Advanced Algorithms

南京大学

尹一通

Balls and Bins

m balls

n bins birthday problem, coupon collector problem, occupancy problem, ...

Random function

uniformly random function

balls-into-bins:

$$\Pr[\text{assignment}] = \underbrace{\frac{1}{n} \cdot \frac{1}{n} \cdots \frac{1}{n}}_{m} = \frac{1}{n^m}$$

random function:

$$\Pr[\text{assignment}] = \frac{1}{|[m] \to [n]|} = \frac{1}{n^m}$$

1-1	birthday problem
on-to	coupon collector
pre-images	occupancy problem

Paradox:

- (i) a statement that leads to a contradiction;
- (ii) a situation which defies intuition.

birthday paradox:

Assumption: birthdays are uniformly & independently distributed.

In a class of m>57 students, with >99% probability, there are two students with the same birthday.

m-balls-into-*n*-bins:

 \mathcal{E} : there is no bin with > 1 balls.

m-balls-into-*n*-bins:

 \mathcal{E} : there is no bin with > 1 balls.

$$\Pr[\mathcal{E}] = \prod_{k=0}^{m-1} \left(1 - \frac{k}{n}\right)$$

suppose balls are thrown one-by-one:

$$\Pr[\mathcal{E}] = \Pr[\text{no collision for all } m \text{ balls}]$$

$$= \prod_{k=0}^{m-1} \Pr[\text{no collision for the } (k+1)\text{th ball} \mid \text{no collision for the first } k \text{ balls}]$$

chain rule

m-balls-into-*n*-bins:

 \mathcal{E} : there is no bin with > 1 balls.

$$\Pr[\mathcal{E}] = \prod_{k=0}^{m-1} \left(1 - \frac{k}{n}\right)$$

Taylor's expansion: $e^{-k/n} \approx 1 - k/n$

$$\prod_{k=1}^{m-1} \left(1 - \frac{k}{n} \right) \approx \prod_{k=1}^{m-1} e^{-\frac{k}{n}}$$

$$= \exp\left(-\sum_{k=1}^{m-1} \frac{k}{n} \right)$$

$$= e^{-m(m-1)/2n}$$

$$\approx e^{-m^2/2n}$$

m-balls-into-*n*-bins:

 \mathcal{E} : there is no bin with > 1 balls.

$$\Pr[\mathcal{E}] = \prod_{k=0}^{m-1} \left(1 - \frac{k}{n}\right)$$

$$\prod_{k=1}^{m-1} \left(1 - \frac{k}{n}\right) \approx e^{-m^2/2n}$$

for
$$m = \sqrt{2n \ln \frac{1}{\epsilon}}$$
,

$$\Pr[\mathcal{E}] \approx \epsilon$$

 $m = \theta(\sqrt{n})$ for constant ϵ

(cover time)

coupons in cookie box

each box comes with a uniformly random coupon

number of boxes bought to collect all n coupons

number of balls thrown to cover all n bins

X: number of balls thrown to make all the n bins nonempty

$$X = \sum_{i=1}^{n} X_i$$

$$X_i = 4$$

 X_i is geometric!

with
$$p_i = 1 - \frac{i-1}{n}$$

$$\mathbf{E}[X_i] = \frac{1}{p_i} = \frac{n}{n - i + 1}$$

number of balls thrown to make all the n bins nonempty

 X_i : number of balls thrown while there are exactly (i-1) nonempty bins

$$X = \sum_{i=1}^{n} X_i$$

$$\mathbf{E}[X_i] = \frac{1}{p_i} = \frac{n}{n - i + 1}$$

$$\mathbf{E}[X] = \sum_{i=1}^{n} \mathbf{E}[X_i]$$
 linearity of expectations

$$=\sum_{i=1}^{n}\frac{n}{n-i+1}$$

 $= \sum_{i=1}^{n} \frac{n}{n-i+1}$ Expected $n \ln n + O(n)$ balls!

$$= n \sum_{i=1}^{n} \frac{1}{i}$$
$$= nH(n) \checkmark$$

Harmonic number

number of balls X: thrown to make all the n bins nonempty

Theorem: For
$$c > 0$$

$$\Pr[X \ge n \ln n + cn] < e^{-c}$$

Proof: For one bin, it misses all balls with probability

$$\left(1 - \frac{1}{n}\right)^{n \ln n + cn} = \left(1 - \frac{1}{n}\right)^{n (\ln n + c)}$$

$$< e^{-(\ln n + c)}$$

$$= \frac{1}{ne^{c}}$$

number of balls X : thrown to make all the n bins nonempty

Theorem: For
$$c > 0$$

$$\Pr[X \ge n \ln n + cn] < e^{-c}$$

Proof: For one bin, it misses all balls with probability

$$<\frac{1}{ne^{c}}$$

For all n bins,

union bound!

 $\Pr[\exists \text{ a bin misses all balls}] \leq n \cdot \Pr[\text{one bin misses all balls}]$

$$< n \cdot \frac{1}{ne^c} = e^{-c}$$

number of balls X: thrown to make all the n bins nonempty

Theorem: For
$$c > 0$$

$$\Pr[X \ge n \ln n + cn] < e^{-c}$$

a sharp threshold:

$$\lim_{n \to \infty} \Pr[X \ge n \ln n + cn] = 1 - e^{-e^{-c}}$$

(load balancing)

loads of bins

maximum load?

$$\max_{1 \le i \le n} \mathbf{E}[X_i] = ?$$

$$\sum_{i=1}^{n} X_i = m$$

loads of bins
$$\sum_{i=1}^{n} X_i = m$$

$$\sum_{i=1}^{n} \mathbf{E}[X_i] = \mathbf{E}\left[\sum_{i=1}^{n} X_i\right] = m$$

Symmetry! $lacksquare{1}{2}$ All $\mathbf{E}[X_i]$ are equal.

$$\max_{1 \le i \le n} \mathbf{E}[X_i] = \frac{m}{n}$$

$$\max_{1 \le i \le n} \mathbf{E}[X_i] = \frac{m}{n}$$

Theorem:

If m = n, the max load is $O\left(\frac{\ln n}{\ln \ln n}\right)$ with high probability.

w.h.p.:
$$\Pr = 1 - O(\frac{1}{n^c}) \text{ or } \Pr = 1 - o(1)$$

n balls into n bins:

 $\Pr[\text{ bin-1 has } \geq t \text{ balls }]$

 $\leq \Pr[\exists \text{ a set } S \text{ of } t \text{ balls s.t. all balls in } S \text{ are in bin-1}]$

$$\binom{n}{t}$$

$$\frac{1}{n^t}$$

union bound

 \leq \sum

Pr[all balls in S are in bin-1]

set s of t balls

$$\leq \frac{1}{n^t} \binom{n}{t} = \frac{n(n-1)(n-2)\cdots(n-t+1)}{t!n^t} \leq \frac{1}{t!} \leq \left(\frac{e}{t}\right)^t$$

Stirling approximation

n balls into n bins:

$$\Pr[\text{ bin-1 has } \ge t \text{ balls }] \le \left(\frac{e}{t}\right)^t$$

$$\Pr[\max load \ge t] = \Pr[\exists bin-i has \ge t balls]$$

$$\leq n \Pr[\text{ bin-1 has } \geq t \text{ balls }]$$
 union bound

$$\leq n \left(\frac{\mathrm{e}}{t}\right)^t$$
 choose $t = \frac{3 \ln n}{\ln \ln n}$

$$= n \left(\frac{e \ln \ln n}{3 \ln n}\right)^{3 \ln n / \ln \ln n} < n \left(\frac{\ln \ln n}{\ln n}\right)^{3 \ln n / \ln \ln n}$$

$$= ne^{3(\ln \ln \ln n - \ln \ln n) \ln n / \ln \ln n}$$

$$\leq ne^{-3\ln n + 3(\ln \ln \ln n)(\ln n)/\ln \ln n}$$

$$\leq ne^{-2\ln n} = \frac{1}{n}$$

$$\leq ne^{-2\ln n} = \frac{1}{n}$$

Theorem: m balls into n bins:

If m = n, the max load is $O\left(\frac{\ln n}{\ln \ln n}\right)$ with high probability.

Theorem: m balls into n bins:

If m = n, the max load is $O\left(\frac{\ln n}{\ln \ln n}\right)$ with high probability.

When $m = \Omega(n \log n)$, the max load is $O(\frac{m}{n})$ with high probability

Balls-into-bins model

throw *m* balls into *n* bins uniformly and independently

uniform random function

$$f:[m] \to [n]$$

1-1	birthday problem
on-to	coupon collector
pre-images	occupancy problem

- The threshold for being 1-1 is $m = \Theta(\sqrt{n})$.
- The threshold for being on-to is $m = n \ln n + O(n)$.
- The maximum load is

$$\begin{cases} O(\frac{\ln n}{\ln \ln n}) & \text{for } m = \Theta(n), \\ O(\frac{m}{n}) & \text{for } m = \Omega(n \ln n). \end{cases}$$