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Set Cover

Instance: Given a collection of subsets 51, 5,,::-,5,,, € U,
find the smallest C € [m] such that U;cS; = U.

) < * This problem is NP-hard!
: * Decision version is one of Karp’s
S, 21 NP-complete problems.
@ 53 * Can we find good enough
* S solutions efficiently?
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Set Cover

Instance: Given a collection of subsets 51, 5,,::-,5,,, € U,
find the smallest C € [m] such that U;cS; = U.

Sy GreedyCover:
@ Set C = Q.
While U # 0 do:
(S3) Add i with largest |S; N U] to C.
@ U=U - Si'
Return C.
es
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Set Cover Instance: Given a collection of subsets 5S¢, 55, -, 5,,;, € U,
find the smallest C € [m] such that U;cS; = U.
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S GreedyCover:
&) Set C = 0.
& & While U # @ do:
S5 Add i with largest |S; N U| to C.
€y U=U-S;.
@ Sy Return C.

OPT(I): value of minimum set cover of instance |

SOL(I): value of set cover returned by GreedyCover on instance |
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Set Cover Instance: Given a collection of subsets S, S5,,:-, 5, € U,
find the smallest C € [m] such that U;cS; = U.

@ 9 GreedyCover:
€ . Set C = Q.
& 2 While U # @ do:
S, Add i with largest |S; N U| to C.
€y U=U-S;.
& 3 Return C.

OPT(I): value of minimum set cover of instance |

SOL(I): value of set cover returned by GreedyCover on instance |
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For minimization problems, we want SOL(/)/OPT(/) < a wherea > 1

For maximization problems, we want SOL(I)/OPT(I) = a wherea <1



Set Cover Instance: Given a collection of subsets S, S5,,:-, 5, € U,
find the smallest C € [m] such that U;cS; = U.

e GreedyCover:
51 Set C = 0.
€ . ® While U # @ do:
price = 1 ’ Add i with largest |S; N U] to C.
S Set price(e) = ——foralle € S; N U.
ey |SiNU|
54 U — U — Si'
price = 1 Return C.

IC| = Z price(e)
eelU

* Initially, there must exist some subset that covers its elements with price at most OPT(I) /n.
* Therefore, price of elements in the first subset covered by GreedyCover is at most OPT(I)/n.

» After k elements in t subsets are covered by GreedyCover, there must exist some subset such
that the price of its uncovered elements is at most OPT(I;)/(n — k) < OPT(I)/(n — k).

* In general, GreedyCover pays at most OPT(I)/(n — k + 1) to cover the kt" chosen element.
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Set C = Q.
While U # @ do:

Add i with largest |S; N U| to C.
1

Set price(e) = e foralle € S; N U.
U=U— Si'
Return C.

Enumerate ¢ in the order in which they are covered by GreedyCover:
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Set Cover Instance: Given a collection of subsets S, S5,,:-, 5, € U,
find the smallest C € [m] such that U;cS; = U.
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GreedyCover:

Set C = Q.
While U # @ do:

Add i with largest |S; N U] to C.
1

Set price(e) = e foralle € S; N U.
U=U-— Si'
Return C.

Enumerate ¢ in the order in which they are covered by GreedyCover:

price(e) <

OPT(1)
n—k+1
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Set Cover Instance: Given a collection of subsets 5S¢, 55, -, 5,,;, € U,
find the smallest C € [m] such that U;cS; = U.

GreedyCover:

Set C = Q.
While U # @ do:

3)
S1
€
price=1 ©@— Add i with largest |S; N U] to C.
€

1
foralle € 5; N U.
|SinU]|

Set price(e) =

S
U=U— Si'
price = 1 @ Return C.

* GreedyCover has approximation ratio H,, = Inn + 0(1).
* [Lund, Yannakakis 1994; Feige 1998] There is no poly-time (1 — 0(1)) In(n)
approx. algorithm unless NP = quasi-poly-time.

* [Ras, Safra 1997] For some constant ¢, there is no poly-time ¢ In(n) approx.
algorithm unless NP = P.

* [Dinur, Steuer 2014] There is no poly-time (1 — 0(1)) In(n) approx. algorithm
unless NP =P.



Set Cover

Instance: Given a collection of subsets 51, 5,,::-,5,,, € U,
find the smallest C € [m] such that U;cS; = U.

) < * This problem is NP-hard.
1
5 We have O(Inn) approx. alg.
2
* Frequency of an element:
%3 # of subsets the element is in.
ey
5, * Use f; to denote the frequency
(es) of the most frequent element in
instance 1.
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Instance: A collection of subsets 54, S5,++,S5,,, € U.
Primal: Find C S [m] such that U, S; = U.
Dual: Find M € U such that [S; n M| < 1foralli € [m].
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Instance: A collection of subsets 54, S5,++,S5,,, € U.
Primal: Find C S [m] such that U, S; = U.
Dual: Find M € U such that [S; n M| < 1foralli € [m].

Since every e € M must consume a subset to cover
VC,VM: |M| < |C|

As a result, VM: [M| < OPTypima = min|C|

GreedyMatchingCover:

Find arbitrary maximal M for the dual problem.
Return C = {i: S; N M # @}.
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Instance: A collection of subsets 54, S5,++,S5,,, € U.
Primal: Find C S [m] such that U, S; = U.
Dual: Find M € U such that [S; n M| < 1foralli € [m].

Since every e € M must consume a subset to cover
VC,VM: |M| < |C|

As a result, VM: [M| < OPTypima = min|C|

GreedyMatchingCover:

Find arbitrary maximal M for the dual problem.
Return C = {i: S; N M # @}.
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Since M is maximal, returned C must be a cover.
|C| = fI ’ IMl = fI ) OPTprimal

GreedyMatchingCover has approximation ratio f;.
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Vertex Cover

Instance: A collection of subsets 54, S5, -, S5,,;, € U.
Set Cover: Find smallest C € [m] such that U;cS; = U.

What if the frequency of each element is exactly 2°?
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Instance: An undirected simple graph ¢ = (V, E).
Vertex Cover: Find smallest C S Vst.Ve EE:enC #+ (.



Vertex Cover

Instance: A collection of subsets 54, S5, -, S5,,;, € U.
Set Cover: Find smallest C € [m] such that U;cS; = U.

What if the frequency of each element is exactly 2°?

vy (@) &
€2 €3 Vs
U3
e, o 3
Uy Va

Instance: An undirected simple graph ¢ = (V, E).
Vertex Cover: Find smallest C S Vst.Ve EE:enC #+ (.

e Vertex cover is also NP-hard.
* Decision version is one of Karp’s 21 NP-complete problems.



Instance: A collection of subsets S, 55,+-,5,,, € U.
Primal: Find C € [m] such that U, S; = U.
Dual: Find M € U such that |S; N M| < 1 foralli € [m].

l The frequency of each element is exactly 2

Instance: An undirected simple graph ¢ = (V/, E).
Primal: FindC € Vst.Ve € E:enNC # Q. (Vertex Cover)
Dual: Find M € E s.t. Vv € V: |[v N M| < 1. (Matching)
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Instance: A collection of subsets S, 55,+-,5,,, € U.
Primal: Find C € [m] such that U, S; = U.

Dual: Find M € U such that |S; N M| < 1 foralli € [m].

The frequency of each element is exactly 2

Instance: An undirected simple graph ¢ = (V/, E).
Primal: FindC € Vst.Ve € E:enNC # Q. (Vertex Cover)
Dual: Find M € E s.t. Vv € V: |[v N M| < 1. (Matching)

A 2-approximation algorithm for the vertex cover problem

GreedyMatchingCover:

Find arbitrary maximal matching M of the input graph.
Return C = {v:veVandvnNM + 0}.
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Instance: A collection of subsets S, 55,+-,5,,, € U.
Primal: Find C € [m] such that U, S; = U.
Dual: Find M € U such that |S; N M| < 1 foralli € [m].

The frequency of each element is exactly 2

Instance: An undirected simple graph ¢ = (V/, E).
Primal: FindC € Vst.Ve € E:enNC # Q. (Vertex Cover)
Dual: Find M € E s.t. Vv € V: |[v N M| < 1. (Matching)
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A 2-approximation algorithm for the vertex cover problem

GreedyMatchingCover:

Find arbitrary maximal matching M of the input graph.
Return C = {v:veVandvnNM + 0}.

* There is no poly-time <1.36-approx. alg. unless P = NP.

* Assuming the unigue game conjecture, there is no poly-time (2-€)-approx. alg.
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Scheduling

m machines

[T

n jobs each with
processing time p;

ﬁ

makespan

Completion time:

e G= Z Pj
(of machine i) j:jobs assigned to machine i

Makespan: Cnax = max C;
i



Instance: n jobs j = 1,2,---,n each with processing time pj € 7.
Problem: Find a schedule assigning n jobs to m identical machines
so as the minimize the makespan.
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machines could be different, jobs could have release-dates/deadlines, etc...

If m = 2, the scheduling problem can be used to solve the partition problem!

Instance: n positive integers x4, x5, ", x, € 7.
Problem: Determine whether there exists a partition of {1,2, ---, n}
into two sets A and B such that },;c4 X; = Xiep X;-



Instance: n jobs j = 1,2,---,n each with processing time pj € 7.
Problem: Find a schedule assigning n jobs to m identical machines
so as the minimize the makespan.

* “minimum makespan on identical machines”
e Scheduling problem has many variations:
machines could be different, jobs could have release-dates/deadlines, etc...

If m = 2, the scheduling problem can be used to solve the partition problem!

Instance: n positive integers x4, x5, ", x, € 7.
Problem: Determine whether there exists a partition of {1,2, ---, n}
into two sets A and B such that },;c4 X; = Xiep X;-

* The partition problem is one of Karp’s 21 NP-complete problems.
* Thus the considered scheduling problem is NP-hard.
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For each jobj = 1,2,---,n do:
Assign job j to a currently least loaded
machine.
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List (Graham 1966):

For each jobj = 1,2,---,n do:
Assign job j to a currently least loaded
machine.

gl i

This algorithm finishes within poly-time.

What about the approximation ratio?

OPT = maxp; m-OPTZZ D;
g j

Assume machine k finishes last in the schedule, and last job on it is [.
Makespan Crpax = Cx = (Cr, — 1) +p; < 2-0OPT

1 1
plSmJaijSOPT Cr — Pi Sazjilpj Saszj < OPT

since machine k is least loaded when scheduling job [



List (Graham 1966):

For each jobj = 1,2,---,n do:
Assign job j to a currently least loaded
machine.

gl i

Algorithm List finishes within poly-time.

Algorithm List has approximation ratio 2.

Makespan Cpax = Cx = (C, — py) + p; < 2 OPT
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List (Graham 1966):

For each jobj = 1,2,---,n do:
Assign job j to a currently least loaded
machine.

gl i

Algorithm List finishes within poly-time.

Algorithm List has approximation ratio 2.
Makespan Cpax = Cx = (C, — py) + p; < 2 OPT

1 1
P < maxp; < OPT = T
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List (Graham 1966):

For each jobj = 1,2,---,n do:
Assign job j to a currently least loaded
machine.

gl i

Algorithm List finishes within poly-time.

el L _—
1
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J
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List (Graham 1966):

For each jobj = 1,2,---,n do:
Assign job j to a currently least loaded
machine.

gl i

Algorithm List finishes within poly-time.

el L _—
1
Makespan Cpax = Cr = (Cy — pp) + p; ==B==@R= < <2 — E) - OPT
1 1
p; < maxp; < OPT = — =
J

M Lz mdsa;’

1 1 D
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k= Pr="g jilp] m jp] m

Algorithm List has approximation ratio 2 — 1/m.



List (Graham 1966):

For each jobj = 1,2,---,n do:
Assign job j to a currently least loaded
machine.

i

Algorithm List finishes within poly-time.
el R .

1
Makespan Cpax = Cr = (Cy — pp) + p; ==B==@R= < (2 — E) - OPT

1 1
P = m]axpj < OPT -é(—n-_%p]—%]—_ﬁ@‘l‘—
1

J#l Mmi-j
1 Di
C — S—E -=—E — =
k 4 j:tlp] jp]

Algorithm List has approximation ratio 2 — 1/m.

This bound is tight in the worst case. [Almost tight example: m? unit jobs followed
by a length m job. List generates makespan of 2m while OPT = m + 1.]
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Foreachjobj =1,2,---,n do:
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LongestProcessingTime (LPT):

Sort jobs so that p; = p, = -+ = py,.
For each jobj = 1,2,---,n do:
Assign job j to a currently least loaded machine.

* We have shown LPT has approximation ratio (at most) 3/2.

* By a more careful analysis, it can be shown LPT is actually
a 4/3 approximation algorithm.

* The problem of “minimum makespan on identical machines”
has a PTAS (Polynomial Time Approximation Scheme).
Ve > 0, dpoly-time (1 + €)-approx. alg. for the problem
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Online Scheduling

m identical machines Jobs arrive (revealed) one-by-one

Schedule decision must be made once a job arrives,
without seeing jobs in the future.

List (Graham 1966): LPT is not an

For each jobj =1,2,:--,n do: online alg. for
Assign job j to a currently least loaded machine. scheduling.
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Competitive Analysis

List (Graham 1966):

For eachjobj =1,2,---,n do:
Assign job j to a currently least loaded machine.

The competitive ratio of an online algorithm A is «a if:

For every possible input sequence I of the considered problem:

solution value returned by online alg. A on |

<a
solution value returned by optimal offline alg. on I

List is a 2-competitive online algorithm



