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Balls and Bins
m balls

n bins

uniformly & independently

birthday problem, coupon collector problem,  
occupancy problem, ...
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1-1 birthday problem

on-to coupon collector

pre-images occupancy problem



Birthday Paradox

Paradox:
(i) a statement that leads to a contradiction;
(ii) a situation which defies intuition.

birthday paradox:

In a class of m>57 students, with >99% probability, 
there are two students with the same birthday.

Assumption:  birthdays are uniformly & independently distributed.

m-balls-into-n-bins:
E : there is no bin with > 1 balls.

(ii) a situation which defies intuition.
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m-balls-into-n-bins:
E : there is no bin with > 1 balls.

Birthday Paradox
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Pr[no collision for the (k + 1)th ball | no collision for the first k balls]

= Pr[no collision for all m balls]

chain rule

suppose balls are thrown one-by-one: 
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m-balls-into-n-bins:
E : there is no bin with > 1 balls.

Birthday Paradox
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m-balls-into-n-bins:
E : there is no bin with > 1 balls.

Birthday Paradox



Coupon Collector

number of boxes bought 
to collect all n coupons

each box comes with a 
uniformly random coupon

number of balls thrown 
to cover all n bins

coupons in cookie box

(cover time)



Coupon Collector

bins
i-1

Xi = 4
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Xi is geometric!
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X :

Xi :

number of balls thrown to make
 all the n bins nonempty

number of balls thrown while there 
are exactly  (i-1) nonempty bins
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Expected n lnn + O(n) balls!

Coupon Collector

X :

Xi :

number of balls thrown to make
 all the n bins nonempty

number of balls thrown while there 
are exactly  (i-1) nonempty bins



X :
number of balls 

thrown to make all the 
n bins nonempty

Theorem:

Pr[X � n ln n + cn] < e�c

For c > 0
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Coupon Collector



X :
number of balls 

thrown to make all the 
n bins nonempty

Theorem:

Pr[X � n ln n + cn] < e�c

For c > 0

For one bin, it misses all balls with probabilityProof:
1
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<

For all n bins,

Pr[⇤ a bin misses all balls] ⇥ n · Pr[one bin misses all balls]

< n · 1
nec

= e�c

union bound!

Coupon Collector



X :
number of balls 

thrown to make all the 
n bins nonempty

Theorem:

Pr[X � n ln n + cn] < e�c

For c > 0

Coupon Collector

lim
n!1

Pr[X � n lnn+ cn] = 1� e�e�c

a sharp threshold:
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(load balancing)

loads of bins
X1, X2, . . . , Xn

n bins

m balls

maximum load?

Occupancy Problem



loads of bins
X1, X2, . . . , Xn

n bins
m balls

n�

i=1

Xi = m
n⇤

i=1

E[Xi] = E

�
n⇤

i=1

Xi

⇥
= m

All E[Xi] are equal.

max
1�i�n

E[Xi] =?

Symmetry!

�

max
1�i�n

E[Xi] =
m

n

Occupancy Problem



Occupancy Problem

Theorem:
If m = n, the max load is O
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with high probability.
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n balls into n bins:

union bound

Stirling approximation

Pr[ bin-1 has � t balls ]
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n balls into n bins:
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Theorem:

If m = n, the max load is O
�

ln n
ln ln n
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with high probability.

Occupancy Problem

m balls into n bins:



Theorem:

If m = n, the max load is O
�
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ln ln n

⇥

with high probability.

When m = �(n log n), the max load is O(m
n )

with high probability

Occupancy Problem
m balls into n bins:



Balls-into-bins model
throw m balls into n bins 

uniformly and independently

uniform random function

f : [m]� [n]

• The threshold for
being 1-1 is
m = �(

⇥
n).

• The threshold for
being on-to is
m = n lnn + O(n).

• The maximum load is
�

O( ln n
ln ln n ) for m = �(n),

O(m
n ) for m = ⇥(n lnn).

1-1 birthday problem

on-to coupon collector

pre-images occupancy problem


