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Set Cover

Instance: Given a collection of subsets 𝑆1, 𝑆2, ⋯ , 𝑆𝑚 ⊆ 𝑈,
find the smallest 𝐶 ⊆ [𝑚] such that ڂ𝑖∈𝐶 𝑆𝑖 = 𝑈.
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• This problem is NP-hard!
• Decision version is one of Karp’s

21 NP-complete problems.
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• This problem is NP-hard!
• Decision version is one of Karp’s

21 NP-complete problems.

• Can we find good enough
solutions efficiently?
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GreedyCover：

Set 𝐶 = ∅.
While 𝑈 ≠ ∅ do:

Add 𝑖 with largest |𝑆𝑖 ∩ 𝑈| to 𝐶.
𝑈 = 𝑈 − 𝑆𝑖. 

Return 𝐶.
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OPT(𝐼): value of minimum set cover of instance 𝐼

SOL(𝐼): value of set cover returned by GreedyCover on instance 𝐼
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For minimization problems, we want ΤSOL(𝐼) OPT 𝐼 ≤ 𝛼 where 𝛼 ≥ 1

For maximization problems, we want ΤSOL(𝐼) OPT 𝐼 ≥ 𝛼 where 𝛼 ≤ 1



GreedyCover：

Set 𝐶 = ∅.
While 𝑈 ≠ ∅ do:

Add 𝑖 with largest |𝑆𝑖 ∩ 𝑈| to 𝐶.

Set 𝑝𝑟𝑖𝑐𝑒 𝑒 =
1

|𝑆𝑖∩𝑈|
for all 𝑒 ∈ 𝑆𝑖 ∩ 𝑈.

𝑈 = 𝑈 − 𝑆𝑖.
Return 𝐶.

• Initially, there must exist some subset that covers its elements with price at most ΤOPT(𝐼) 𝑛.

• Therefore, price of elements in the first subset covered by GreedyCover is at most ΤOPT(𝐼) 𝑛.

• After 𝑘 elements in 𝑡 subsets are covered by GreedyCover, there must exist some subset such 
that the price of its uncovered elements is at most ΤOPT(𝐼𝑡) (𝑛 − 𝑘) ≤ ΤOPT(𝐼) (𝑛 − 𝑘).

• In general, GreedyCover pays at most ΤOPT(𝐼) (𝑛 − 𝑘 + 1) to cover the 𝑘th chosen element.

𝐶 =෍
𝑒∈𝑈

𝑝𝑟𝑖𝑐𝑒(𝑒)
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• GreedyCover has approximation ratio 𝐻𝑛 ≈ ln 𝑛 + 𝑂(1).

Set Cover Instance: Given a collection of subsets 𝑆1, 𝑆2, ⋯ , 𝑆𝑚 ⊆ 𝑈,
find the smallest 𝐶 ⊆ [𝑚] such that ڂ𝑖∈𝐶 𝑆𝑖 = 𝑈.

GreedyCover：

Set 𝐶 = ∅.
While 𝑈 ≠ ∅ do:

Add 𝑖 with largest |𝑆𝑖 ∩ 𝑈| to 𝐶.

Set 𝑝𝑟𝑖𝑐𝑒 𝑒 =
1

|𝑆𝑖∩𝑈|
for all 𝑒 ∈ 𝑆𝑖 ∩ 𝑈.

𝑈 = 𝑈 − 𝑆𝑖.
Return 𝐶.



𝑝𝑟𝑖𝑐𝑒 = Τ1 3

𝑝𝑟𝑖𝑐𝑒 = Τ1 3

𝑝𝑟𝑖𝑐𝑒 = Τ1 3

𝑆2

𝑆3

𝑒1

𝑒2

𝑒3

𝑒4

𝑒5

𝑆1

𝑆4

𝑝𝑟𝑖𝑐𝑒 = 1

𝑝𝑟𝑖𝑐𝑒 = 1

• GreedyCover has approximation ratio 𝐻𝑛 ≈ ln 𝑛 + 𝑂(1).

• [Lund, Yannakakis 1994; Feige 1998] There is no poly-time 1 − 𝑜 1 ln(𝑛)

approx. algorithm unless NP = quasi-poly-time.

• [Ras, Safra 1997] For some constant 𝑐, there is no poly-time 𝑐 ln(𝑛) approx. 
algorithm unless NP = P.

• [Dinur, Steuer 2014] There is no poly-time 1 − 𝑜 1 ln(𝑛) approx. algorithm 

unless NP = P.
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• Frequency of an element:
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of the most frequent element in 
instance 𝐼.



Instance: A collection of subsets 𝑆1, 𝑆2, ⋯ , 𝑆𝑚 ⊆ 𝑈.
Primal: Find 𝐶 ⊆ [𝑚] such that ڂ𝑖∈𝐶 𝑆𝑖 = 𝑈.
Dual: Find 𝑀 ⊆ 𝑈 such that 𝑆𝑖 ∩𝑀 ≤ 1 for all 𝑖 ∈ [𝑚].
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Since every 𝑒 ∈ 𝑀 must consume a subset to cover
∀𝐶, ∀𝑀: 𝑀 ≤ |𝐶|
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Instance: A collection of subsets 𝑆1, 𝑆2, ⋯ , 𝑆𝑚 ⊆ 𝑈.
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Since every 𝑒 ∈ 𝑀 must consume a subset to cover
∀𝐶, ∀𝑀: 𝑀 ≤ |𝐶|

As a result, ∀𝑀: 𝑀 ≤ OPTprimal = min |𝐶|

GreedyMatchingCover：

Find arbitrary maximal 𝑀 for the dual problem.
Return 𝐶 = {𝑖: 𝑆𝑖 ∩𝑀 ≠ ∅}.
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Since 𝑀 is maximal, returned 𝐶 must be a cover.
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GreedyMatchingCover has approximation ratio 𝑓𝐼.
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Instance: A collection of subsets 𝑆1, 𝑆2, ⋯ , 𝑆𝑚 ⊆ 𝑈.
Set Cover: Find smallest 𝐶 ⊆ [𝑚] such that ڂ𝑖∈𝐶 𝑆𝑖 = 𝑈.

What if the frequency of each element is exactly 2?



Instance: A collection of subsets 𝑆1, 𝑆2, ⋯ , 𝑆𝑚 ⊆ 𝑈.
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Instance: An undirected simple graph 𝐺 = (𝑉, 𝐸).
Vertex Cover: Find smallest 𝐶 ⊆ 𝑉 s.t. ∀𝑒 ∈ 𝐸: 𝑒 ∩ 𝐶 ≠ ∅.

• Vertex cover is also NP-hard.
• Decision version is one of Karp’s 21 NP-complete problems.
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Dual: Find 𝑀 ⊆ 𝑈 such that 𝑆𝑖 ∩𝑀 ≤ 1 for all 𝑖 ∈ [𝑚].

Instance: An undirected simple graph 𝐺 = (𝑉, 𝐸).
Primal: Find 𝐶 ⊆ 𝑉 s.t. ∀𝑒 ∈ 𝐸: 𝑒 ∩ 𝐶 ≠ ∅. (Vertex Cover)

Dual: Find 𝑀 ⊆ 𝐸 s.t. ∀𝑣 ∈ 𝑉: 𝑣 ∩ 𝑀 ≤ 1. (Matching)
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The frequency of each element is exactly 2

GreedyMatchingCover：

Find arbitrary maximal matching 𝑀 of the input graph.
Return 𝐶 = {𝑣: 𝑣 ∈ 𝑉 and 𝑣 ∩𝑀 ≠ ∅}.

A 2-approximation algorithm for the vertex cover problem
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GreedyMatchingCover：

Find arbitrary maximal matching 𝑀 of the input graph.
Return 𝐶 = {𝑣: 𝑣 ∈ 𝑉 and 𝑣 ∩𝑀 ≠ ∅}.
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• There is no poly-time <1.36-approx. alg. unless P = NP.

• Assuming the unique game conjecture, there is no poly-time (2-ε)-approx. alg.
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Completion time:
(of machine 𝑖)

Makespan:

𝐶𝑖 =෍
𝑗: jobs assigned to machine 𝑖
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𝑛 jobs each with
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Instance: 𝑛 jobs 𝑗 = 1,2,⋯ , 𝑛 each with processing time 𝑝𝑗 ∈ ℤ+.

Problem: Find a schedule assigning 𝑛 jobs to 𝑚 identical machines 
so as the minimize the makespan. 
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Problem: Determine whether there exists a partition of {1,2,⋯ , 𝑛}
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Instance: 𝑛 jobs 𝑗 = 1,2,⋯ , 𝑛 each with processing time 𝑝𝑗 ∈ ℤ+.

Problem: Find a schedule assigning 𝑛 jobs to 𝑚 identical machines 
so as the minimize the makespan. 

• “minimum makespan on identical machines”
• Scheduling problem has many variations:

machines could be different, jobs could have release-dates/deadlines, etc…

If 𝑚 = 2, the scheduling problem can be used to solve the partition problem!

Instance: 𝑛 positive integers 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 ∈ ℤ+.
Problem: Determine whether there exists a partition of {1,2,⋯ , 𝑛}
into two sets 𝐴 and 𝐵 such that σ𝑖∈𝐴 𝑥𝑖 = σ𝑖∈𝐵 𝑥𝑖. 

• The partition problem is one of Karp’s 21 NP-complete problems.
• Thus the considered scheduling problem is NP-hard.
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For each job 𝑗 = 1,2,⋯ , 𝑛 do:
Assign job 𝑗 to a currently least loaded 
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List (Graham 1966)：

For each job 𝑗 = 1,2,⋯ , 𝑛 do:
Assign job 𝑗 to a currently least loaded 
machine.

Algorithm List finishes within poly-time.

Algorithm List has approximation ratio 2.

Makespan 𝐶max = 𝐶𝑘 = 𝐶𝑘 − 𝑝𝑙 + 𝑝𝑙
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Algorithm List has approximation ratio 2 − Τ1 𝑚.
This bound is tight in the worst case. [Almost tight example: 𝑚2 unit jobs followed 
by a length 𝑚 job. List generates makespan of 2𝑚 while OPT = 𝑚 + 1.]
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Let 𝑙 be a job that finished last.
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For each job 𝑗 = 1,2,⋯ , 𝑛 do:
Assign job 𝑗 to a currently least loaded machine.
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LongestProcessingTime (LPT)：

Sort jobs so that 𝑝1 ≥ 𝑝2 ≥ ⋯ ≥ 𝑝𝑛.
For each job 𝑗 = 1,2,⋯ , 𝑛 do:

Assign job 𝑗 to a currently least loaded machine.

• We have shown LPT has approximation ratio (at most) Τ3 2.

• By a more careful analysis, it can be shown LPT is actually 
a Τ4 3 approximation algorithm.

• The problem of “minimum makespan on identical machines” 
has a PTAS (Polynomial Time Approximation Scheme).
∀𝜖 > 0, ∃poly-time (1 + 𝜖)-approx. alg. for the problem
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Online Scheduling

𝑚 identical machines Jobs arrive (revealed) one-by-one

Schedule decision must be made once a job arrives, 
without seeing jobs in the future.

List (Graham 1966)：

For each job 𝑗 = 1,2,⋯ , 𝑛 do:
Assign job 𝑗 to a currently least loaded machine.

LPT is not an
online alg. for
scheduling.
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Competitive Analysis

List (Graham 1966)：

For each job 𝑗 = 1,2,⋯ , 𝑛 do:
Assign job 𝑗 to a currently least loaded machine.

The competitive ratio of an online algorithm 𝒜 is 𝛼 if:

For every possible input sequence 𝐼 of the considered problem:

solution value returned by online alg. 𝒜 on 𝐼

solution value returned by optimal offline alg. on 𝐼
≤ 𝛼

List is a 2-competitive online algorithm


