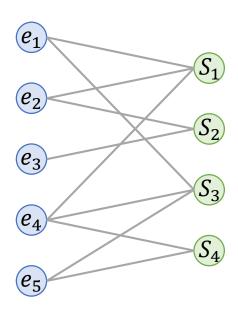
Approximation Algorithms Greedy and Local Search

Advanced Algorithms
Nanjing University, Fall 2018

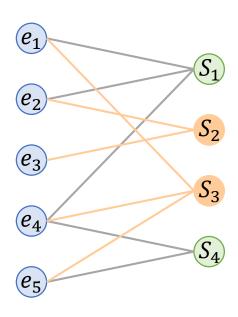
Instance: Given a collection of subsets $S_1, S_2, \dots, S_m \subseteq U$, find the smallest $C \subseteq [m]$ such that $\bigcup_{i \in C} S_i = U$.

Instance: Given a collection of subsets $S_1, S_2, \dots, S_m \subseteq U$, find the smallest $C \subseteq [m]$ such that $\bigcup_{i \in C} S_i = U$.



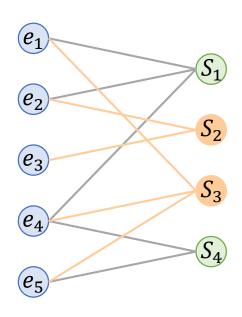
U

Instance: Given a collection of subsets $S_1, S_2, \dots, S_m \subseteq U$, find the smallest $C \subseteq [m]$ such that $\bigcup_{i \in C} S_i = U$.



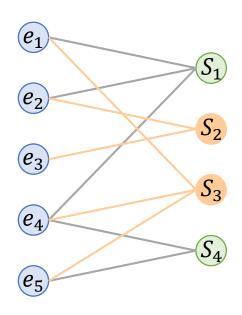
U

Instance: Given a collection of subsets $S_1, S_2, \dots, S_m \subseteq U$, find the smallest $C \subseteq [m]$ such that $\bigcup_{i \in C} S_i = U$.



- This problem is NP-hard!
- Decision version is one of Karp's
 21 NP-complete problems.

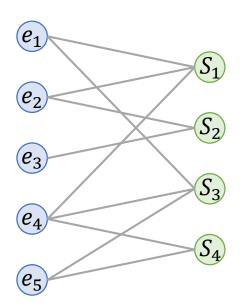
Instance: Given a collection of subsets $S_1, S_2, \dots, S_m \subseteq U$, find the smallest $C \subseteq [m]$ such that $\bigcup_{i \in C} S_i = U$.



- This problem is NP-hard!
- Decision version is one of Karp's
 21 NP-complete problems.
- Can we find good enough solutions efficiently?

U

Instance: Given a collection of subsets $S_1, S_2, \dots, S_m \subseteq U$, find the smallest $C \subseteq [m]$ such that $\bigcup_{i \in C} S_i = U$.

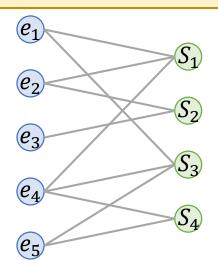


GreedyCover:

Set $C = \emptyset$. While $U \neq \emptyset$ do: Add i with largest $|S_i \cap U|$ to C.

 $U=U-S_i.$

Return C.



GreedyCover:

Set $C = \emptyset$.

While $U \neq \emptyset$ do:

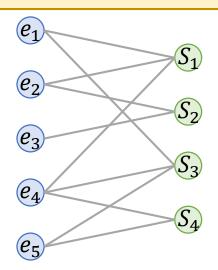
Add i with largest $|S_i \cap U|$ to C.

 $U = U - S_i$.

Return C.

OPT(I): value of minimum set cover of instance I

SOL(I): value of set cover returned by **GreedyCover** on instance I



GreedyCover:

Set $C = \emptyset$.

While $U \neq \emptyset$ do:

Add *i* with largest $|S_i \cap U|$ to C.

$$U = U - S_i$$
.

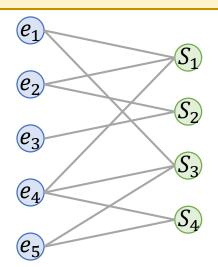
Return C.

OPT(I): value of minimum set cover of instance I

SOL(I): value of set cover returned by **GreedyCover** on instance I

GreedyCover has *approximation ratio* α if

$$\forall$$
 instance I , $\frac{SOL(I)}{OPT(I)} \le \alpha$



GreedyCover:

Set $C = \emptyset$.

While $U \neq \emptyset$ do:

Add i with largest $|S_i \cap U|$ to C.

$$U = U - S_i$$
.

Return C.

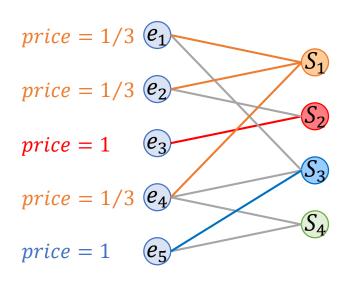
OPT(I): value of minimum set cover of instance I

SOL(I): value of set cover returned by **GreedyCover** on instance I

GreedyCover has *approximation ratio* α if

$$\forall$$
 instance I , $\frac{SOL(I)}{OPT(I)} \le \alpha$

For minimization problems, we want $SOL(I)/OPT(I) \le \alpha$ where $\alpha \ge 1$ For maximization problems, we want $SOL(I)/OPT(I) \ge \alpha$ where $\alpha \le 1$

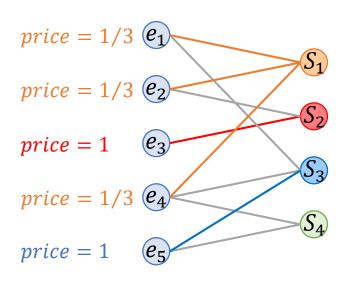


GreedyCover:

Set
$$C = \emptyset$$
.
While $U \neq \emptyset$ do:
Add i with largest $|S_i \cap U|$ to C .
Set $price(e) = \frac{1}{|S_i \cap U|}$ for all $e \in S_i \cap U$.
 $U = U - S_i$.
Return C .

$$|C| = \sum_{e \in U} price(e)$$

- Initially, there must exist some subset that covers its elements with price at most $\mathrm{OPT}(I)/n$.
- Therefore, price of elements in the first subset covered by **GreedyCover** is at most $\mathrm{OPT}(I)/n$.
- After k elements in t subsets are covered by **GreedyCover**, there must exist some subset such that the price of its uncovered elements is at most $\mathrm{OPT}(I_t)/(n-k) \leq \mathrm{OPT}(I)/(n-k)$.
- In general, **GreedyCover** pays at most $\mathrm{OPT}(I)/(n-k+1)$ to cover the k^{th} chosen element.



GreedyCover:

Set
$$C = \emptyset$$
.

While $U \neq \emptyset$ do:

Add *i* with largest $|S_i \cap U|$ to C.

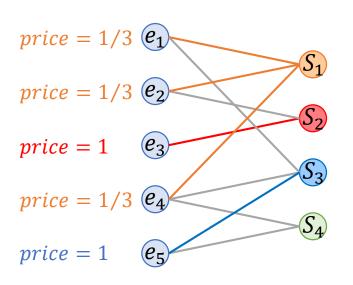
Set $price(e) = \frac{1}{|S_i \cap U|}$ for all $e \in S_i \cap U$.

$$U = U - S_i$$
.

Return C.

Enumerate e_k in the order in which they are covered by **GreedyCover**:

$$price(e_k) \le \frac{OPT(I)}{n-k+1}$$



GreedyCover:

Set $C = \emptyset$.

While $U \neq \emptyset$ do:

Add *i* with largest $|S_i \cap U|$ to C.

Set $price(e) = \frac{1}{|S_i \cap U|}$ for all $e \in S_i \cap U$.

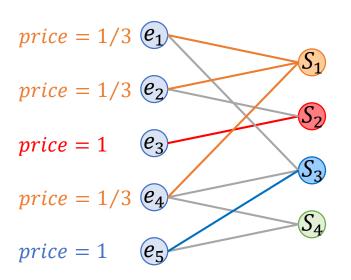
$$U = U - S_i$$
.

Return C.

Enumerate e_k in the order in which they are covered by **GreedyCover**:

$$price(e_k) \le \frac{OPT(I)}{n-k+1}$$

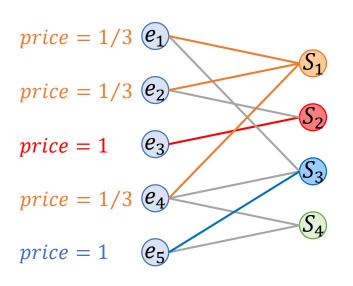
$$|C| = \sum_{e \in U} price(e) \le \sum_{k=1}^{n} \frac{OPT(I)}{n-k+1} = H_n \cdot OPT(I)$$



GreedyCover:

Set
$$C=\emptyset$$
.
While $U\neq\emptyset$ do:
Add i with largest $|S_i\cap U|$ to C .
Set $price(e)=\frac{1}{|S_i\cap U|}$ for all $e\in S_i\cap U$.
 $U=U-S_i$.
Return C .

• GreedyCover has approximation ratio $H_n \approx \ln n + O(1)$.

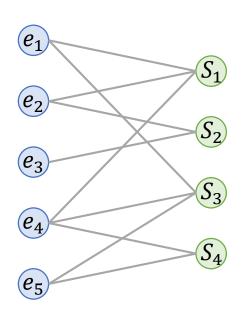


GreedyCover:

Set $C=\emptyset$. While $U\neq\emptyset$ do: Add i with largest $|S_i\cap U|$ to C. Set $price(e)=\frac{1}{|S_i\cap U|}$ for all $e\in S_i\cap U$. $U=U-S_i$. Return C.

- GreedyCover has approximation ratio $H_n \approx \ln n + O(1)$.
- [Lund, Yannakakis 1994; Feige 1998] There is no poly-time $(1 o(1)) \ln(n)$ approx. algorithm unless NP = quasi-poly-time.
- [Ras, Safra 1997] For some constant c, there is no poly-time $c \ln(n)$ approx. algorithm unless NP = P.
- [Dinur, Steuer 2014] There is no poly-time $(1 o(1)) \ln(n)$ approx. algorithm unless NP = P.

Instance: Given a collection of subsets $S_1, S_2, \dots, S_m \subseteq U$, find the smallest $C \subseteq [m]$ such that $\bigcup_{i \in C} S_i = U$.

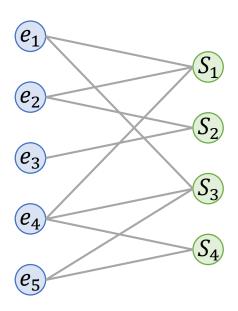


IJ

- This problem is NP-hard.
- We have $O(\ln n)$ approx. alg.
- Frequency of an element:
 # of subsets the element is in.
- Use f_I to denote the frequency of the most frequent element in instance I.

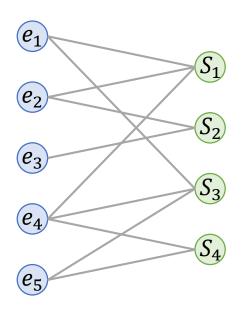
Primal: Find $C \subseteq [m]$ such that $\bigcup_{i \in C} S_i = U$.

Dual: Find $M \subseteq U$ such that $|S_i \cap M| \le 1$ for all $i \in [m]$.



Primal: Find $C \subseteq [m]$ such that $\bigcup_{i \in C} S_i = U$.

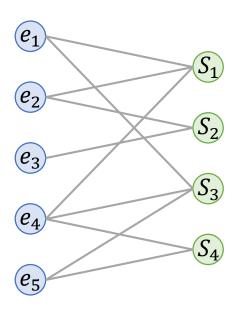
Dual: Find $M \subseteq U$ such that $|S_i \cap M| \le 1$ for all $i \in [m]$.



Since every $e \in M$ must consume a subset to cover $\forall C, \forall M \colon |M| \leq |C|$

Primal: Find $C \subseteq [m]$ such that $\bigcup_{i \in C} S_i = U$.

Dual: Find $M \subseteq U$ such that $|S_i \cap M| \le 1$ for all $i \in [m]$.

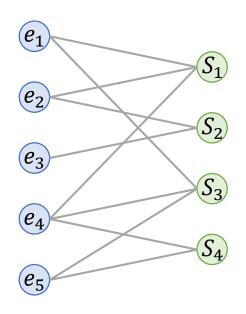


Since every $e \in M$ must consume a subset to cover $\forall C, \forall M \colon |M| \leq |C|$

As a result, $\forall M : |M| \leq OPT_{primal} = min |C|$

Primal: Find $C \subseteq [m]$ such that $\bigcup_{i \in C} S_i = U$.

Dual: Find $M \subseteq U$ such that $|S_i \cap M| \le 1$ for all $i \in [m]$.



Since every $e \in M$ must consume a subset to cover $\forall C, \forall M \colon |M| \leq |C|$

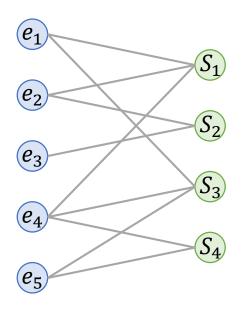
As a result, $\forall M : |M| \leq OPT_{primal} = min |C|$

GreedyMatchingCover:

Find arbitrary maximal M for the dual problem. Return $C = \{i: S_i \cap M \neq \emptyset\}$.

Primal: Find $C \subseteq [m]$ such that $\bigcup_{i \in C} S_i = U$.

Dual: Find $M \subseteq U$ such that $|S_i \cap M| \le 1$ for all $i \in [m]$.



Since every $e \in M$ must consume a subset to cover $\forall C, \forall M \colon |M| \leq |C|$

As a result, $\forall M : |M| \leq OPT_{primal} = min |C|$

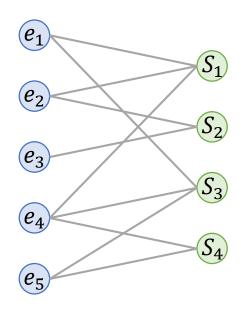
GreedyMatchingCover:

Find arbitrary maximal M for the dual problem. Return $C = \{i: S_i \cap M \neq \emptyset\}$.

Since M is maximal, returned C must be a cover.

Primal: Find $C \subseteq [m]$ such that $\bigcup_{i \in C} S_i = U$.

Dual: Find $M \subseteq U$ such that $|S_i \cap M| \le 1$ for all $i \in [m]$.



Since every $e \in M$ must consume a subset to cover $\forall C, \forall M : |M| \leq |C|$

As a result, $\forall M : |M| \leq OPT_{primal} = min |C|$

GreedyMatchingCover:

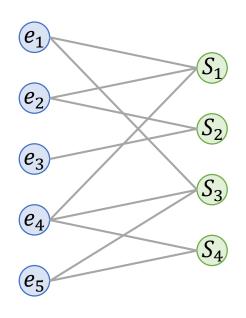
Find arbitrary maximal M for the dual problem. Return $C = \{i: S_i \cap M \neq \emptyset\}$.

Since M is maximal, returned C must be a cover.

$$|C| \le f_I \cdot |M| \le f_I \cdot \text{OPT}_{\text{primal}}$$

Primal: Find $C \subseteq [m]$ such that $\bigcup_{i \in C} S_i = U$.

Dual: Find $M \subseteq U$ such that $|S_i \cap M| \le 1$ for all $i \in [m]$.



Since every $e \in M$ must consume a subset to cover $\forall C, \forall M \colon |M| \leq |C|$

As a result, $\forall M : |M| \leq OPT_{primal} = min |C|$

GreedyMatchingCover:

Find arbitrary maximal M for the dual problem. Return $C = \{i: S_i \cap M \neq \emptyset\}$.

Since M is maximal, returned C must be a cover.

$$|C| \le f_I \cdot |M| \le f_I \cdot \text{OPT}_{\text{primal}}$$

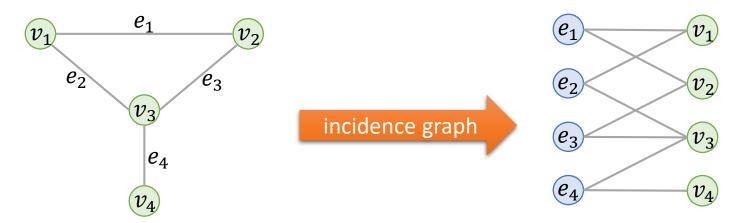
GreedyMatchingCover has approximation ratio f_I .

Set Cover: Find smallest $C \subseteq [m]$ such that $\bigcup_{i \in C} S_i = U$.

What if the frequency of each element is exactly 2?

Set Cover: Find smallest $C \subseteq [m]$ such that $\bigcup_{i \in C} S_i = U$.

What if the frequency of each element is exactly 2?



Vertex Cover

Instance: A collection of subsets $S_1, S_2, \dots, S_m \subseteq U$.

Set Cover: Find smallest $C \subseteq [m]$ such that $\bigcup_{i \in C} S_i = U$.

What if the frequency of each element is exactly 2?

Instance: An undirected simple graph G = (V, E).

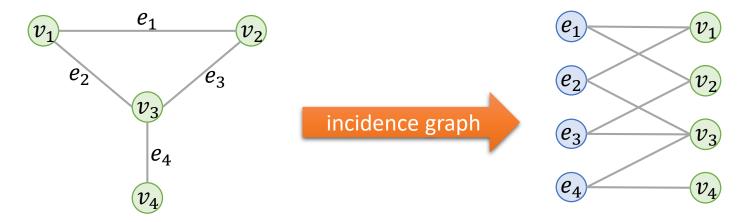
Vertex Cover: Find smallest $C \subseteq V$ s.t. $\forall e \in E : e \cap C \neq \emptyset$.

Vertex Cover

Instance: A collection of subsets $S_1, S_2, \dots, S_m \subseteq U$.

Set Cover: Find smallest $C \subseteq [m]$ such that $\bigcup_{i \in C} S_i = U$.

What if the frequency of each element is exactly 2?



Instance: An undirected simple graph G = (V, E).

Vertex Cover: Find smallest $C \subseteq V$ s.t. $\forall e \in E : e \cap C \neq \emptyset$.

- Vertex cover is also NP-hard.
- Decision version is one of Karp's 21 NP-complete problems.

Primal: Find $C \subseteq [m]$ such that $\bigcup_{i \in C} S_i = U$.

Dual: Find $M \subseteq U$ such that $|S_i \cap M| \le 1$ for all $i \in [m]$.

The frequency of each element is exactly 2

Instance: An undirected simple graph G = (V, E).

Primal: Find $C \subseteq V$ s.t. $\forall e \in E : e \cap C \neq \emptyset$. (Vertex Cover)

Dual: Find $M \subseteq E$ s.t. $\forall v \in V \colon |v \cap M| \le 1$. (Matching)

Primal: Find $C \subseteq [m]$ such that $\bigcup_{i \in C} S_i = U$.

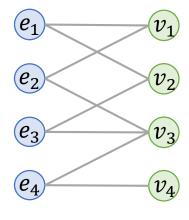
Dual: Find $M \subseteq U$ such that $|S_i \cap M| \le 1$ for all $i \in [m]$.

The frequency of each element is exactly 2

Instance: An undirected simple graph G = (V, E).

Primal: Find $C \subseteq V$ s.t. $\forall e \in E : e \cap C \neq \emptyset$. (Vertex Cover)

Dual: Find $M \subseteq E$ s.t. $\forall v \in V \colon |v \cap M| \le 1$. (Matching)



A 2-approximation algorithm for the vertex cover problem

GreedyMatchingCover:

Find arbitrary maximal matching M of the input graph.

Return $C = \{v : v \in V \text{ and } v \cap M \neq \emptyset\}.$

Primal: Find $C \subseteq [m]$ such that $\bigcup_{i \in C} S_i = U$.

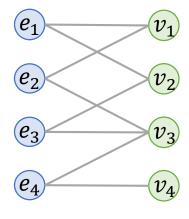
Dual: Find $M \subseteq U$ such that $|S_i \cap M| \le 1$ for all $i \in [m]$.

The frequency of each element is exactly 2

Instance: An undirected simple graph G = (V, E).

Primal: Find $C \subseteq V$ s.t. $\forall e \in E : e \cap C \neq \emptyset$. (Vertex Cover)

Dual: Find $M \subseteq E$ s.t. $\forall v \in V \colon |v \cap M| \le 1$. (Matching)



A 2-approximation algorithm for the vertex cover problem

GreedyMatchingCover:

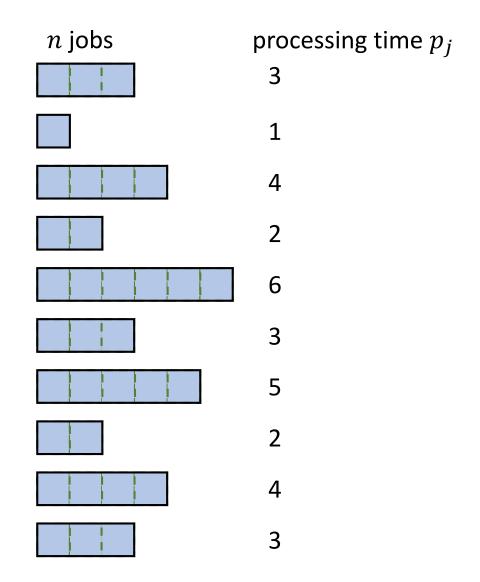
Find arbitrary maximal matching M of the input graph. Return $C = \{v : v \in V \text{ and } v \cap M \neq \emptyset\}$.

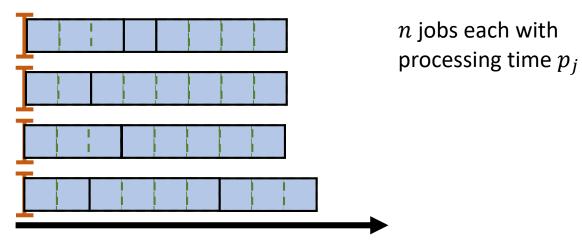
- There is no poly-time <1.36-approx. alg. unless P = NP.
- Assuming the unique game conjecture, there is no poly-time (2-ε)-approx. alg.

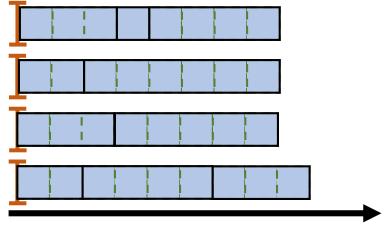
m identical machines

I

m identical machines

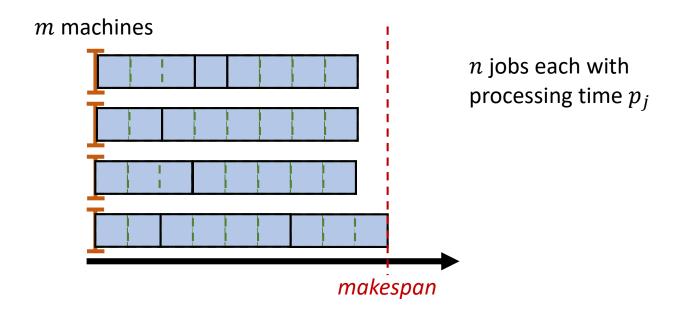






n jobs each with processing time p_i

$$C_i = \sum_{j: \text{ jobs assigned to machine } i} p_j$$



Completion time: (of machine
$$i$$
) $C_i = \sum_{j: \text{ jobs assigned to machine } i} p_j$

Makespan:
$$C_{\max} = \max_{i} C_{i}$$

Instance: n jobs $j=1,2,\cdots,n$ each with processing time $p_j \in \mathbb{Z}^+$.

Problem: Find a schedule assigning n jobs to m identical machines

so as the minimize the makespan.

Instance: n jobs $j=1,2,\cdots,n$ each with processing time $p_i \in \mathbb{Z}^+$.

Problem: Find a schedule assigning n jobs to m identical machines

so as the minimize the makespan.

- "minimum makespan on identical machines"
- Scheduling problem has many variations:
 machines could be different, jobs could have release-dates/deadlines, etc...

Instance: n jobs $j=1,2,\cdots,n$ each with processing time $p_i \in \mathbb{Z}^+$.

Problem: Find a schedule assigning n jobs to m identical machines

so as the minimize the makespan.

- "minimum makespan on identical machines"
- Scheduling problem has many variations:
 machines could be different, jobs could have release-dates/deadlines, etc...

If m=2, the scheduling problem can be used to solve the partition problem!

Instance: n positive integers $x_1, x_2, \dots, x_n \in \mathbb{Z}^+$.

Problem: Determine whether there exists a partition of $\{1,2,\cdots,n\}$

into two sets A and B such that $\sum_{i \in A} x_i = \sum_{i \in B} x_i$.

Instance: n jobs $j=1,2,\cdots,n$ each with processing time $p_i \in \mathbb{Z}^+$.

Problem: Find a schedule assigning n jobs to m identical machines

so as the minimize the makespan.

- "minimum makespan on identical machines"
- Scheduling problem has many variations:
 machines could be different, jobs could have release-dates/deadlines, etc...

If m=2, the scheduling problem can be used to solve the partition problem!

Instance: n positive integers $x_1, x_2, \dots, x_n \in \mathbb{Z}^+$.

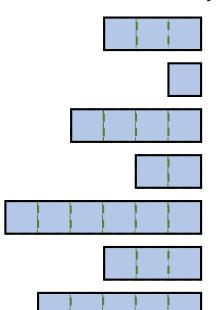
Problem: Determine whether there exists a partition of $\{1,2,\cdots,n\}$

into two sets A and B such that $\sum_{i \in A} x_i = \sum_{i \in B} x_i$.

- The partition problem is one of Karp's 21 NP-complete problems.
- Thus the considered scheduling problem is NP-hard.

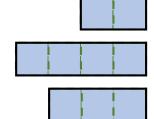
m identical machines

n jobs each with processing time p_j



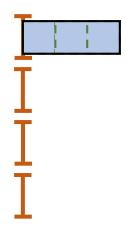
List (Graham 1966):

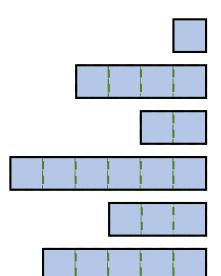
For each job $j = 1, 2, \dots, n$ do:



m identical machines

n jobs each with processing time p_i





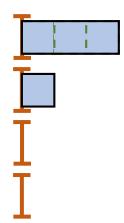
List (Graham 1966):

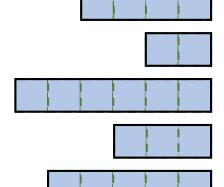
For each job $j = 1, 2, \dots, n$ do:



m identical machines

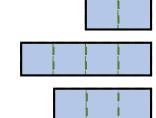
n jobs each with processing time p_i





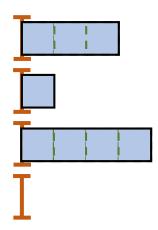
List (Graham 1966):

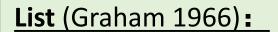
For each job $j = 1, 2, \dots, n$ do:



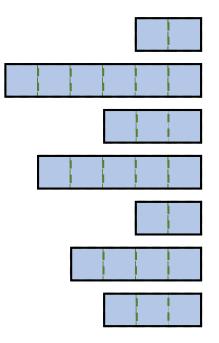
m identical machines

n jobs each with processing time p_i



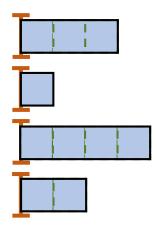


For each job $j = 1, 2, \dots, n$ do:



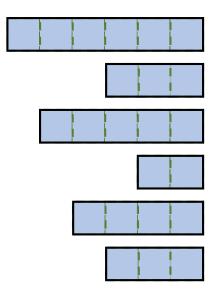
m identical machines

n jobs each with processing time p_i



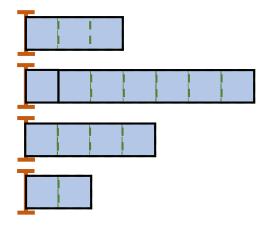
List (Graham 1966):

For each job $j=1,2,\cdots,n$ do: Assign job j to a currently least loaded machine.



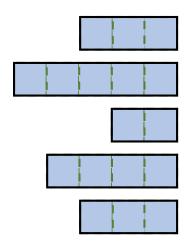
m identical machines

n jobs each with processing time p_i



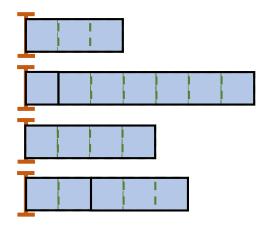
List (Graham 1966):

For each job $j=1,2,\cdots,n$ do: Assign job j to a currently least loaded machine.



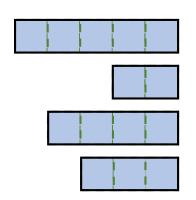
m identical machines

n jobs each with processing time p_i



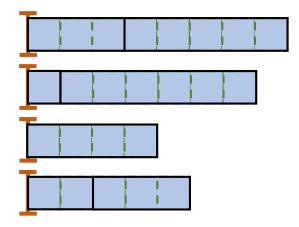
List (Graham 1966):

For each job $j=1,2,\cdots,n$ do: Assign job j to a currently least loaded machine.



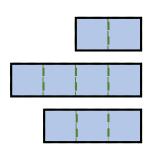
m identical machines

n jobs each with processing time p_i



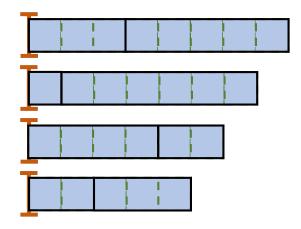
List (Graham 1966):

For each job $j = 1, 2, \dots, n$ do:



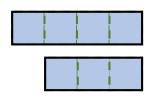
m identical machines

n jobs each with processing time p_i



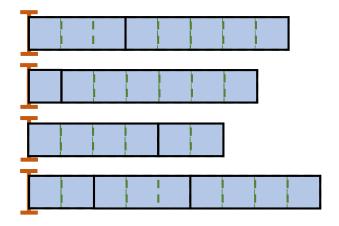
List (Graham 1966):

For each job $j = 1, 2, \dots, n$ do:



m identical machines

n jobs each with processing time p_i

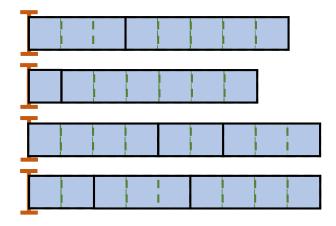


List (Graham 1966):

For each job $j = 1, 2, \dots, n$ do:

m identical machines

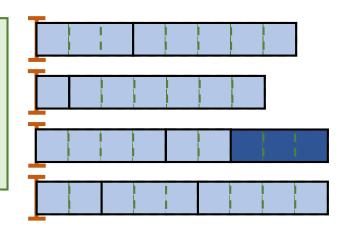
n jobs each with processing time p_i



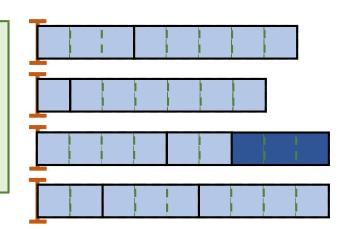
List (Graham 1966):

For each job $j = 1, 2, \dots, n$ do:

For each job $j=1,2,\cdots,n$ do: Assign job j to a currently least loaded machine.

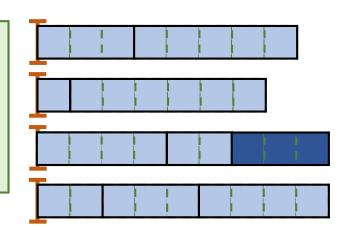


For each job $j=1,2,\cdots,n$ do: Assign job j to a currently least loaded machine.



This algorithm finishes within poly-time.

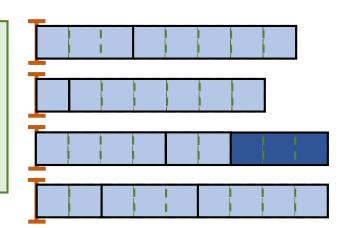
For each job $j=1,2,\cdots,n$ do: Assign job j to a currently least loaded machine.



This algorithm finishes within poly-time.

What about the approximation ratio?

For each job $j=1,2,\cdots,n$ do: Assign job j to a currently least loaded machine.

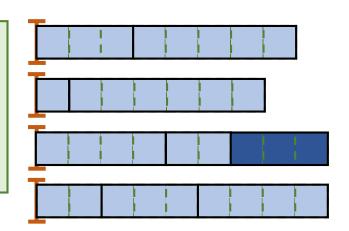


This algorithm finishes within poly-time.

What about the approximation ratio?

$$OPT \ge \max_{j} p_{j}$$

For each job $j=1,2,\cdots,n$ do: Assign job j to a currently least loaded machine.



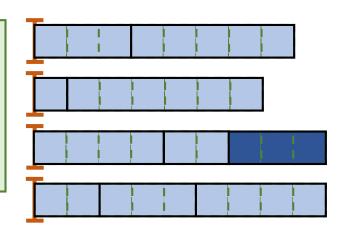
This algorithm finishes within poly-time.

What about the approximation ratio?

$$OPT \ge \max_{j} p_{j}$$
 $m \cdot OPT \ge \sum_{j} p_{j}$

For each job $j = 1, 2, \dots, n$ do:

Assign job j to a currently least loaded machine.



This algorithm finishes within poly-time.

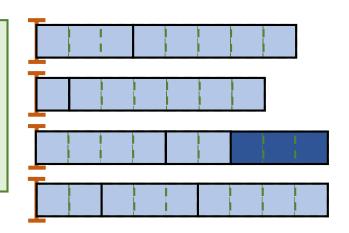
What about the approximation ratio?

$$OPT \ge \max_{j} p_{j}$$
 $m \cdot OPT \ge \sum_{j} p_{j}$

<u>List (Graham 1966):</u>

For each job $j = 1, 2, \dots, n$ do:

Assign job j to a currently least loaded machine.



This algorithm finishes within poly-time.

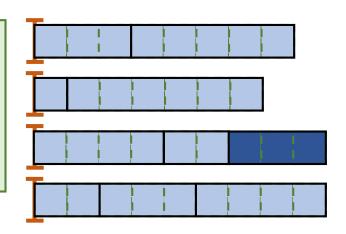
What about the approximation ratio?

$$OPT \ge \max_{j} p_{j}$$
 $m \cdot OPT \ge \sum_{j} p_{j}$

Makespan
$$C_{\text{max}} = C_k = (C_k - p_l) + p_l$$

For each job $j = 1, 2, \dots, n$ do:

Assign job *j* to a currently least loaded machine.



This algorithm finishes within poly-time.

What about the approximation ratio?

$$OPT \ge \max_{j} p_{j}$$
 $m \cdot OPT \ge \sum_{j} p_{j}$

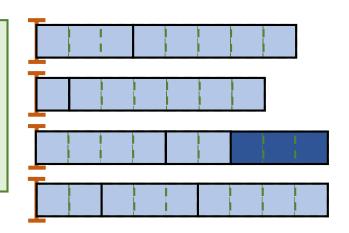
Makespan
$$C_{\text{max}} = C_k = (C_k - p_l) + p_l$$

$$p_l \le \max_j p_j \le OPT$$

<u>List (Graham 1966):</u>

For each job $j = 1, 2, \dots, n$ do:

Assign job *j* to a currently least loaded machine.



This algorithm finishes within poly-time.

What about the approximation ratio?

$$OPT \ge \max_{j} p_{j}$$
 $m \cdot OPT \ge \sum_{j} p_{j}$

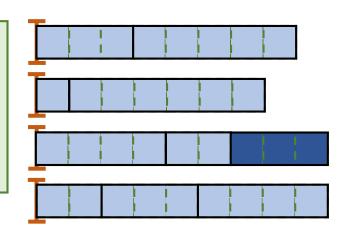
Makespan
$$C_{\text{max}} = C_k = (C_k - p_l) + p_l$$

$$p_l \leq \max_j p_j \leq \text{OPT} \qquad \qquad C_k - p_l \leq \frac{1}{m} \sum_{j \neq l} p_j \leq \frac{1}{m} \sum_j p_j \leq \text{OPT}$$
 since machine k is least loaded when scheduling job l

<u>List (Graham 1966):</u>

For each job $j = 1, 2, \dots, n$ do:

Assign job *j* to a currently least loaded machine.



This algorithm finishes within poly-time.

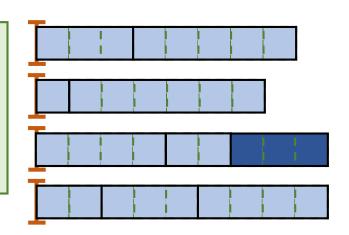
What about the approximation ratio?

$$OPT \ge \max_{j} p_{j}$$
 $m \cdot OPT \ge \sum_{j} p_{j}$

Makespan
$$C_{\text{max}} = C_k = (C_k - p_l) + p_l \le 2 \cdot \text{OPT}$$

$$p_l \leq \max_j p_j \leq \text{OPT} \qquad \qquad C_k - p_l \leq \frac{1}{m} \sum_{j \neq l} p_j \leq \frac{1}{m} \sum_j p_j \leq \text{OPT}$$
 since machine k is least loaded when scheduling job l

For each job $j=1,2,\cdots,n$ do: Assign job j to a currently least loaded machine.



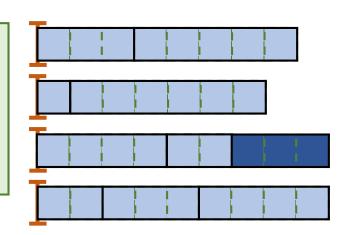
Algorithm **List** finishes within poly-time.

Algorithm **List** has approximation ratio 2.

Makespan
$$C_{\text{max}} = C_k = (C_k - p_l) + p_l \le 2 \cdot \text{OPT}$$

$$p_l \le \max_j p_j \le \text{OPT}$$
 $C_k - p_l \le \frac{1}{m} \sum_{j \ne l} p_j \le \frac{1}{m} \sum_j p_j \le \text{OPT}$

For each job $j=1,2,\cdots,n$ do: Assign job j to a currently least loaded machine.



Algorithm **List** finishes within poly-time.

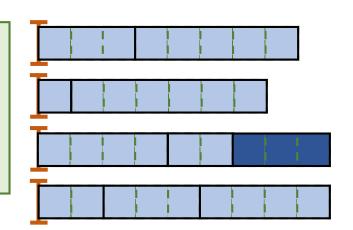
Algorithm **List** has approximation ratio 2.

Makespan
$$C_{\text{max}} = C_k = (C_k - p_l) + p_l \le 2 \cdot \text{OPT}$$

$$p_{l} \le \max_{j} p_{j} \le \text{OPT} \qquad C_{k} \quad p_{l} \le \frac{1}{m} \sum_{j \ne l} p_{j} \le \frac{1}{m} \sum_{j} p_{j} \le \text{OPT}$$

$$C_{k} - p_{l} \le \frac{1}{m} \sum_{j \ne l} p_{j} = \frac{1}{m} \sum_{j} p_{j} - \frac{p_{l}}{m}$$

For each job $j=1,2,\cdots,n$ do: Assign job j to a currently least loaded machine.

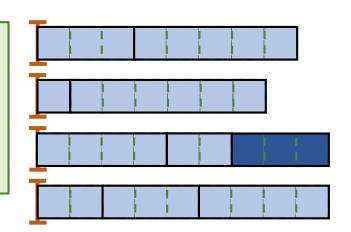


Algorithm **List** finishes within poly-time.

Algorithm List has approximation ratio 2.

$$\begin{aligned} \text{Makespan } C_{\text{max}} &= C_k = (C_k - p_l) + p_l \leq 2 \quad \text{OPT} \leq \left(2 - \frac{1}{m}\right) \cdot \text{OPT} \\ p_l &\leq \max_j p_j \leq \text{OPT} \quad C_k \quad p_l \leq \frac{1}{m} \sum_{j \neq l} p_j \leq \frac{1}{m} \sum_j p_j \leq \text{OPT} \\ C_k - p_l &\leq \frac{1}{m} \sum_{j \neq l} p_j = \frac{1}{m} \sum_j p_j - \frac{p_l}{m} \end{aligned}$$

For each job $j=1,2,\cdots,n$ do: Assign job j to a currently least loaded machine.



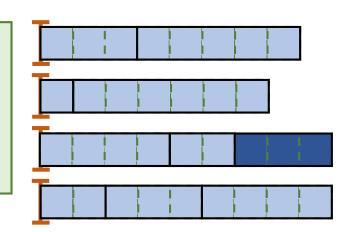
Algorithm **List** finishes within poly-time.

Algorithm List has approximation ratio 2.

$$\begin{aligned} \text{Makespan } C_{\text{max}} &= C_k = (C_k - p_l) + p_l \leq 2 \quad \text{OPT} \leq \left(2 - \frac{1}{m}\right) \cdot \text{OPT} \\ p_l &\leq \max_j p_j \leq \text{OPT} \quad C_k \quad p_l \leq \frac{1}{m} \sum_{j \neq l} p_j \leq \frac{1}{m} \sum_{j \neq l} p_j \leq \frac{\text{OPT}}{m} \\ C_k - p_l &\leq \frac{1}{m} \sum_{j \neq l} p_j = \frac{1}{m} \sum_j p_j - \frac{p_l}{m} \end{aligned}$$

Algorithm **List** has approximation ratio 2 - 1/m.

For each job $j=1,2,\cdots,n$ do: Assign job j to a currently least loaded machine.



Algorithm **List** finishes within poly-time.

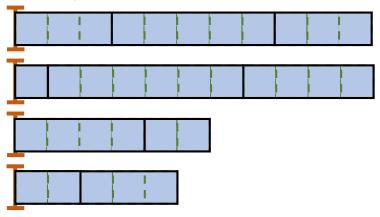
Algorithm List has approximation ratio 2.

$$\begin{aligned} \text{Makespan } C_{\max} &= C_k = (C_k - p_l) + p_l \leq 2 \quad \text{OPT} \leq \left(2 - \frac{1}{m}\right) \cdot \text{OPT} \\ p_l &\leq \max_j p_j \leq \text{OPT} \quad C_k \quad p_l \leq \frac{1}{m} \sum_{j \neq l} p_j \leq \frac{1}{m} \sum_{j \neq l} p_j \leq \frac{\text{OPT}}{m} \\ C_k - p_l &\leq \frac{1}{m} \sum_{j \neq l} p_j = \frac{1}{m} \sum_j p_j - \frac{p_l}{m} \end{aligned}$$

Algorithm **List** has approximation ratio 2 - 1/m.

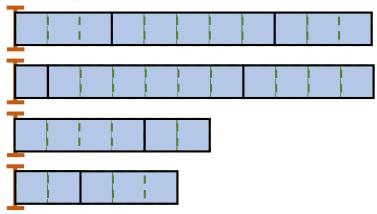
This bound is tight in the worst case. [Almost tight example: m^2 unit jobs followed by a length m job. List generates makespan of 2m while OPT = m + 1.]

Start with an arbitrary solution:



Keep making improvements by *locally* adjusting the solution, until no further improvement can be made (**local optimum**)

Start with an arbitrary solution:



Keep making improvements by *locally* adjusting the solution, until no further improvement can be made (**local optimum**)

LocalSearch:

Start with an arbitrary schedule.

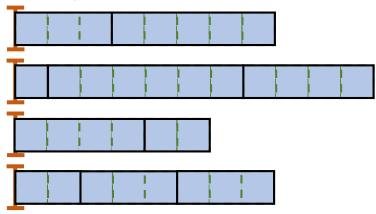
Repeat until no job can be reassigned (i.e., local optimum reached):

Let l be a job that finished last.

If exists machine i s.t. assigning job l to i allows l finish earlier:

Transfer job l to earliest such i.

Start with an arbitrary solution:



Keep making improvements by *locally* adjusting the solution, until no further improvement can be made (**local optimum**)

LocalSearch:

Start with an arbitrary schedule.

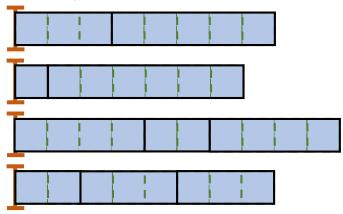
Repeat until no job can be reassigned (i.e., local optimum reached):

Let l be a job that finished last.

If exists machine i s.t. assigning job l to i allows l finish earlier:

Transfer job l to earliest such i.

Start with an arbitrary solution:



Keep making improvements by *locally* adjusting the solution, until no further improvement can be made (**local optimum**)

LocalSearch:

Start with an arbitrary schedule.

Repeat until no job can be reassigned (i.e., local optimum reached):

Let l be a job that finished last.

If exists machine i s.t. assigning job l to i allows l finish earlier:

Transfer job l to earliest such i.

LocalSearch:

Start with an arbitrary schedule.

Repeat until no job can be reassigned (i.e., local optimum reached):

Let l be a job that finished last.

If exists machine i s.t. assigning job l to i allows l finish earlier: Transfer job l to earliest such i.

LocalSearch:

Start with an arbitrary schedule.

Repeat until no job can be reassigned (i.e., local optimum reached):

Let l be a job that finished last.

If exists machine i s.t. assigning job l to i allows l finish earlier: Transfer job l to earliest such i.

This algorithm finishes within poly-time. (No job is transferred twice!)

LocalSearch:

Start with an arbitrary schedule.

Repeat until no job can be reassigned (i.e., local optimum reached):

Let l be a job that finished last.

If exists machine i s.t. assigning job l to i allows l finish earlier: Transfer job l to earliest such i.

This algorithm finishes within poly-time. (No job is transferred twice!)

The approximation ratio of this algorithm?

Start with an arbitrary schedule.

Repeat until no job can be reassigned (i.e., local optimum reached):

Let l be a job that finished last.

If exists machine i s.t. assigning job l to i allows l finish earlier: Transfer job l to earliest such i.

This algorithm finishes within poly-time. (No job is transferred twice!)

The approximation ratio of this algorithm?

$$OPT \ge \max_{j} p_{j}$$
 $m \cdot OPT \ge \sum_{j} p_{j}$

Start with an arbitrary schedule.

Repeat until no job can be reassigned (i.e., local optimum reached):

Let *l* be a job that finished last.

If exists machine i s.t. assigning job l to i allows l finish earlier: Transfer job l to earliest such i.

This algorithm finishes within poly-time. (No job is transferred twice!)

The approximation ratio of this algorithm?

$$OPT \ge \max_{j} p_{j}$$
 $m \cdot OPT \ge \sum_{j} p_{j}$

Start with an arbitrary schedule.

Repeat until no job can be reassigned (i.e., local optimum reached):

Let *l* be a job that finished last.

If exists machine i s.t. assigning job l to i allows l finish earlier: Transfer job l to earliest such i.

This algorithm finishes within poly-time. (No job is transferred twice!)
The approximation ratio of this algorithm?

$$OPT \ge \max_{j} p_{j}$$
 $m \cdot OPT \ge \sum_{j} p_{j}$

Makespan
$$C_{\text{max}} = C_k = (C_k - p_l) + p_l$$

Start with an arbitrary schedule.

Repeat until no job can be reassigned (i.e., local optimum reached):

Let l be a job that finished last.

If exists machine i s.t. assigning job l to i allows l finish earlier: Transfer job l to earliest such i.

This algorithm finishes within poly-time. (No job is transferred twice!)
The approximation ratio of this algorithm?

$$OPT \ge \max_{j} p_{j}$$
 $m \cdot OPT \ge \sum_{j} p_{j}$

Makespan
$$C_{\text{max}} = C_k = (C_k - p_l) + p_l$$

$$p_l \le \max_j p_j \le \text{OPT}$$

Start with an arbitrary schedule.

Repeat until no job can be reassigned (i.e., local optimum reached):

Let *l* be a job that finished last.

If exists machine i s.t. assigning job l to i allows l finish earlier: Transfer job l to earliest such i.

This algorithm finishes within poly-time. (No job is transferred twice!)
The approximation ratio of this algorithm?

$$OPT \ge \max_{j} p_{j}$$
 $m \cdot OPT \ge \sum_{j} p_{j}$

Makespan
$$C_{\text{max}} = C_k = (C_k - p_l) + p_l$$

$$p_l \le \max_j p_j \le \text{OPT}$$
 $C_k - p_l \le \frac{1}{m} \sum_{j \ne l} p_j = \frac{1}{m} \sum_j p_j - \frac{p_l}{m}$

Start with an arbitrary schedule.

Repeat until no job can be reassigned (i.e., local optimum reached):

Let l be a job that finished last.

If exists machine i s.t. assigning job l to i allows l finish earlier: Transfer job l to earliest such i.

This algorithm finishes within poly-time. (No job is transferred twice!)

The approximation ratio of this algorithm? (2-1/m)

$$OPT \ge \max_{j} p_{j}$$
 $m \cdot OPT \ge \sum_{j} p_{j}$

Makespan
$$C_{\max} = C_k = (C_k - p_l) + p_l \le \left(2 - \frac{1}{m}\right) \cdot \text{OPT}$$

$$p_l \le \max_j p_j \le \text{OPT} \qquad C_k - p_l \le \frac{1}{m} \sum_{j \ne l} p_j = \frac{1}{m} \sum_j p_j - \frac{p_l}{m}$$

Start with an arbitrary schedule.

Repeat until no job can be reassigned (i.e., local optimum reached):

Let l be a job that finished last.

If exists machine i s.t. assigning job l to i allows l finish earlier: Transfer job l to earliest such i.

List (Graham 1966):

For each job $j = 1, 2, \dots, n$ do:

Assign job j to a currently least loaded machine.

Start with an arbitrary schedule.

Repeat until no job can be reassigned (i.e., local optimum reached):

Let l be a job that finished last.

If exists machine i s.t. assigning job l to i allows l finish earlier: Transfer job l to earliest such i.

LocalSearch finds a schedule with makespan $C_{\max} \leq \left(2 - \frac{1}{m}\right) \cdot \text{OPT}$

<u>List (Graham 1966):</u>

For each job $j = 1, 2, \dots, n$ do:

Assign job j to a currently least loaded machine.

Start with an arbitrary schedule.

Repeat until no job can be reassigned (i.e., local optimum reached): Let l be a job that finished last.

If exists machine i s.t. assigning job l to i allows l finish earlier: Transfer job l to earliest such i.

LocalSearch finds a schedule with makespan $C_{\max} \leq \left(2 - \frac{1}{m}\right) \cdot \text{OPT}$

<u>List</u> (Graham 1966):

For each job $j = 1, 2, \dots, n$ do:

Assign job j to a currently least loaded machine.

The schedule returned by **List** must be a local optimum!

Start with an arbitrary schedule.

Repeat until no job can be reassigned (i.e., local optimum reached):

Let l be a job that finished last.

If exists machine i s.t. assigning job l to i allows l finish earlier: Transfer job l to earliest such i.

LocalSearch finds a schedule with makespan $C_{\max} \leq \left(2 - \frac{1}{m}\right) \cdot \text{OPT}$

<u>List</u> (Graham 1966):

For each job $j = 1, 2, \dots, n$ do:

Assign job j to a currently least loaded machine.

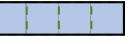
The schedule returned by **List** must be a local optimum!

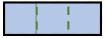
List will find a schedule with makespan

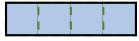
$$C_{\max} \le \left(2 - \frac{1}{m}\right) \cdot \text{OPT}$$

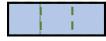
m identical machines

n jobs









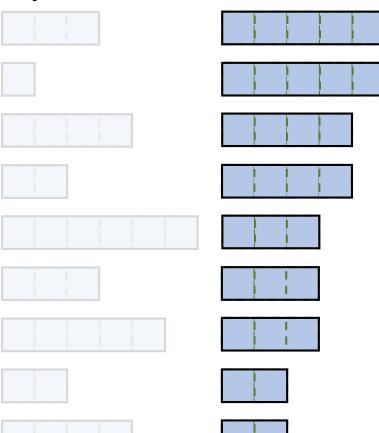
List (Graham 1966):

For each job $j=1,2,\cdots,n$ do: Assign job j to a currently least loaded machine.

m identical machines

I I I

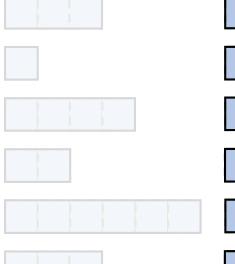
n jobs



List (Graham 1966):

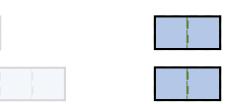
For each job $j=1,2,\cdots,n$ do: Assign job j to a currently least loaded machine.

n jobs



List (Graham 1966):

For each job $j=1,2,\cdots,n$ do: Assign job j to a currently least loaded machine.



Sort jobs so that $p_1 \ge p_2 \ge \cdots \ge p_n$.

For each job $j = 1, 2, \dots, n$ do:

Assign job j to a currently least loaded machine.

Sort jobs so that $p_1 \ge p_2 \ge \cdots \ge p_n$.

For each job $j = 1, 2, \dots, n$ do:

Assign job j to a currently least loaded machine.

This algorithm finishes within poly-time.

The approximation ratio of this algorithm?

Sort jobs so that $p_1 \ge p_2 \ge \cdots \ge p_n$.

For each job $j = 1, 2, \dots, n$ do:

Assign job j to a currently least loaded machine.

This algorithm finishes within poly-time.

The approximation ratio of this algorithm?

Makespan
$$C_{\text{max}} = C_k = (C_k - p_l) + p_l$$

Sort jobs so that $p_1 \ge p_2 \ge \cdots \ge p_n$.

For each job $j = 1, 2, \dots, n$ do:

Assign job j to a currently least loaded machine.

This algorithm finishes within poly-time.

The approximation ratio of this algorithm?

Makespan
$$C_{\text{max}} = C_k = (C_k - p_l) + p_l$$

$$C_k - p_l \le \frac{1}{m} \sum_j p_j \le \text{OPT}$$

Sort jobs so that $p_1 \ge p_2 \ge \cdots \ge p_n$.

For each job $j = 1, 2, \dots, n$ do:

Assign job *j* to a currently least loaded machine.

This algorithm finishes within poly-time.

The approximation ratio of this algorithm?

Makespan
$$C_{\text{max}} = C_k = (C_k - p_l) + p_l$$

$$C_k - p_l \le \frac{1}{m} \sum_j p_j \le \text{OPT}$$

Sort jobs so that $p_1 \ge p_2 \ge \cdots \ge p_n$.

For each job $j = 1, 2, \dots, n$ do:

Assign job *j* to a currently least loaded machine.

This algorithm finishes within poly-time.

The approximation ratio of this algorithm?

Assume machine k finishes last in final schedule, and last job on it is l.

Makespan
$$C_{\text{max}} = C_k = (C_k - p_l) + p_l$$

$$C_k - p_l \le \frac{1}{m} \sum_j p_j \le \text{OPT}$$

W.l.o.g.: • # of jobs > # of machines (i.e., n > m)

• makespan is achieved by some job bigger than m (i.e., l > m)

Sort jobs so that $p_1 \ge p_2 \ge \cdots \ge p_n$.

For each job $j = 1, 2, \dots, n$ do:

Assign job *j* to a currently least loaded machine.

This algorithm finishes within poly-time.

The approximation ratio of this algorithm?

Assume machine k finishes last in final schedule, and last job on it is l.

Makespan
$$C_{\text{max}} = C_k = (C_k - p_l) + p_l$$

$$C_k - p_l \le \frac{1}{m} \sum_j p_j \le \text{OPT}$$

W.l.o.g.: • # of jobs > # of machines (i.e., n > m) $p_m + p_{m+1} \le OPT$

• makespan is achieved by some job bigger than m (i.e., l > m)

Sort jobs so that $p_1 \ge p_2 \ge \cdots \ge p_n$.

For each job $j = 1, 2, \dots, n$ do:

Assign job *j* to a currently least loaded machine.

This algorithm finishes within poly-time.

The approximation ratio of this algorithm?

Assume machine k finishes last in final schedule, and last job on it is l.

Makespan
$$C_{\text{max}} = C_k = (C_k - p_l) + p_l$$

$$C_k - p_l \le \frac{1}{m} \sum_j p_j \le \text{OPT}$$

W.l.o.g.: • # of jobs > # of machines (i.e., n > m) $p_m + p_{m+1} \le OPT$

• makespan is achieved by some job bigger than m (i.e., l>m) $p_l \leq p_{m+1}$

Sort jobs so that $p_1 \ge p_2 \ge \cdots \ge p_n$.

For each job $j = 1, 2, \dots, n$ do:

Assign job *j* to a currently least loaded machine.

This algorithm finishes within poly-time.

The approximation ratio of this algorithm?

Assume machine k finishes last in final schedule, and last job on it is l.

Makespan
$$C_{\text{max}} = C_k = (C_k - p_l) + p_l$$

$$C_k - p_l \le \frac{1}{m} \sum_{j} p_j \le \text{OPT}$$
 $p_l \le p_{m+1} \le \frac{1}{2} (p_m + p_{m+1}) \le \frac{\text{OPT}}{2}$

W.l.o.g.: • # of jobs > # of machines (i.e., n > m) $p_m + p_{m+1} \le OPT$

• makespan is achieved by some job bigger than m (i.e., l>m) $p_l \leq p_{m+1}$

Sort jobs so that $p_1 \ge p_2 \ge \cdots \ge p_n$.

For each job $j = 1, 2, \dots, n$ do:

Assign job *j* to a currently least loaded machine.

This algorithm finishes within poly-time.

The approximation ratio of this algorithm?

Assume machine k finishes last in final schedule, and last job on it is l.

Makespan
$$C_{\max} = C_k = (C_k - p_l) + p_l \le \frac{3}{2} \cdot \text{OPT}$$

$$C_k - p_l \le \frac{1}{m} \sum_{j} p_j \le \text{OPT}$$
 $p_l \le p_{m+1} \le \frac{1}{2} (p_m + p_{m+1}) \le \frac{\text{OPT}}{2}$

W.l.o.g.: • # of jobs > # of machines (i.e., n > m) $p_m + p_{m+1} \le OPT$

• makespan is achieved by some job bigger than m (i.e., l>m) $p_l \leq p_{m+1}$

Sort jobs so that $p_1 \geq p_2 \geq \cdots \geq p_n$. For each job $j=1,2,\cdots,n$ do: Assign job j to a currently least loaded machine.

- We have shown LPT has approximation ratio (at most) 3/2.
- By a more careful analysis, it can be shown **LPT** is actually a 4/3 approximation algorithm.
- The problem of "minimum makespan on identical machines" has a **PTAS** (Polynomial **T**ime **A**pproximation **S**cheme).

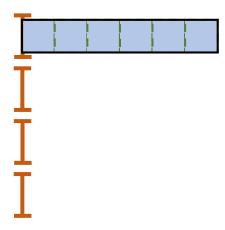
 $\forall \epsilon > 0$, \exists poly-time $(1 + \epsilon)$ -approx. alg. for the problem

m identical machines

Jobs arrive (revealed) one-by-one

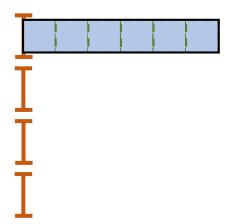
m identical machines

Jobs arrive (revealed) one-by-one



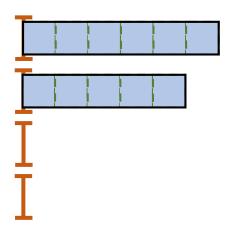
m identical machines

Jobs arrive (revealed) one-by-one



m identical machines

Jobs arrive (revealed) one-by-one

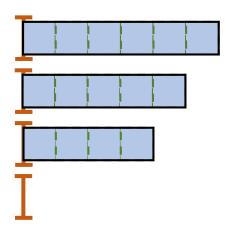


m identical machines

Jobs arrive (revealed) one-by-one

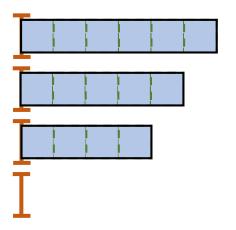
m identical machines

Jobs arrive (revealed) one-by-one



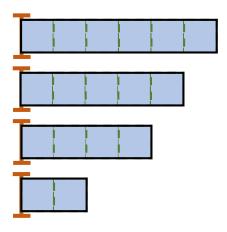
m identical machines

Jobs arrive (revealed) one-by-one



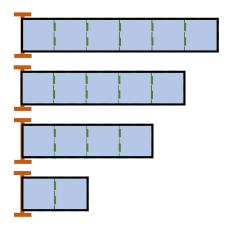
m identical machines

Jobs arrive (revealed) one-by-one



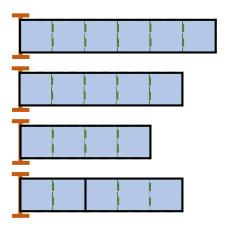
m identical machines

Jobs arrive (revealed) one-by-one



m identical machines

Jobs arrive (revealed) one-by-one

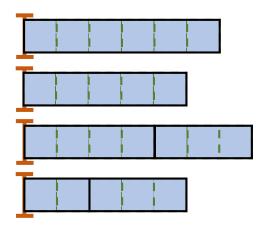


m identical machines

Jobs arrive (revealed) one-by-one

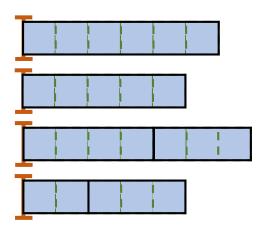
m identical machines

Jobs arrive (revealed) one-by-one



m identical machines

Jobs arrive (revealed) one-by-one



Schedule decision must be made *once* a job arrives, without seeing jobs in the future.

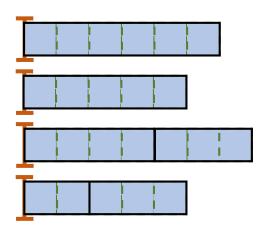
List (Graham 1966):

For each job $j = 1, 2, \dots, n$ do:

Assign job j to a currently least loaded machine.

m identical machines

Jobs arrive (revealed) one-by-one



Schedule decision must be made *once* a job arrives, without seeing jobs in the future.

List (Graham 1966):

For each job $j = 1, 2, \dots, n$ do:

Assign job j to a currently least loaded machine.

LPT is not an online alg. for scheduling.

Competitive Analysis

The competitive ratio of an **online algorithm** \mathcal{A} is α if:

For every possible input sequence *I* of the considered problem:

solution value returned by online alg. \mathcal{A} on I solution value returned by optimal offline alg. on I

Competitive Analysis

List (Graham 1966):

For each job $j = 1, 2, \dots, n$ do:

Assign job j to a currently least loaded machine.

The competitive ratio of an **online algorithm** \mathcal{A} is α if:

For every possible input sequence *I* of the considered problem:

solution value returned by online alg. \mathcal{A} on I

solution value returned by optimal offline alg. on ${\it I}$

Competitive Analysis

<u>List (Graham 1966):</u>

For each job $j=1,2,\cdots,n$ do: Assign job j to a currently least loaded machine.

The competitive ratio of an **online algorithm** \mathcal{A} is α if:

For every possible input sequence *I* of the considered problem:

solution value returned by online alg. \mathcal{A} on I solution value returned by optimal offline alg. on I

List is a 2-competitive online algorithm