
Approximation Algorithms

Greedy and Local Search

Advanced Algorithms

Nanjing University, Fall 2018

Set Cover

Instance: Given a collection of subsets 𝑆1, 𝑆2, ⋯ , 𝑆𝑚 ⊆ 𝑈,
find the smallest 𝐶 ⊆ [𝑚] such that ڂ𝑖∈𝐶 𝑆𝑖 = 𝑈.

Set Cover

Instance: Given a collection of subsets 𝑆1, 𝑆2, ⋯ , 𝑆𝑚 ⊆ 𝑈,
find the smallest 𝐶 ⊆ [𝑚] such that ڂ𝑖∈𝐶 𝑆𝑖 = 𝑈.

𝑆2

𝑆3

𝑒1

𝑒2

𝑒3

𝑒4

𝑒5

𝑆1

𝑆4

𝑈

Set Cover

Instance: Given a collection of subsets 𝑆1, 𝑆2, ⋯ , 𝑆𝑚 ⊆ 𝑈,
find the smallest 𝐶 ⊆ [𝑚] such that ڂ𝑖∈𝐶 𝑆𝑖 = 𝑈.

𝑆2

𝑆3

𝑒1

𝑒2

𝑒3

𝑒4

𝑒5

𝑆1

𝑆4

𝑈

Set Cover

Instance: Given a collection of subsets 𝑆1, 𝑆2, ⋯ , 𝑆𝑚 ⊆ 𝑈,
find the smallest 𝐶 ⊆ [𝑚] such that ڂ𝑖∈𝐶 𝑆𝑖 = 𝑈.

𝑆2

𝑆3

𝑒1

𝑒2

𝑒3

𝑒4

𝑒5

𝑆1

𝑆4

𝑈

• This problem is NP-hard!
• Decision version is one of Karp’s

21 NP-complete problems.

Set Cover

Instance: Given a collection of subsets 𝑆1, 𝑆2, ⋯ , 𝑆𝑚 ⊆ 𝑈,
find the smallest 𝐶 ⊆ [𝑚] such that ڂ𝑖∈𝐶 𝑆𝑖 = 𝑈.

𝑆2

𝑆3

𝑒1

𝑒2

𝑒3

𝑒4

𝑒5

𝑆1

𝑆4

𝑈

• This problem is NP-hard!
• Decision version is one of Karp’s

21 NP-complete problems.

• Can we find good enough
solutions efficiently?

Set Cover

Instance: Given a collection of subsets 𝑆1, 𝑆2, ⋯ , 𝑆𝑚 ⊆ 𝑈,
find the smallest 𝐶 ⊆ [𝑚] such that ڂ𝑖∈𝐶 𝑆𝑖 = 𝑈.

𝑆2

𝑆3

𝑒1

𝑒2

𝑒3

𝑒4

𝑒5

𝑆1

𝑆4

𝑈

GreedyCover：

Set 𝐶 = ∅.
While 𝑈 ≠ ∅ do:

Add 𝑖 with largest |𝑆𝑖 ∩ 𝑈| to 𝐶.
𝑈 = 𝑈 − 𝑆𝑖.

Return 𝐶.

Set Cover Instance: Given a collection of subsets 𝑆1, 𝑆2, ⋯ , 𝑆𝑚 ⊆ 𝑈,
find the smallest 𝐶 ⊆ [𝑚] such that ڂ𝑖∈𝐶 𝑆𝑖 = 𝑈.

𝑆2

𝑆3

𝑒1

𝑒2

𝑒3

𝑒4

𝑒5

𝑆1

𝑆4

GreedyCover：

Set 𝐶 = ∅.
While 𝑈 ≠ ∅ do:

Add 𝑖 with largest |𝑆𝑖 ∩ 𝑈| to 𝐶.
𝑈 = 𝑈 − 𝑆𝑖.

Return 𝐶.

OPT(𝐼): value of minimum set cover of instance 𝐼

SOL(𝐼): value of set cover returned by GreedyCover on instance 𝐼

Set Cover Instance: Given a collection of subsets 𝑆1, 𝑆2, ⋯ , 𝑆𝑚 ⊆ 𝑈,
find the smallest 𝐶 ⊆ [𝑚] such that ڂ𝑖∈𝐶 𝑆𝑖 = 𝑈.

𝑆2

𝑆3

𝑒1

𝑒2

𝑒3

𝑒4

𝑒5

𝑆1

𝑆4

GreedyCover：

Set 𝐶 = ∅.
While 𝑈 ≠ ∅ do:

Add 𝑖 with largest |𝑆𝑖 ∩ 𝑈| to 𝐶.
𝑈 = 𝑈 − 𝑆𝑖.

Return 𝐶.

OPT(𝐼): value of minimum set cover of instance 𝐼

SOL(𝐼): value of set cover returned by GreedyCover on instance 𝐼

GreedyCover has approximation ratio 𝛼 if

∀ instance 𝐼,
SOL(𝐼)

OPT(𝐼)
≤ 𝛼

Set Cover Instance: Given a collection of subsets 𝑆1, 𝑆2, ⋯ , 𝑆𝑚 ⊆ 𝑈,
find the smallest 𝐶 ⊆ [𝑚] such that ڂ𝑖∈𝐶 𝑆𝑖 = 𝑈.

𝑆2

𝑆3

𝑒1

𝑒2

𝑒3

𝑒4

𝑒5

𝑆1

𝑆4

GreedyCover：

Set 𝐶 = ∅.
While 𝑈 ≠ ∅ do:

Add 𝑖 with largest |𝑆𝑖 ∩ 𝑈| to 𝐶.
𝑈 = 𝑈 − 𝑆𝑖.

Return 𝐶.

OPT(𝐼): value of minimum set cover of instance 𝐼

SOL(𝐼): value of set cover returned by GreedyCover on instance 𝐼

GreedyCover has approximation ratio 𝛼 if

∀ instance 𝐼,
SOL(𝐼)

OPT(𝐼)
≤ 𝛼

For minimization problems, we want ΤSOL(𝐼) OPT 𝐼 ≤ 𝛼 where 𝛼 ≥ 1

For maximization problems, we want ΤSOL(𝐼) OPT 𝐼 ≥ 𝛼 where 𝛼 ≤ 1

GreedyCover：

Set 𝐶 = ∅.
While 𝑈 ≠ ∅ do:

Add 𝑖 with largest |𝑆𝑖 ∩ 𝑈| to 𝐶.

Set 𝑝𝑟𝑖𝑐𝑒 𝑒 =
1

|𝑆𝑖∩𝑈|
for all 𝑒 ∈ 𝑆𝑖 ∩ 𝑈.

𝑈 = 𝑈 − 𝑆𝑖.
Return 𝐶.

• Initially, there must exist some subset that covers its elements with price at most ΤOPT(𝐼) 𝑛.

• Therefore, price of elements in the first subset covered by GreedyCover is at most ΤOPT(𝐼) 𝑛.

• After 𝑘 elements in 𝑡 subsets are covered by GreedyCover, there must exist some subset such
that the price of its uncovered elements is at most ΤOPT(𝐼𝑡) (𝑛 − 𝑘) ≤ ΤOPT(𝐼) (𝑛 − 𝑘).

• In general, GreedyCover pays at most ΤOPT(𝐼) (𝑛 − 𝑘 + 1) to cover the 𝑘th chosen element.

𝐶 =෍
𝑒∈𝑈

𝑝𝑟𝑖𝑐𝑒(𝑒)

Set Cover Instance: Given a collection of subsets 𝑆1, 𝑆2, ⋯ , 𝑆𝑚 ⊆ 𝑈,
find the smallest 𝐶 ⊆ [𝑚] such that ڂ𝑖∈𝐶 𝑆𝑖 = 𝑈.

𝑝𝑟𝑖𝑐𝑒 = Τ1 3

𝑝𝑟𝑖𝑐𝑒 = Τ1 3

𝑝𝑟𝑖𝑐𝑒 = Τ1 3

𝑆2

𝑆3

𝑒1

𝑒2

𝑒3

𝑒4

𝑒5

𝑆1

𝑆4

𝑝𝑟𝑖𝑐𝑒 = 1

𝑝𝑟𝑖𝑐𝑒 = 1

𝑝𝑟𝑖𝑐𝑒 = Τ1 3

𝑝𝑟𝑖𝑐𝑒 = Τ1 3

𝑝𝑟𝑖𝑐𝑒 = Τ1 3

𝑆2

𝑆3

𝑒1

𝑒2

𝑒3

𝑒4

𝑒5

𝑆1

𝑆4

𝑝𝑟𝑖𝑐𝑒 = 1

𝑝𝑟𝑖𝑐𝑒 = 1

Enumerate 𝑒𝑘 in the order in which they are covered by GreedyCover:

𝑝𝑟𝑖𝑐𝑒 𝑒𝑘 ≤
OPT 𝐼

𝑛 − 𝑘 + 1

Set Cover Instance: Given a collection of subsets 𝑆1, 𝑆2, ⋯ , 𝑆𝑚 ⊆ 𝑈,
find the smallest 𝐶 ⊆ [𝑚] such that ڂ𝑖∈𝐶 𝑆𝑖 = 𝑈.

GreedyCover：

Set 𝐶 = ∅.
While 𝑈 ≠ ∅ do:

Add 𝑖 with largest |𝑆𝑖 ∩ 𝑈| to 𝐶.

Set 𝑝𝑟𝑖𝑐𝑒 𝑒 =
1

|𝑆𝑖∩𝑈|
for all 𝑒 ∈ 𝑆𝑖 ∩ 𝑈.

𝑈 = 𝑈 − 𝑆𝑖.
Return 𝐶.

𝑝𝑟𝑖𝑐𝑒 = Τ1 3

𝑝𝑟𝑖𝑐𝑒 = Τ1 3

𝑝𝑟𝑖𝑐𝑒 = Τ1 3

𝑆2

𝑆3

𝑒1

𝑒2

𝑒3

𝑒4

𝑒5

𝑆1

𝑆4

𝑝𝑟𝑖𝑐𝑒 = 1

𝑝𝑟𝑖𝑐𝑒 = 1

Enumerate 𝑒𝑘 in the order in which they are covered by GreedyCover:

𝑝𝑟𝑖𝑐𝑒 𝑒𝑘 ≤
OPT 𝐼

𝑛 − 𝑘 + 1

𝐶 =෍
𝑒∈𝑈

𝑝𝑟𝑖𝑐𝑒(𝑒) ≤෍
𝑘=1

𝑛 OPT 𝐼

𝑛 − 𝑘 + 1
= 𝐻𝑛 ⋅ OPT(𝐼)

Set Cover Instance: Given a collection of subsets 𝑆1, 𝑆2, ⋯ , 𝑆𝑚 ⊆ 𝑈,
find the smallest 𝐶 ⊆ [𝑚] such that ڂ𝑖∈𝐶 𝑆𝑖 = 𝑈.

GreedyCover：

Set 𝐶 = ∅.
While 𝑈 ≠ ∅ do:

Add 𝑖 with largest |𝑆𝑖 ∩ 𝑈| to 𝐶.

Set 𝑝𝑟𝑖𝑐𝑒 𝑒 =
1

|𝑆𝑖∩𝑈|
for all 𝑒 ∈ 𝑆𝑖 ∩ 𝑈.

𝑈 = 𝑈 − 𝑆𝑖.
Return 𝐶.

𝑝𝑟𝑖𝑐𝑒 = Τ1 3

𝑝𝑟𝑖𝑐𝑒 = Τ1 3

𝑝𝑟𝑖𝑐𝑒 = Τ1 3

𝑆2

𝑆3

𝑒1

𝑒2

𝑒3

𝑒4

𝑒5

𝑆1

𝑆4

𝑝𝑟𝑖𝑐𝑒 = 1

𝑝𝑟𝑖𝑐𝑒 = 1

• GreedyCover has approximation ratio 𝐻𝑛 ≈ ln 𝑛 + 𝑂(1).

Set Cover Instance: Given a collection of subsets 𝑆1, 𝑆2, ⋯ , 𝑆𝑚 ⊆ 𝑈,
find the smallest 𝐶 ⊆ [𝑚] such that ڂ𝑖∈𝐶 𝑆𝑖 = 𝑈.

GreedyCover：

Set 𝐶 = ∅.
While 𝑈 ≠ ∅ do:

Add 𝑖 with largest |𝑆𝑖 ∩ 𝑈| to 𝐶.

Set 𝑝𝑟𝑖𝑐𝑒 𝑒 =
1

|𝑆𝑖∩𝑈|
for all 𝑒 ∈ 𝑆𝑖 ∩ 𝑈.

𝑈 = 𝑈 − 𝑆𝑖.
Return 𝐶.

𝑝𝑟𝑖𝑐𝑒 = Τ1 3

𝑝𝑟𝑖𝑐𝑒 = Τ1 3

𝑝𝑟𝑖𝑐𝑒 = Τ1 3

𝑆2

𝑆3

𝑒1

𝑒2

𝑒3

𝑒4

𝑒5

𝑆1

𝑆4

𝑝𝑟𝑖𝑐𝑒 = 1

𝑝𝑟𝑖𝑐𝑒 = 1

• GreedyCover has approximation ratio 𝐻𝑛 ≈ ln 𝑛 + 𝑂(1).

• [Lund, Yannakakis 1994; Feige 1998] There is no poly-time 1 − 𝑜 1 ln(𝑛)

approx. algorithm unless NP = quasi-poly-time.

• [Ras, Safra 1997] For some constant 𝑐, there is no poly-time 𝑐 ln(𝑛) approx.
algorithm unless NP = P.

• [Dinur, Steuer 2014] There is no poly-time 1 − 𝑜 1 ln(𝑛) approx. algorithm

unless NP = P.

Set Cover Instance: Given a collection of subsets 𝑆1, 𝑆2, ⋯ , 𝑆𝑚 ⊆ 𝑈,
find the smallest 𝐶 ⊆ [𝑚] such that ڂ𝑖∈𝐶 𝑆𝑖 = 𝑈.

GreedyCover：

Set 𝐶 = ∅.
While 𝑈 ≠ ∅ do:

Add 𝑖 with largest |𝑆𝑖 ∩ 𝑈| to 𝐶.

Set 𝑝𝑟𝑖𝑐𝑒 𝑒 =
1

|𝑆𝑖∩𝑈|
for all 𝑒 ∈ 𝑆𝑖 ∩ 𝑈.

𝑈 = 𝑈 − 𝑆𝑖.
Return 𝐶.

Set Cover

Instance: Given a collection of subsets 𝑆1, 𝑆2, ⋯ , 𝑆𝑚 ⊆ 𝑈,
find the smallest 𝐶 ⊆ [𝑚] such that ڂ𝑖∈𝐶 𝑆𝑖 = 𝑈.

𝑆2

𝑆3

𝑒1

𝑒2

𝑒3

𝑒4

𝑒5

𝑆1

𝑆4

𝑈

• This problem is NP-hard.
• We have 𝑂(ln 𝑛) approx. alg.

• Frequency of an element:
of subsets the element is in.

• Use 𝑓𝐼 to denote the frequency
of the most frequent element in
instance 𝐼.

Instance: A collection of subsets 𝑆1, 𝑆2, ⋯ , 𝑆𝑚 ⊆ 𝑈.
Primal: Find 𝐶 ⊆ [𝑚] such that ڂ𝑖∈𝐶 𝑆𝑖 = 𝑈.
Dual: Find 𝑀 ⊆ 𝑈 such that 𝑆𝑖 ∩𝑀 ≤ 1 for all 𝑖 ∈ [𝑚].

𝑆2

𝑆3

𝑒1

𝑒2

𝑒3

𝑒4

𝑒5

𝑆1

𝑆4

Instance: A collection of subsets 𝑆1, 𝑆2, ⋯ , 𝑆𝑚 ⊆ 𝑈.
Primal: Find 𝐶 ⊆ [𝑚] such that ڂ𝑖∈𝐶 𝑆𝑖 = 𝑈.
Dual: Find 𝑀 ⊆ 𝑈 such that 𝑆𝑖 ∩𝑀 ≤ 1 for all 𝑖 ∈ [𝑚].

Since every 𝑒 ∈ 𝑀 must consume a subset to cover
∀𝐶, ∀𝑀: 𝑀 ≤ |𝐶|

𝑆2

𝑆3

𝑒1

𝑒2

𝑒3

𝑒4

𝑒5

𝑆1

𝑆4

Instance: A collection of subsets 𝑆1, 𝑆2, ⋯ , 𝑆𝑚 ⊆ 𝑈.
Primal: Find 𝐶 ⊆ [𝑚] such that ڂ𝑖∈𝐶 𝑆𝑖 = 𝑈.
Dual: Find 𝑀 ⊆ 𝑈 such that 𝑆𝑖 ∩𝑀 ≤ 1 for all 𝑖 ∈ [𝑚].

Since every 𝑒 ∈ 𝑀 must consume a subset to cover
∀𝐶, ∀𝑀: 𝑀 ≤ |𝐶|

As a result, ∀𝑀: 𝑀 ≤ OPTprimal = min |𝐶|𝑆2

𝑆3

𝑒1

𝑒2

𝑒3

𝑒4

𝑒5

𝑆1

𝑆4

Instance: A collection of subsets 𝑆1, 𝑆2, ⋯ , 𝑆𝑚 ⊆ 𝑈.
Primal: Find 𝐶 ⊆ [𝑚] such that ڂ𝑖∈𝐶 𝑆𝑖 = 𝑈.
Dual: Find 𝑀 ⊆ 𝑈 such that 𝑆𝑖 ∩𝑀 ≤ 1 for all 𝑖 ∈ [𝑚].

Since every 𝑒 ∈ 𝑀 must consume a subset to cover
∀𝐶, ∀𝑀: 𝑀 ≤ |𝐶|

As a result, ∀𝑀: 𝑀 ≤ OPTprimal = min |𝐶|

GreedyMatchingCover：

Find arbitrary maximal 𝑀 for the dual problem.
Return 𝐶 = {𝑖: 𝑆𝑖 ∩𝑀 ≠ ∅}.

𝑆2

𝑆3

𝑒1

𝑒2

𝑒3

𝑒4

𝑒5

𝑆1

𝑆4

Instance: A collection of subsets 𝑆1, 𝑆2, ⋯ , 𝑆𝑚 ⊆ 𝑈.
Primal: Find 𝐶 ⊆ [𝑚] such that ڂ𝑖∈𝐶 𝑆𝑖 = 𝑈.
Dual: Find 𝑀 ⊆ 𝑈 such that 𝑆𝑖 ∩𝑀 ≤ 1 for all 𝑖 ∈ [𝑚].

Since every 𝑒 ∈ 𝑀 must consume a subset to cover
∀𝐶, ∀𝑀: 𝑀 ≤ |𝐶|

As a result, ∀𝑀: 𝑀 ≤ OPTprimal = min |𝐶|

GreedyMatchingCover：

Find arbitrary maximal 𝑀 for the dual problem.
Return 𝐶 = {𝑖: 𝑆𝑖 ∩𝑀 ≠ ∅}.

Since 𝑀 is maximal, returned 𝐶 must be a cover.

𝑆2

𝑆3

𝑒1

𝑒2

𝑒3

𝑒4

𝑒5

𝑆1

𝑆4

Instance: A collection of subsets 𝑆1, 𝑆2, ⋯ , 𝑆𝑚 ⊆ 𝑈.
Primal: Find 𝐶 ⊆ [𝑚] such that ڂ𝑖∈𝐶 𝑆𝑖 = 𝑈.
Dual: Find 𝑀 ⊆ 𝑈 such that 𝑆𝑖 ∩𝑀 ≤ 1 for all 𝑖 ∈ [𝑚].

Since every 𝑒 ∈ 𝑀 must consume a subset to cover
∀𝐶, ∀𝑀: 𝑀 ≤ |𝐶|

As a result, ∀𝑀: 𝑀 ≤ OPTprimal = min |𝐶|

GreedyMatchingCover：

Find arbitrary maximal 𝑀 for the dual problem.
Return 𝐶 = {𝑖: 𝑆𝑖 ∩𝑀 ≠ ∅}.

Since 𝑀 is maximal, returned 𝐶 must be a cover.

𝐶 ≤ 𝑓𝐼 ⋅ 𝑀 ≤ 𝑓𝐼 ⋅ OPTprimal

𝑆2

𝑆3

𝑒1

𝑒2

𝑒3

𝑒4

𝑒5

𝑆1

𝑆4

Instance: A collection of subsets 𝑆1, 𝑆2, ⋯ , 𝑆𝑚 ⊆ 𝑈.
Primal: Find 𝐶 ⊆ [𝑚] such that ڂ𝑖∈𝐶 𝑆𝑖 = 𝑈.
Dual: Find 𝑀 ⊆ 𝑈 such that 𝑆𝑖 ∩𝑀 ≤ 1 for all 𝑖 ∈ [𝑚].

Since every 𝑒 ∈ 𝑀 must consume a subset to cover
∀𝐶, ∀𝑀: 𝑀 ≤ |𝐶|

As a result, ∀𝑀: 𝑀 ≤ OPTprimal = min |𝐶|

GreedyMatchingCover：

Find arbitrary maximal 𝑀 for the dual problem.
Return 𝐶 = {𝑖: 𝑆𝑖 ∩𝑀 ≠ ∅}.

Since 𝑀 is maximal, returned 𝐶 must be a cover.

𝐶 ≤ 𝑓𝐼 ⋅ 𝑀 ≤ 𝑓𝐼 ⋅ OPTprimal

GreedyMatchingCover has approximation ratio 𝑓𝐼.

𝑆2

𝑆3

𝑒1

𝑒2

𝑒3

𝑒4

𝑒5

𝑆1

𝑆4

Instance: A collection of subsets 𝑆1, 𝑆2, ⋯ , 𝑆𝑚 ⊆ 𝑈.
Set Cover: Find smallest 𝐶 ⊆ [𝑚] such that ڂ𝑖∈𝐶 𝑆𝑖 = 𝑈.

What if the frequency of each element is exactly 2?

Instance: A collection of subsets 𝑆1, 𝑆2, ⋯ , 𝑆𝑚 ⊆ 𝑈.
Set Cover: Find smallest 𝐶 ⊆ [𝑚] such that ڂ𝑖∈𝐶 𝑆𝑖 = 𝑈.

What if the frequency of each element is exactly 2?

𝑣1 𝑣2

𝑣3

𝑣4

𝑒1

𝑒2 𝑒3

𝑒4

𝑣2

𝑣3

𝑒1

𝑒2

𝑒3

𝑒4

𝑣1

𝑣4

incidence graph

Vertex Cover

Instance: A collection of subsets 𝑆1, 𝑆2, ⋯ , 𝑆𝑚 ⊆ 𝑈.
Set Cover: Find smallest 𝐶 ⊆ [𝑚] such that ڂ𝑖∈𝐶 𝑆𝑖 = 𝑈.

What if the frequency of each element is exactly 2?

𝑣1 𝑣2

𝑣3

𝑣4

𝑒1

𝑒2 𝑒3

𝑒4

𝑣2

𝑣3

𝑒1

𝑒2

𝑒3

𝑒4

𝑣1

𝑣4

incidence graph

Instance: An undirected simple graph 𝐺 = (𝑉, 𝐸).
Vertex Cover: Find smallest 𝐶 ⊆ 𝑉 s.t. ∀𝑒 ∈ 𝐸: 𝑒 ∩ 𝐶 ≠ ∅.

Vertex Cover

Instance: A collection of subsets 𝑆1, 𝑆2, ⋯ , 𝑆𝑚 ⊆ 𝑈.
Set Cover: Find smallest 𝐶 ⊆ [𝑚] such that ڂ𝑖∈𝐶 𝑆𝑖 = 𝑈.

What if the frequency of each element is exactly 2?

𝑣1 𝑣2

𝑣3

𝑣4

𝑒1

𝑒2 𝑒3

𝑒4

𝑣2

𝑣3

𝑒1

𝑒2

𝑒3

𝑒4

𝑣1

𝑣4

incidence graph

Instance: An undirected simple graph 𝐺 = (𝑉, 𝐸).
Vertex Cover: Find smallest 𝐶 ⊆ 𝑉 s.t. ∀𝑒 ∈ 𝐸: 𝑒 ∩ 𝐶 ≠ ∅.

• Vertex cover is also NP-hard.
• Decision version is one of Karp’s 21 NP-complete problems.

𝑣2

𝑣3

𝑒1

𝑒2

𝑒3

𝑒4

𝑣1

𝑣4

Instance: A collection of subsets 𝑆1, 𝑆2, ⋯ , 𝑆𝑚 ⊆ 𝑈.
Primal: Find 𝐶 ⊆ [𝑚] such that ڂ𝑖∈𝐶 𝑆𝑖 = 𝑈.
Dual: Find 𝑀 ⊆ 𝑈 such that 𝑆𝑖 ∩𝑀 ≤ 1 for all 𝑖 ∈ [𝑚].

Instance: An undirected simple graph 𝐺 = (𝑉, 𝐸).
Primal: Find 𝐶 ⊆ 𝑉 s.t. ∀𝑒 ∈ 𝐸: 𝑒 ∩ 𝐶 ≠ ∅. (Vertex Cover)

Dual: Find 𝑀 ⊆ 𝐸 s.t. ∀𝑣 ∈ 𝑉: 𝑣 ∩ 𝑀 ≤ 1. (Matching)

The frequency of each element is exactly 2

𝑣2

𝑣3

𝑒1

𝑒2

𝑒3

𝑒4

𝑣1

𝑣4

Instance: A collection of subsets 𝑆1, 𝑆2, ⋯ , 𝑆𝑚 ⊆ 𝑈.
Primal: Find 𝐶 ⊆ [𝑚] such that ڂ𝑖∈𝐶 𝑆𝑖 = 𝑈.
Dual: Find 𝑀 ⊆ 𝑈 such that 𝑆𝑖 ∩𝑀 ≤ 1 for all 𝑖 ∈ [𝑚].

Instance: An undirected simple graph 𝐺 = (𝑉, 𝐸).
Primal: Find 𝐶 ⊆ 𝑉 s.t. ∀𝑒 ∈ 𝐸: 𝑒 ∩ 𝐶 ≠ ∅. (Vertex Cover)

Dual: Find 𝑀 ⊆ 𝐸 s.t. ∀𝑣 ∈ 𝑉: 𝑣 ∩ 𝑀 ≤ 1. (Matching)

The frequency of each element is exactly 2

GreedyMatchingCover：

Find arbitrary maximal matching 𝑀 of the input graph.
Return 𝐶 = {𝑣: 𝑣 ∈ 𝑉 and 𝑣 ∩𝑀 ≠ ∅}.

A 2-approximation algorithm for the vertex cover problem

𝑣2

𝑣3

𝑒1

𝑒2

𝑒3

𝑒4

𝑣1

𝑣4

Instance: A collection of subsets 𝑆1, 𝑆2, ⋯ , 𝑆𝑚 ⊆ 𝑈.
Primal: Find 𝐶 ⊆ [𝑚] such that ڂ𝑖∈𝐶 𝑆𝑖 = 𝑈.
Dual: Find 𝑀 ⊆ 𝑈 such that 𝑆𝑖 ∩𝑀 ≤ 1 for all 𝑖 ∈ [𝑚].

Instance: An undirected simple graph 𝐺 = (𝑉, 𝐸).
Primal: Find 𝐶 ⊆ 𝑉 s.t. ∀𝑒 ∈ 𝐸: 𝑒 ∩ 𝐶 ≠ ∅. (Vertex Cover)

Dual: Find 𝑀 ⊆ 𝐸 s.t. ∀𝑣 ∈ 𝑉: 𝑣 ∩ 𝑀 ≤ 1. (Matching)

The frequency of each element is exactly 2

GreedyMatchingCover：

Find arbitrary maximal matching 𝑀 of the input graph.
Return 𝐶 = {𝑣: 𝑣 ∈ 𝑉 and 𝑣 ∩𝑀 ≠ ∅}.

A 2-approximation algorithm for the vertex cover problem

• There is no poly-time <1.36-approx. alg. unless P = NP.

• Assuming the unique game conjecture, there is no poly-time (2-ε)-approx. alg.

Scheduling
𝑚 identical machines

Scheduling
𝑚 identical machines 𝑛 jobs processing time 𝑝𝑗

6

1

4

2

3

3

5

2

4

3

Scheduling

𝑚 machines

𝑛 jobs each with
processing time 𝑝𝑗

Scheduling

Completion time:
(of machine 𝑖)

𝐶𝑖 =෍
𝑗: jobs assigned to machine 𝑖

𝑝𝑗

𝑚 machines

𝑛 jobs each with
processing time 𝑝𝑗

Scheduling

Completion time:
(of machine 𝑖)

Makespan:

𝐶𝑖 =෍
𝑗: jobs assigned to machine 𝑖

𝑝𝑗

𝐶max = max
𝑖

𝐶𝑖

𝑚 machines

𝑛 jobs each with
processing time 𝑝𝑗

makespan

Instance: 𝑛 jobs 𝑗 = 1,2,⋯ , 𝑛 each with processing time 𝑝𝑗 ∈ ℤ+.

Problem: Find a schedule assigning 𝑛 jobs to 𝑚 identical machines
so as the minimize the makespan.

Instance: 𝑛 jobs 𝑗 = 1,2,⋯ , 𝑛 each with processing time 𝑝𝑗 ∈ ℤ+.

Problem: Find a schedule assigning 𝑛 jobs to 𝑚 identical machines
so as the minimize the makespan.

• “minimum makespan on identical machines”
• Scheduling problem has many variations:

machines could be different, jobs could have release-dates/deadlines, etc…

Instance: 𝑛 jobs 𝑗 = 1,2,⋯ , 𝑛 each with processing time 𝑝𝑗 ∈ ℤ+.

Problem: Find a schedule assigning 𝑛 jobs to 𝑚 identical machines
so as the minimize the makespan.

• “minimum makespan on identical machines”
• Scheduling problem has many variations:

machines could be different, jobs could have release-dates/deadlines, etc…

If 𝑚 = 2, the scheduling problem can be used to solve the partition problem!

Instance: 𝑛 positive integers 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 ∈ ℤ+.
Problem: Determine whether there exists a partition of {1,2,⋯ , 𝑛}
into two sets 𝐴 and 𝐵 such that σ𝑖∈𝐴 𝑥𝑖 = σ𝑖∈𝐵 𝑥𝑖.

Instance: 𝑛 jobs 𝑗 = 1,2,⋯ , 𝑛 each with processing time 𝑝𝑗 ∈ ℤ+.

Problem: Find a schedule assigning 𝑛 jobs to 𝑚 identical machines
so as the minimize the makespan.

• “minimum makespan on identical machines”
• Scheduling problem has many variations:

machines could be different, jobs could have release-dates/deadlines, etc…

If 𝑚 = 2, the scheduling problem can be used to solve the partition problem!

Instance: 𝑛 positive integers 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 ∈ ℤ+.
Problem: Determine whether there exists a partition of {1,2,⋯ , 𝑛}
into two sets 𝐴 and 𝐵 such that σ𝑖∈𝐴 𝑥𝑖 = σ𝑖∈𝐵 𝑥𝑖.

• The partition problem is one of Karp’s 21 NP-complete problems.
• Thus the considered scheduling problem is NP-hard.

Graham’s List Algorithm for Scheduling

𝑚 identical machines 𝑛 jobs each with processing time 𝑝𝑗

List (Graham 1966)：

For each job 𝑗 = 1,2,⋯ , 𝑛 do:
Assign job 𝑗 to a currently least loaded
machine.

Graham’s List Algorithm for Scheduling

𝑚 identical machines 𝑛 jobs each with processing time 𝑝𝑗

List (Graham 1966)：

For each job 𝑗 = 1,2,⋯ , 𝑛 do:
Assign job 𝑗 to a currently least loaded
machine.

Graham’s List Algorithm for Scheduling

𝑚 identical machines 𝑛 jobs each with processing time 𝑝𝑗

List (Graham 1966)：

For each job 𝑗 = 1,2,⋯ , 𝑛 do:
Assign job 𝑗 to a currently least loaded
machine.

Graham’s List Algorithm for Scheduling

𝑚 identical machines 𝑛 jobs each with processing time 𝑝𝑗

List (Graham 1966)：

For each job 𝑗 = 1,2,⋯ , 𝑛 do:
Assign job 𝑗 to a currently least loaded
machine.

Graham’s List Algorithm for Scheduling

𝑚 identical machines 𝑛 jobs each with processing time 𝑝𝑗

List (Graham 1966)：

For each job 𝑗 = 1,2,⋯ , 𝑛 do:
Assign job 𝑗 to a currently least loaded
machine.

Graham’s List Algorithm for Scheduling

𝑚 identical machines 𝑛 jobs each with processing time 𝑝𝑗

List (Graham 1966)：

For each job 𝑗 = 1,2,⋯ , 𝑛 do:
Assign job 𝑗 to a currently least loaded
machine.

Graham’s List Algorithm for Scheduling

𝑚 identical machines 𝑛 jobs each with processing time 𝑝𝑗

List (Graham 1966)：

For each job 𝑗 = 1,2,⋯ , 𝑛 do:
Assign job 𝑗 to a currently least loaded
machine.

Graham’s List Algorithm for Scheduling

𝑚 identical machines 𝑛 jobs each with processing time 𝑝𝑗

List (Graham 1966)：

For each job 𝑗 = 1,2,⋯ , 𝑛 do:
Assign job 𝑗 to a currently least loaded
machine.

Graham’s List Algorithm for Scheduling

𝑚 identical machines 𝑛 jobs each with processing time 𝑝𝑗

List (Graham 1966)：

For each job 𝑗 = 1,2,⋯ , 𝑛 do:
Assign job 𝑗 to a currently least loaded
machine.

Graham’s List Algorithm for Scheduling

𝑚 identical machines 𝑛 jobs each with processing time 𝑝𝑗

List (Graham 1966)：

For each job 𝑗 = 1,2,⋯ , 𝑛 do:
Assign job 𝑗 to a currently least loaded
machine.

Graham’s List Algorithm for Scheduling

𝑚 identical machines 𝑛 jobs each with processing time 𝑝𝑗

List (Graham 1966)：

For each job 𝑗 = 1,2,⋯ , 𝑛 do:
Assign job 𝑗 to a currently least loaded
machine.

List (Graham 1966)：

For each job 𝑗 = 1,2,⋯ , 𝑛 do:
Assign job 𝑗 to a currently least loaded
machine.

List (Graham 1966)：

For each job 𝑗 = 1,2,⋯ , 𝑛 do:
Assign job 𝑗 to a currently least loaded
machine.

This algorithm finishes within poly-time.

List (Graham 1966)：

For each job 𝑗 = 1,2,⋯ , 𝑛 do:
Assign job 𝑗 to a currently least loaded
machine.

This algorithm finishes within poly-time.

What about the approximation ratio?

List (Graham 1966)：

For each job 𝑗 = 1,2,⋯ , 𝑛 do:
Assign job 𝑗 to a currently least loaded
machine.

This algorithm finishes within poly-time.

What about the approximation ratio?

OPT ≥ max
𝑗

𝑝𝑗

List (Graham 1966)：

For each job 𝑗 = 1,2,⋯ , 𝑛 do:
Assign job 𝑗 to a currently least loaded
machine.

This algorithm finishes within poly-time.

What about the approximation ratio?

OPT ≥ max
𝑗

𝑝𝑗 𝑚 ⋅ OPT ≥෍
𝑗
𝑝𝑗

List (Graham 1966)：

For each job 𝑗 = 1,2,⋯ , 𝑛 do:
Assign job 𝑗 to a currently least loaded
machine.

This algorithm finishes within poly-time.

What about the approximation ratio?

OPT ≥ max
𝑗

𝑝𝑗 𝑚 ⋅ OPT ≥෍
𝑗
𝑝𝑗

Assume machine 𝑘 finishes last in the schedule, and last job on it is 𝑙.

List (Graham 1966)：

For each job 𝑗 = 1,2,⋯ , 𝑛 do:
Assign job 𝑗 to a currently least loaded
machine.

This algorithm finishes within poly-time.

What about the approximation ratio?

OPT ≥ max
𝑗

𝑝𝑗 𝑚 ⋅ OPT ≥෍
𝑗
𝑝𝑗

Assume machine 𝑘 finishes last in the schedule, and last job on it is 𝑙.

Makespan 𝐶max = 𝐶𝑘 = 𝐶𝑘 − 𝑝𝑙 + 𝑝𝑙

List (Graham 1966)：

For each job 𝑗 = 1,2,⋯ , 𝑛 do:
Assign job 𝑗 to a currently least loaded
machine.

This algorithm finishes within poly-time.

What about the approximation ratio?

OPT ≥ max
𝑗

𝑝𝑗 𝑚 ⋅ OPT ≥෍
𝑗
𝑝𝑗

Assume machine 𝑘 finishes last in the schedule, and last job on it is 𝑙.

Makespan 𝐶max = 𝐶𝑘 = 𝐶𝑘 − 𝑝𝑙 + 𝑝𝑙

𝑝𝑙 ≤ max
𝑗

𝑝𝑗 ≤ OPT

List (Graham 1966)：

For each job 𝑗 = 1,2,⋯ , 𝑛 do:
Assign job 𝑗 to a currently least loaded
machine.

This algorithm finishes within poly-time.

What about the approximation ratio?

OPT ≥ max
𝑗

𝑝𝑗 𝑚 ⋅ OPT ≥෍
𝑗
𝑝𝑗

Assume machine 𝑘 finishes last in the schedule, and last job on it is 𝑙.

Makespan 𝐶max = 𝐶𝑘 = 𝐶𝑘 − 𝑝𝑙 + 𝑝𝑙

𝑝𝑙 ≤ max
𝑗

𝑝𝑗 ≤ OPT 𝐶𝑘 − 𝑝𝑙 ≤
1

𝑚
σ𝑗≠𝑙 𝑝𝑗 ≤

1

𝑚
σ𝑗 𝑝𝑗 ≤ OPT

since machine 𝑘 is least loaded when scheduling job 𝑙

List (Graham 1966)：

For each job 𝑗 = 1,2,⋯ , 𝑛 do:
Assign job 𝑗 to a currently least loaded
machine.

This algorithm finishes within poly-time.

What about the approximation ratio?

OPT ≥ max
𝑗

𝑝𝑗 𝑚 ⋅ OPT ≥෍
𝑗
𝑝𝑗

Assume machine 𝑘 finishes last in the schedule, and last job on it is 𝑙.

Makespan 𝐶max = 𝐶𝑘 = 𝐶𝑘 − 𝑝𝑙 + 𝑝𝑙

𝑝𝑙 ≤ max
𝑗

𝑝𝑗 ≤ OPT 𝐶𝑘 − 𝑝𝑙 ≤
1

𝑚
σ𝑗≠𝑙 𝑝𝑗 ≤

1

𝑚
σ𝑗 𝑝𝑗 ≤ OPT

since machine 𝑘 is least loaded when scheduling job 𝑙

≤ 2 ⋅ OPT

List (Graham 1966)：

For each job 𝑗 = 1,2,⋯ , 𝑛 do:
Assign job 𝑗 to a currently least loaded
machine.

Algorithm List finishes within poly-time.

Algorithm List has approximation ratio 2.

Makespan 𝐶max = 𝐶𝑘 = 𝐶𝑘 − 𝑝𝑙 + 𝑝𝑙

𝑝𝑙 ≤ max
𝑗

𝑝𝑗 ≤ OPT 𝐶𝑘 − 𝑝𝑙 ≤
1

𝑚
෍

𝑗≠𝑙
𝑝𝑗 ≤

1

𝑚
෍

𝑗
𝑝𝑗 ≤ OPT

≤ 2 ⋅ OPT

List (Graham 1966)：

For each job 𝑗 = 1,2,⋯ , 𝑛 do:
Assign job 𝑗 to a currently least loaded
machine.

Algorithm List finishes within poly-time.

Algorithm List has approximation ratio 2.

Makespan 𝐶max = 𝐶𝑘 = 𝐶𝑘 − 𝑝𝑙 + 𝑝𝑙

𝑝𝑙 ≤ max
𝑗

𝑝𝑗 ≤ OPT 𝐶𝑘 − 𝑝𝑙 ≤
1

𝑚
෍

𝑗≠𝑙
𝑝𝑗 ≤

1

𝑚
෍

𝑗
𝑝𝑗 ≤ OPT

≤ 2 ⋅ OPT

𝐶𝑘 − 𝑝𝑙 ≤
1

𝑚
෍

𝑗≠𝑙
𝑝𝑗 =

1

𝑚
෍

𝑗
𝑝𝑗 −

𝑝𝑙
𝑚

List (Graham 1966)：

For each job 𝑗 = 1,2,⋯ , 𝑛 do:
Assign job 𝑗 to a currently least loaded
machine.

Algorithm List finishes within poly-time.

Algorithm List has approximation ratio 2.

Makespan 𝐶max = 𝐶𝑘 = 𝐶𝑘 − 𝑝𝑙 + 𝑝𝑙

𝑝𝑙 ≤ max
𝑗

𝑝𝑗 ≤ OPT 𝐶𝑘 − 𝑝𝑙 ≤
1

𝑚
෍

𝑗≠𝑙
𝑝𝑗 ≤

1

𝑚
෍

𝑗
𝑝𝑗 ≤ OPT

≤ 2 ⋅ OPT

𝐶𝑘 − 𝑝𝑙 ≤
1

𝑚
෍

𝑗≠𝑙
𝑝𝑗 =

1

𝑚
෍

𝑗
𝑝𝑗 −

𝑝𝑙
𝑚

≤ 2 −
1

𝑚
⋅ OPT

List (Graham 1966)：

For each job 𝑗 = 1,2,⋯ , 𝑛 do:
Assign job 𝑗 to a currently least loaded
machine.

Algorithm List finishes within poly-time.

Algorithm List has approximation ratio 2.

Makespan 𝐶max = 𝐶𝑘 = 𝐶𝑘 − 𝑝𝑙 + 𝑝𝑙

𝑝𝑙 ≤ max
𝑗

𝑝𝑗 ≤ OPT 𝐶𝑘 − 𝑝𝑙 ≤
1

𝑚
෍

𝑗≠𝑙
𝑝𝑗 ≤

1

𝑚
෍

𝑗
𝑝𝑗 ≤ OPT

≤ 2 ⋅ OPT

𝐶𝑘 − 𝑝𝑙 ≤
1

𝑚
෍

𝑗≠𝑙
𝑝𝑗 =

1

𝑚
෍

𝑗
𝑝𝑗 −

𝑝𝑙
𝑚

≤ 2 −
1

𝑚
⋅ OPT

Algorithm List has approximation ratio 2 − Τ1 𝑚.

List (Graham 1966)：

For each job 𝑗 = 1,2,⋯ , 𝑛 do:
Assign job 𝑗 to a currently least loaded
machine.

Algorithm List finishes within poly-time.

Algorithm List has approximation ratio 2.

Makespan 𝐶max = 𝐶𝑘 = 𝐶𝑘 − 𝑝𝑙 + 𝑝𝑙

𝑝𝑙 ≤ max
𝑗

𝑝𝑗 ≤ OPT 𝐶𝑘 − 𝑝𝑙 ≤
1

𝑚
෍

𝑗≠𝑙
𝑝𝑗 ≤

1

𝑚
෍

𝑗
𝑝𝑗 ≤ OPT

≤ 2 ⋅ OPT

𝐶𝑘 − 𝑝𝑙 ≤
1

𝑚
෍

𝑗≠𝑙
𝑝𝑗 =

1

𝑚
෍

𝑗
𝑝𝑗 −

𝑝𝑙
𝑚

≤ 2 −
1

𝑚
⋅ OPT

Algorithm List has approximation ratio 2 − Τ1 𝑚.
This bound is tight in the worst case. [Almost tight example: 𝑚2 unit jobs followed
by a length 𝑚 job. List generates makespan of 2𝑚 while OPT = 𝑚 + 1.]

Local Search for Scheduling
Start with an arbitrary solution:

Keep making improvements by locally adjusting the solution,
until no further improvement can be made (local optimum)

Local Search for Scheduling
Start with an arbitrary solution:

Keep making improvements by locally adjusting the solution,
until no further improvement can be made (local optimum)

LocalSearch：

Start with an arbitrary schedule.
Repeat until no job can be reassigned (i.e., local optimum reached):

Let 𝑙 be a job that finished last.
If exists machine 𝑖 s.t. assigning job 𝑙 to 𝑖 allows 𝑙 finish earlier:

Transfer job 𝑙 to earliest such 𝑖.

Local Search for Scheduling
Start with an arbitrary solution:

Keep making improvements by locally adjusting the solution,
until no further improvement can be made (local optimum)

LocalSearch：

Start with an arbitrary schedule.
Repeat until no job can be reassigned (i.e., local optimum reached):

Let 𝑙 be a job that finished last.
If exists machine 𝑖 s.t. assigning job 𝑙 to 𝑖 allows 𝑙 finish earlier:

Transfer job 𝑙 to earliest such 𝑖.

Local Search for Scheduling
Start with an arbitrary solution:

Keep making improvements by locally adjusting the solution,
until no further improvement can be made (local optimum)

LocalSearch：

Start with an arbitrary schedule.
Repeat until no job can be reassigned (i.e., local optimum reached):

Let 𝑙 be a job that finished last.
If exists machine 𝑖 s.t. assigning job 𝑙 to 𝑖 allows 𝑙 finish earlier:

Transfer job 𝑙 to earliest such 𝑖.

LocalSearch：

Start with an arbitrary schedule.
Repeat until no job can be reassigned (i.e., local optimum reached):

Let 𝑙 be a job that finished last.
If exists machine 𝑖 s.t. assigning job 𝑙 to 𝑖 allows 𝑙 finish earlier:

Transfer job 𝑙 to earliest such 𝑖.

LocalSearch：

Start with an arbitrary schedule.
Repeat until no job can be reassigned (i.e., local optimum reached):

Let 𝑙 be a job that finished last.
If exists machine 𝑖 s.t. assigning job 𝑙 to 𝑖 allows 𝑙 finish earlier:

Transfer job 𝑙 to earliest such 𝑖.

This algorithm finishes within poly-time. (No job is transferred twice!)

LocalSearch：

Start with an arbitrary schedule.
Repeat until no job can be reassigned (i.e., local optimum reached):

Let 𝑙 be a job that finished last.
If exists machine 𝑖 s.t. assigning job 𝑙 to 𝑖 allows 𝑙 finish earlier:

Transfer job 𝑙 to earliest such 𝑖.

This algorithm finishes within poly-time. (No job is transferred twice!)

The approximation ratio of this algorithm?

LocalSearch：

Start with an arbitrary schedule.
Repeat until no job can be reassigned (i.e., local optimum reached):

Let 𝑙 be a job that finished last.
If exists machine 𝑖 s.t. assigning job 𝑙 to 𝑖 allows 𝑙 finish earlier:

Transfer job 𝑙 to earliest such 𝑖.

This algorithm finishes within poly-time. (No job is transferred twice!)

The approximation ratio of this algorithm?

OPT ≥ max
𝑗

𝑝𝑗 𝑚 ⋅ OPT ≥෍
𝑗
𝑝𝑗

LocalSearch：

Start with an arbitrary schedule.
Repeat until no job can be reassigned (i.e., local optimum reached):

Let 𝑙 be a job that finished last.
If exists machine 𝑖 s.t. assigning job 𝑙 to 𝑖 allows 𝑙 finish earlier:

Transfer job 𝑙 to earliest such 𝑖.

This algorithm finishes within poly-time. (No job is transferred twice!)

The approximation ratio of this algorithm?

Assume machine 𝑘 finishes last in final schedule, and last job on it is 𝑙.

OPT ≥ max
𝑗

𝑝𝑗 𝑚 ⋅ OPT ≥෍
𝑗
𝑝𝑗

LocalSearch：

Start with an arbitrary schedule.
Repeat until no job can be reassigned (i.e., local optimum reached):

Let 𝑙 be a job that finished last.
If exists machine 𝑖 s.t. assigning job 𝑙 to 𝑖 allows 𝑙 finish earlier:

Transfer job 𝑙 to earliest such 𝑖.

This algorithm finishes within poly-time. (No job is transferred twice!)

The approximation ratio of this algorithm?

Assume machine 𝑘 finishes last in final schedule, and last job on it is 𝑙.

OPT ≥ max
𝑗

𝑝𝑗 𝑚 ⋅ OPT ≥෍
𝑗
𝑝𝑗

Makespan 𝐶max = 𝐶𝑘 = 𝐶𝑘 − 𝑝𝑙 + 𝑝𝑙

LocalSearch：

Start with an arbitrary schedule.
Repeat until no job can be reassigned (i.e., local optimum reached):

Let 𝑙 be a job that finished last.
If exists machine 𝑖 s.t. assigning job 𝑙 to 𝑖 allows 𝑙 finish earlier:

Transfer job 𝑙 to earliest such 𝑖.

This algorithm finishes within poly-time. (No job is transferred twice!)

The approximation ratio of this algorithm?

Assume machine 𝑘 finishes last in final schedule, and last job on it is 𝑙.

OPT ≥ max
𝑗

𝑝𝑗 𝑚 ⋅ OPT ≥෍
𝑗
𝑝𝑗

Makespan 𝐶max = 𝐶𝑘 = 𝐶𝑘 − 𝑝𝑙 + 𝑝𝑙

𝑝𝑙 ≤ max
𝑗

𝑝𝑗 ≤ OPT

LocalSearch：

Start with an arbitrary schedule.
Repeat until no job can be reassigned (i.e., local optimum reached):

Let 𝑙 be a job that finished last.
If exists machine 𝑖 s.t. assigning job 𝑙 to 𝑖 allows 𝑙 finish earlier:

Transfer job 𝑙 to earliest such 𝑖.

This algorithm finishes within poly-time. (No job is transferred twice!)

The approximation ratio of this algorithm?

Assume machine 𝑘 finishes last in final schedule, and last job on it is 𝑙.

OPT ≥ max
𝑗

𝑝𝑗 𝑚 ⋅ OPT ≥෍
𝑗
𝑝𝑗

Makespan 𝐶max = 𝐶𝑘 = 𝐶𝑘 − 𝑝𝑙 + 𝑝𝑙

𝑝𝑙 ≤ max
𝑗

𝑝𝑗 ≤ OPT 𝐶𝑘 − 𝑝𝑙 ≤
1

𝑚
෍

𝑗≠𝑙
𝑝𝑗 =

1

𝑚
෍

𝑗
𝑝𝑗 −

𝑝𝑙
𝑚

LocalSearch：

Start with an arbitrary schedule.
Repeat until no job can be reassigned (i.e., local optimum reached):

Let 𝑙 be a job that finished last.
If exists machine 𝑖 s.t. assigning job 𝑙 to 𝑖 allows 𝑙 finish earlier:

Transfer job 𝑙 to earliest such 𝑖.

This algorithm finishes within poly-time. (No job is transferred twice!)

The approximation ratio of this algorithm?

Assume machine 𝑘 finishes last in final schedule, and last job on it is 𝑙.

OPT ≥ max
𝑗

𝑝𝑗 𝑚 ⋅ OPT ≥෍
𝑗
𝑝𝑗

Makespan 𝐶max = 𝐶𝑘 = 𝐶𝑘 − 𝑝𝑙 + 𝑝𝑙

𝑝𝑙 ≤ max
𝑗

𝑝𝑗 ≤ OPT 𝐶𝑘 − 𝑝𝑙 ≤
1

𝑚
෍

𝑗≠𝑙
𝑝𝑗 =

1

𝑚
෍

𝑗
𝑝𝑗 −

𝑝𝑙
𝑚

≤ 2 −
1

𝑚
⋅ OPT

(2 − Τ1 𝑚)

LocalSearch：

Start with an arbitrary schedule.
Repeat until no job can be reassigned (i.e., local optimum reached):

Let 𝑙 be a job that finished last.
If exists machine 𝑖 s.t. assigning job 𝑙 to 𝑖 allows 𝑙 finish earlier:

Transfer job 𝑙 to earliest such 𝑖.

List (Graham 1966)：

For each job 𝑗 = 1,2,⋯ , 𝑛 do:
Assign job 𝑗 to a currently least loaded machine.

LocalSearch：

Start with an arbitrary schedule.
Repeat until no job can be reassigned (i.e., local optimum reached):

Let 𝑙 be a job that finished last.
If exists machine 𝑖 s.t. assigning job 𝑙 to 𝑖 allows 𝑙 finish earlier:

Transfer job 𝑙 to earliest such 𝑖.

List (Graham 1966)：

For each job 𝑗 = 1,2,⋯ , 𝑛 do:
Assign job 𝑗 to a currently least loaded machine.

LocalSearch finds a schedule with makespan 𝐶max ≤ 2 −
1

𝑚
⋅ OPT

LocalSearch：

Start with an arbitrary schedule.
Repeat until no job can be reassigned (i.e., local optimum reached):

Let 𝑙 be a job that finished last.
If exists machine 𝑖 s.t. assigning job 𝑙 to 𝑖 allows 𝑙 finish earlier:

Transfer job 𝑙 to earliest such 𝑖.

List (Graham 1966)：

For each job 𝑗 = 1,2,⋯ , 𝑛 do:
Assign job 𝑗 to a currently least loaded machine.

LocalSearch finds a schedule with makespan 𝐶max ≤ 2 −
1

𝑚
⋅ OPT

The schedule returned by List must be a local optimum!

LocalSearch：

Start with an arbitrary schedule.
Repeat until no job can be reassigned (i.e., local optimum reached):

Let 𝑙 be a job that finished last.
If exists machine 𝑖 s.t. assigning job 𝑙 to 𝑖 allows 𝑙 finish earlier:

Transfer job 𝑙 to earliest such 𝑖.

List (Graham 1966)：

For each job 𝑗 = 1,2,⋯ , 𝑛 do:
Assign job 𝑗 to a currently least loaded machine.

LocalSearch finds a schedule with makespan 𝐶max ≤ 2 −
1

𝑚
⋅ OPT

The schedule returned by List must be a local optimum!

List will find a schedule with makespan

𝐶max ≤ 2 −
1

𝑚
⋅ OPT

𝑚 identical machines 𝑛 jobs

List (Graham 1966)：

For each job 𝑗 = 1,2,⋯ , 𝑛 do:
Assign job 𝑗 to a currently least
loaded machine.

𝑚 identical machines 𝑛 jobs

List (Graham 1966)：

For each job 𝑗 = 1,2,⋯ , 𝑛 do:
Assign job 𝑗 to a currently least
loaded machine.

Longest Processing Time (LPT)
𝑚 identical machines 𝑛 jobs

List (Graham 1966)：

For each job 𝑗 = 1,2,⋯ , 𝑛 do:
Assign job 𝑗 to a currently least
loaded machine.

LongestProcessingTime (LPT)：

Sort jobs so that 𝑝1 ≥ 𝑝2 ≥ ⋯ ≥ 𝑝𝑛.
For each job 𝑗 = 1,2,⋯ , 𝑛 do:

Assign job 𝑗 to a currently least loaded machine.

LongestProcessingTime (LPT)：

Sort jobs so that 𝑝1 ≥ 𝑝2 ≥ ⋯ ≥ 𝑝𝑛.
For each job 𝑗 = 1,2,⋯ , 𝑛 do:

Assign job 𝑗 to a currently least loaded machine.

This algorithm finishes within poly-time.

The approximation ratio of this algorithm?

LongestProcessingTime (LPT)：

Sort jobs so that 𝑝1 ≥ 𝑝2 ≥ ⋯ ≥ 𝑝𝑛.
For each job 𝑗 = 1,2,⋯ , 𝑛 do:

Assign job 𝑗 to a currently least loaded machine.

This algorithm finishes within poly-time.

The approximation ratio of this algorithm?

Assume machine 𝑘 finishes last in final schedule, and last job on it is 𝑙.

Makespan 𝐶max = 𝐶𝑘 = 𝐶𝑘 − 𝑝𝑙 + 𝑝𝑙

LongestProcessingTime (LPT)：

Sort jobs so that 𝑝1 ≥ 𝑝2 ≥ ⋯ ≥ 𝑝𝑛.
For each job 𝑗 = 1,2,⋯ , 𝑛 do:

Assign job 𝑗 to a currently least loaded machine.

This algorithm finishes within poly-time.

The approximation ratio of this algorithm?

Assume machine 𝑘 finishes last in final schedule, and last job on it is 𝑙.

Makespan 𝐶max = 𝐶𝑘 = 𝐶𝑘 − 𝑝𝑙 + 𝑝𝑙

𝐶𝑘 − 𝑝𝑙 ≤
1

𝑚
෍

𝑗
𝑝𝑗 ≤ OPT

LongestProcessingTime (LPT)：

Sort jobs so that 𝑝1 ≥ 𝑝2 ≥ ⋯ ≥ 𝑝𝑛.
For each job 𝑗 = 1,2,⋯ , 𝑛 do:

Assign job 𝑗 to a currently least loaded machine.

This algorithm finishes within poly-time.

The approximation ratio of this algorithm?

Assume machine 𝑘 finishes last in final schedule, and last job on it is 𝑙.

Makespan 𝐶max = 𝐶𝑘 = 𝐶𝑘 − 𝑝𝑙 + 𝑝𝑙

𝐶𝑘 − 𝑝𝑙 ≤
1

𝑚
෍

𝑗
𝑝𝑗 ≤ OPT

LongestProcessingTime (LPT)：

Sort jobs so that 𝑝1 ≥ 𝑝2 ≥ ⋯ ≥ 𝑝𝑛.
For each job 𝑗 = 1,2,⋯ , 𝑛 do:

Assign job 𝑗 to a currently least loaded machine.

This algorithm finishes within poly-time.

The approximation ratio of this algorithm?

Assume machine 𝑘 finishes last in final schedule, and last job on it is 𝑙.

Makespan 𝐶max = 𝐶𝑘 = 𝐶𝑘 − 𝑝𝑙 + 𝑝𝑙

𝐶𝑘 − 𝑝𝑙 ≤
1

𝑚
෍

𝑗
𝑝𝑗 ≤ OPT

W.l.o.g.: • # of jobs > # of machines (i.e., 𝑛 > 𝑚)
• makespan is achieved by some job bigger than 𝑚 (i.e., 𝑙 > 𝑚)

Otherwise, LPT returns an optimal solution already!

LongestProcessingTime (LPT)：

Sort jobs so that 𝑝1 ≥ 𝑝2 ≥ ⋯ ≥ 𝑝𝑛.
For each job 𝑗 = 1,2,⋯ , 𝑛 do:

Assign job 𝑗 to a currently least loaded machine.

This algorithm finishes within poly-time.

The approximation ratio of this algorithm?

Assume machine 𝑘 finishes last in final schedule, and last job on it is 𝑙.

Makespan 𝐶max = 𝐶𝑘 = 𝐶𝑘 − 𝑝𝑙 + 𝑝𝑙

𝐶𝑘 − 𝑝𝑙 ≤
1

𝑚
෍

𝑗
𝑝𝑗 ≤ OPT

W.l.o.g.: • # of jobs > # of machines (i.e., 𝑛 > 𝑚)
• makespan is achieved by some job bigger than 𝑚 (i.e., 𝑙 > 𝑚)

Otherwise, LPT returns an optimal solution already!

𝑝𝑚 + 𝑝𝑚+1 ≤ OPT

LongestProcessingTime (LPT)：

Sort jobs so that 𝑝1 ≥ 𝑝2 ≥ ⋯ ≥ 𝑝𝑛.
For each job 𝑗 = 1,2,⋯ , 𝑛 do:

Assign job 𝑗 to a currently least loaded machine.

This algorithm finishes within poly-time.

The approximation ratio of this algorithm?

Assume machine 𝑘 finishes last in final schedule, and last job on it is 𝑙.

Makespan 𝐶max = 𝐶𝑘 = 𝐶𝑘 − 𝑝𝑙 + 𝑝𝑙

𝐶𝑘 − 𝑝𝑙 ≤
1

𝑚
෍

𝑗
𝑝𝑗 ≤ OPT

W.l.o.g.: • # of jobs > # of machines (i.e., 𝑛 > 𝑚)
• makespan is achieved by some job bigger than 𝑚 (i.e., 𝑙 > 𝑚)

Otherwise, LPT returns an optimal solution already!

𝑝𝑚 + 𝑝𝑚+1 ≤ OPT
𝑝𝑙 ≤ 𝑝𝑚+1

LongestProcessingTime (LPT)：

Sort jobs so that 𝑝1 ≥ 𝑝2 ≥ ⋯ ≥ 𝑝𝑛.
For each job 𝑗 = 1,2,⋯ , 𝑛 do:

Assign job 𝑗 to a currently least loaded machine.

This algorithm finishes within poly-time.

The approximation ratio of this algorithm?

Assume machine 𝑘 finishes last in final schedule, and last job on it is 𝑙.

Makespan 𝐶max = 𝐶𝑘 = 𝐶𝑘 − 𝑝𝑙 + 𝑝𝑙

𝐶𝑘 − 𝑝𝑙 ≤
1

𝑚
෍

𝑗
𝑝𝑗 ≤ OPT

W.l.o.g.: • # of jobs > # of machines (i.e., 𝑛 > 𝑚)
• makespan is achieved by some job bigger than 𝑚 (i.e., 𝑙 > 𝑚)

Otherwise, LPT returns an optimal solution already!

𝑝𝑚 + 𝑝𝑚+1 ≤ OPT
𝑝𝑙 ≤ 𝑝𝑚+1

𝑝𝑙 ≤ 𝑝𝑚+1 ≤
1

2
𝑝𝑚 + 𝑝𝑚+1 ≤

OPT

2

LongestProcessingTime (LPT)：

Sort jobs so that 𝑝1 ≥ 𝑝2 ≥ ⋯ ≥ 𝑝𝑛.
For each job 𝑗 = 1,2,⋯ , 𝑛 do:

Assign job 𝑗 to a currently least loaded machine.

This algorithm finishes within poly-time.

The approximation ratio of this algorithm?

Assume machine 𝑘 finishes last in final schedule, and last job on it is 𝑙.

Makespan 𝐶max = 𝐶𝑘 = 𝐶𝑘 − 𝑝𝑙 + 𝑝𝑙

𝐶𝑘 − 𝑝𝑙 ≤
1

𝑚
෍

𝑗
𝑝𝑗 ≤ OPT

W.l.o.g.: • # of jobs > # of machines (i.e., 𝑛 > 𝑚)
• makespan is achieved by some job bigger than 𝑚 (i.e., 𝑙 > 𝑚)

Otherwise, LPT returns an optimal solution already!

𝑝𝑚 + 𝑝𝑚+1 ≤ OPT
𝑝𝑙 ≤ 𝑝𝑚+1

𝑝𝑙 ≤ 𝑝𝑚+1 ≤
1

2
𝑝𝑚 + 𝑝𝑚+1 ≤

OPT

2

≤
3

2
⋅ OPT

LongestProcessingTime (LPT)：

Sort jobs so that 𝑝1 ≥ 𝑝2 ≥ ⋯ ≥ 𝑝𝑛.
For each job 𝑗 = 1,2,⋯ , 𝑛 do:

Assign job 𝑗 to a currently least loaded machine.

• We have shown LPT has approximation ratio (at most) Τ3 2.

• By a more careful analysis, it can be shown LPT is actually
a Τ4 3 approximation algorithm.

• The problem of “minimum makespan on identical machines”
has a PTAS (Polynomial Time Approximation Scheme).
∀𝜖 > 0, ∃poly-time (1 + 𝜖)-approx. alg. for the problem

Online Scheduling

𝑚 identical machines Jobs arrive (revealed) one-by-one

Schedule decision must be made once a job arrives,
without seeing jobs in the future.

Online Scheduling

𝑚 identical machines Jobs arrive (revealed) one-by-one

Schedule decision must be made once a job arrives,
without seeing jobs in the future.

Online Scheduling

𝑚 identical machines Jobs arrive (revealed) one-by-one

Schedule decision must be made once a job arrives,
without seeing jobs in the future.

Online Scheduling

𝑚 identical machines Jobs arrive (revealed) one-by-one

Schedule decision must be made once a job arrives,
without seeing jobs in the future.

Online Scheduling

𝑚 identical machines Jobs arrive (revealed) one-by-one

Schedule decision must be made once a job arrives,
without seeing jobs in the future.

Online Scheduling

𝑚 identical machines Jobs arrive (revealed) one-by-one

Schedule decision must be made once a job arrives,
without seeing jobs in the future.

Online Scheduling

𝑚 identical machines Jobs arrive (revealed) one-by-one

Schedule decision must be made once a job arrives,
without seeing jobs in the future.

Online Scheduling

𝑚 identical machines Jobs arrive (revealed) one-by-one

Schedule decision must be made once a job arrives,
without seeing jobs in the future.

Online Scheduling

𝑚 identical machines Jobs arrive (revealed) one-by-one

Schedule decision must be made once a job arrives,
without seeing jobs in the future.

Online Scheduling

𝑚 identical machines Jobs arrive (revealed) one-by-one

Schedule decision must be made once a job arrives,
without seeing jobs in the future.

Online Scheduling

𝑚 identical machines Jobs arrive (revealed) one-by-one

Schedule decision must be made once a job arrives,
without seeing jobs in the future.

Online Scheduling

𝑚 identical machines Jobs arrive (revealed) one-by-one

Schedule decision must be made once a job arrives,
without seeing jobs in the future.

Online Scheduling

𝑚 identical machines Jobs arrive (revealed) one-by-one

Schedule decision must be made once a job arrives,
without seeing jobs in the future.

List (Graham 1966)：

For each job 𝑗 = 1,2,⋯ , 𝑛 do:
Assign job 𝑗 to a currently least loaded machine.

Online Scheduling

𝑚 identical machines Jobs arrive (revealed) one-by-one

Schedule decision must be made once a job arrives,
without seeing jobs in the future.

List (Graham 1966)：

For each job 𝑗 = 1,2,⋯ , 𝑛 do:
Assign job 𝑗 to a currently least loaded machine.

LPT is not an
online alg. for
scheduling.

Competitive Analysis

The competitive ratio of an online algorithm 𝒜 is 𝛼 if:

For every possible input sequence 𝐼 of the considered problem:

solution value returned by online alg. 𝒜 on 𝐼

solution value returned by optimal offline alg. on 𝐼
≤ 𝛼

Competitive Analysis

List (Graham 1966)：

For each job 𝑗 = 1,2,⋯ , 𝑛 do:
Assign job 𝑗 to a currently least loaded machine.

The competitive ratio of an online algorithm 𝒜 is 𝛼 if:

For every possible input sequence 𝐼 of the considered problem:

solution value returned by online alg. 𝒜 on 𝐼

solution value returned by optimal offline alg. on 𝐼
≤ 𝛼

Competitive Analysis

List (Graham 1966)：

For each job 𝑗 = 1,2,⋯ , 𝑛 do:
Assign job 𝑗 to a currently least loaded machine.

The competitive ratio of an online algorithm 𝒜 is 𝛼 if:

For every possible input sequence 𝐼 of the considered problem:

solution value returned by online alg. 𝒜 on 𝐼

solution value returned by optimal offline alg. on 𝐼
≤ 𝛼

List is a 2-competitive online algorithm

