’ Theorem)

« For events A, B that Pr(A), Pr(B) > 0, we have
Pr(B) Pr(A | B)
Pr(A)

» Letevents By, B,, ..., B, be a partition of £2 such that Pr(B;) > O for all 1.
If event A has Pr(A) > 0, then

Pr(B;) Pr(A | B)) B Pr(B;) Pr(A | B))
Pr(A) ~ Pr(A | B)) Pr(B)) + -+ + Pr(A | B,) Pr(B,)

Pr(B|A) =

Pr(B; | A) =



Dominating False Positives

* A rare disease occurs with probability 0.001.

5% testing error:

+ 5%
- 95 %

+ 95 %
— 5%

. A person with the disease tested { ; a person without the disease tested {

o |f a person is tested “+”, what is the probability that he/she is ill?

Pr(i11)Pr(+ | i11) Pr(i1l)Pr(+ | i11)
Pr( +) ~ Pr(+ | i11)Pr(ill) + Pr(+ | =ill) Pr(—ill)

0.001 X 95 %
©95% % 0.001 +5%x0.999 1.87 %

Pr(ill | +) =




Simpson’s Paradox

Women Men
Drug | Drug ll Drug | Drug ll
* Results of clinical trials for 2 drugs: Success | 200 10 19 1000
Fail 1800 190 1 1000

* Which drug is more effective?

* Drug-ll is better: overall success rate 219/2020 (I) < 1010/2200 (lI)
* Drug-l is better: for women 1/10 (I) > 1/20 (ll), for men 19/20 (l) > 1/2 (ll)

» In Probability: 1t’s possible that for events A, B and partition C, ..., C_ of 2
e In case for each Cl-, the occurrence of B has positive influence on A:

Pr(A|BNC) > Pr(A | B°NnC)forall i

 but overall, the occurrence of B has negative influence on A:
Pr(A | B) < Pr(A | BY)



Simpson’s Paradox
(Edward H. Simpson in 1951; Karl Pearson in 1899; Udny Yule in 1903)

« Example: Correlation between hours for studying and grades.

 Qverall, it appears that lengths of studying have negative impact on grades.
(The longer the students study, the worse their grades are!)

* But truly the they are positively correlated in every course.

Impact of Studying on Final Grades

Impact of Studying on Final Grades
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Independence




Independence of Two Events

» The occurrence of some event B changes the probability of another event A,
from Pr(A) to Pr(A | B).

» If the occurrence of B has no influence on that of A, i.e. Pr(A | B) = Pr(A),
then A is said to be independent of B.

» The two events A and B are called independent if
Pr(A N B) = Pr(A) Pr(B)

 Propositions: if Pr(B) > 0: Pr(A | B) = Pr(A) < Pr(An B) = Pr(A) Pr(B)
Pr(A N B) = Pr(A) Pr(B) < Pr(An B‘) = Pr(A) Pr(B°)




Independence of Several Events

» Afamily {A; | i € I} of events is called (mutually) independent
if for all finite subsets J C /

Pr ( ﬂAi) = [ Pr4)

e e

 An event A is called (mutually) independent of a family {B; | i € I} of events
if for all disjoint finite subsets J*,J~ C [

Pr(A) = Pr (A (1B () B;‘)

ieJr ieJ”




Product Probability Space

* Probability space constructed from a sequence of independent experiments.
» Consider discrete probability spaces (€2, p(), (25, p5), ..., (£2,,p.).

 The product probability space (£2, p) is constructed as:
» sample space 2 = €2; X L2, X -+ X (2
e Vo = (wy,...,w,) € Q: pmf p(w) = py(@w;)+p,(®,)

« For general probability spaces (€2, 2, Pry), ..., (€2, 2 ., Pr, ), the product probability space (£2, 2, Pr)
can be constructed similarly, where 2 is the unique smallest o-algebra that contains 2 X --- X 2, and

the law Pr is a natural extension onto such 2 from the product probabilities:
VA=A, .. ,A)EX X XX Pr(Ad)=Pr(4,)- Pr(4,)



Dependency Structure

* The followings are all possible:

e A, A,, ..., A are mutually independent and By, B,, ..., B, are mutually
independent, but A; and B, are not independent for every 1 <1 < n.

» Forevery 1 <1 < n,A;and B, are independent, but for every
1 <1< j < n, neither A; and A;, nor B; and B, are independent.

» For an arbitrary undirected graph G(V, E) on vertices V = {A,, ..., A, },
each A; is mutually independent of all A/’s that are not adjacent to A; in G.



Limited Independence

 Afamily {A; | i € I} of events is called pairwise independent
if for all distincti,] € 1

Pr(A; N Aj) = Pr(4)) Pr(Aj)

 Mutually independent events must be pairwise independent.
» Pairwise independent events are not necessarily mutually independent.
 Example: parities (XOR’s) of random bits
A: coin-1is H; B: coin-2 is H; C: coin-3 is H;
D: coin-1 #= coin-2; E: coin-2 # coin-3; F: coin-3 # coin-1;
G: # of H in coins-1,2,3 is odd;



Triply Independent but not pairwise

FIGURE 1

« Pr(AN BN C)=Pr(A)Pr(B) Pr(C) but no pairwise independence

 Example and figure is from George, Glyn, "Testing for the independence of three
events," Mathematical Gazette 88, November 2004, 568



Error Reduction (one-sided case)

» Decision problem f: {0,1}* — {0,1}.
« Monte Carlo randomized algorithm &/ with one-sided error:
e Vx e {01} f(x)=1= d(x) =1
e Vxe {0,1}*: f(x) =0=Pr[d(x)=0]>p
o /" independently run & for n times, return A of the n outputs

fx) = 0= Pr[&"(x) = 1] < (1 = p)”
11

The one-sided error is reduced to € by repeating n ~ — In — times.
p €



Binomial Probability

o Consider n independent tosses of a coin, in which each coin toss returns
HEADs independently with probability p.

» We say that we have a sequence of Bernoulli trials (14 % #] 52 24), in which
each trial succeeds with probability p.

 Binomial probability: p(k) = Pr(k successes out of n trials)
= Z Pr(Vi € § : ith trial succeeds) Pr(Vi € [n]\S : ith trial fails)

Se([zl) e

n p(k) is a well-defined pmf on
= ), PPl -py P = ( k)pka - T a={0L,...,n)
[7] n
) Z p(k) = 1 (binomial Thm.)

k=0



Controlling a Fair Voting

e In a society of n isolated (independent) and neutral (uniform) people, how many people
are there enough to manipulate the result of a majority vote with 95% certainty.

 Consider n independent coin tosses of a fair coin.

Pr[ | #HEADs — #TAILs| > ] = Pr[#HEADs < = — =] + Pr[#HEADs > 2 + -]

k<(n—1)/2 k>(n+1)/2
n
— 21—n
2 (k )
k<(n—1)/2
entropy bound on the 21—n+nH<% %)  where H(x) = — xlog, x — (1 — x)log,(1 — x)
volume of a Hamming ball) = 2 (1Y %
H(x)xl——<x——> +0<<x——>>
2 In2 2 2
~ 2€Xp (—7)

<0.05whent > 2\/2



Error Reduction (two-sided case)

e Decision problem f: {0,1}* — {0,1}.

» Monte Carlo randomized algorithm &/ with two-sided error:

. Vx € {0,1}* Prl[d(x)=fx)] 2> % + p

o /" independently run & for n times, return majority of the n outputs

. 1 k 1 n—=k
Pril"(x) # )] < Y. ( k) (5 +p) (5 —p) < exp(—p’n)

k<% 11

< ewhenn > —21n—
* How to calculate this? (concentration inequalities) p €



Network Reliability s 7

» A serial-parallel (% 5 %%) network connects s to 7. B

| p4

E

« Suppose that each edge e = uv connects uv independently with probability p...

e s-f reliability P, = Pr[ s and ¢ are connected ]

=1-(1-=P, )1 =Ppp) =1—=(1 =P, —py)

Pjyc = PapgPpc = Pppps

Pig=1—-(1—-p) —p)(1—ps)



Network Reliability S B s S N vy, P

-1 network connects s to 7. | P

« Suppose that each edge e = uv connects uv independently with probability p...

e s-f reliability P, = Pr[ s and ¢ are connected ]

+ (all-terminal) network reliability: = Pr[ the resulting network is connected ]

* For general networks:

e s5-7reliability is #P-complete (Leslie Valiant, 1979)

» all-terminal network reliability is #P-complete (Mark Jerrum, 1981)



Conditional independence

» Two events A and B are conditionally independent given C if Pr(C) > 0 and
Pr(ANB|C) =Pr(A|C)Pr(B|C)
e fPr(BNC)>0:PrANnB|C)=PrA|C)Pr(B|C) < Pr(A|BNC) =Pr(A|C)

« Example: any two events are independent but not conditionally independent given the third event

A: coin-1is H; B: coin-2 is H; C: coin-1 # coin-2;

« Example: A and B are are not independent, but they are conditionally independent given C
A: X is tall: B: X knows a lot of math:; C: X is 19 years old;

Suppose that X is a random person



