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Advanced Algorithms
Greedy and Local Search



Max-Cut
Instance:  An undirected graph .

Solution:  A bipartition of  into  and  that

     maximizes the cut .

G(V, E)
V S T

E(S, T ) = {{u, v} ∈ E ∣ u ∈ S ∧ v ∈ T}

T
S

• NP-hard.

• One of Karp’s 21 NP-complete 
problems (reduction from the 
Partition problem).

• a typical Max-CSP (Constraint 
Satisfaction Problem).

• Greedy is 1/2-approximate.



Greedy Algorithm
Instance:  An undirected graph .

Solution:  A bipartition of  into  and  that

     maximizes the cut .

G(V, E)
V S T

E(S, T ) = {{u, v} ∈ E ∣ u ∈ S ∧ v ∈ T}

T
S

Greedy Cut:

initially, ;

for :


 joins one of 

to maximize current  ;

S = T = ∅
i = 1,2,…, n

vi S, T
E(S, T )



Approximation Ratio

Greedy Cut:

initially, ;

for :


 joins one of 

to maximize current  ;

S = T = ∅
i = 1,2,…, n

vi S, T
E(S, T )

Algorithm :𝒜 Instance :G

: value of max-cut in 

: value of the cut returned by  on 

OPTG G
SOLG 𝒜 G

Algorithm  has approximation ratio  if


 instance ,     


𝒜 α

∀ G
SOLG

OPTG
≥ α



Approximation Algorithm

E(S, T ) = {uv ∈ E ∣ u ∈ S, v ∈ T}

Greedy Cut:

initially, ;

for :


 joins one of 

to maximize current  ;

S = T = ∅
i = 1,2,…, n

vi S, T
E(S, T )

TS
vi

G(V, E)
SOLG

OPTG
≥

SOLG

|E |

,   of 

contributes to 

∀vi ≥ 1/2 |E(Si, vi) | + |E(Ti, vi) |
SOLG

≥
1
2

|E | =
n

∑
i=1

( |E(Si, vi) | + |E(Ti, vi) | )

:

current  in the 

beginning of -th iteration

(Si, Ti)
(S, T )

i



Local Search
Instance:  An undirected graph .

Solution:  A bipartition of  into  and  that

     maximizes the cut .

G(V, E)
V S T

E(S, T ) = {{u, v} ∈ E ∣ u ∈ S ∧ v ∈ T}

Local Search:

initially,  is an arbitrary cut;

repeat until nothing changed:


if  switching side increases cut 

 switches to the other side;

(S, T )

∃v
v

locally improve the solution until 
no improvement can be made


(local optima, fixpoint)

T
S



Local Search
Local Search:

initially,  is an arbitrary cut;

repeat until nothing changed:


if  switching side increases cut 

 switches to the other side;

(S, T )

∃v
v

in a local optima:
∀v ∈ S : |E(v, S) | ≤ |E(v, T ) | ⟹ 2 |E(S, S) | ≤ |E(S, T ) |
∀v ∈ T : |E(v, T ) | ≤ |E(v, S) | ⟹ 2 |E(T, T ) | ≤ |E(S, T ) |

|E(S, S) | + |E(T, T ) | ≤ |E(S, T ) |

|E | = |E(S, S) | + |E(T, T ) | + |E(S, T ) |OPT ≤

⟹ |E(S, T ) | ≥
1
2

OPT

≤ 2 |E(S, T ) |

T
S



Scheduling



Scheduling
n jobsm machines

processing 
time pj

3
1
4
2
6
3
5
2
4
3



Scheduling

n jobs

m machines

processing 
time pj

with

Completion time:    


Makespan:          

Ci = ∑
j: jobs assigned

to machine i

pj

Cmax = max
1≤i≤

Ci



• α: machine environment

• 1:  a single machine;

• P:  m identical machines;

• Q:  m machines with different speed , the length of job j on machine i is ; 

• R:  m unrelated machines, the length of job j on machine i is ;


• β: job characteristics

• : release times;    : deadlines;    pmtn:  preemption; 


• γ: objective

• :  makespan;   :  total completion time;    :  maximum lateness;

si pj /si
pij

rj dj

Cmax ∑i Ci Lmax

Graham’s “ ” notation for schedulingα |β |γ

“minimum makespan on identical machines”:    P | |Cmax

Instance:   jobs  with processing times 

Solution:  An assignment of  jobs to  identical machines

                  that minimizes the makespan  

n j = 1,…, n pj ∈ ℝ+

n m
Cmax



“minimum makespan on identical machines”:    P | |Cmax

Instance:   jobs  with processing times 

Solution:  An assignment of  jobs to  identical machines

                  that minimizes the makespan  

n j = 1,…, n pj ∈ ℝ+

n m
Cmax

Instance:   numbers 

Determine whether  a partition of  into  and  
such that .

n x1, …, xn ∈ ℤ+

∃ {1,2,…, n} A B

∑
i∈A

xi = ∑
i∈B

xi

• One of Karp’s 21 NPC problems

• Reducible from the partition problem:



Instance:   jobs  with processing times 

Solution:  An assignment of  jobs to  identical machines

                  that minimizes the makespan  

n j = 1,…, n pj ∈ ℝ+

n m
Cmax

An algorithm  for a minimization problem has 
approximation ratio  if


 instance ,     

𝒜
α

∀ I
SOLI

OPTI
≤ α

•  : solution returned by the algorithm on instance 


•  : optimal solution of instance 

SOLI I
OPTI I

Approximation Ratio



Graham’s List Algorithm
n jobsm machines

List algorithm (Graham 1966):

For  :


assign job  to the current

least heavily loaded machine;

j = 1,2,…, n
j

OPT ≥ max
1≤ j≤n

pj

OPT ≥
1
m

n

∑
j=1

pj



•  jobs with processing times  assigned to  machines:


• Optimal makespan:


• Solution returned by the List algorithm:


• suppose 

• and the last job assigned to machine  is 


• Before job  is assigned, machine  is the least heavily loaded 

    

n p1, …, pn m

Cmax = Ci*
i* ℓ

ℓ i*
⟹ Ci* − pℓ ≤

1
m ∑

1≤ j≤n

pj ≤ OPT

List algorithm (Graham 1966):

For  :


assign job  to the current

least heavily loaded machine;

j = 1,2,…, n
j

OPT ≥ max
1≤ j≤n

pj OPT ≥
1
m

n

∑
j=1

pj

pℓ ≤ max
1≤ j≤n

pj ≤ OPT }

≤ 2 ⋅ OPT



•  jobs with processing times  assigned to  machines:


• Optimal makespan:


• Solution returned by the List algorithm:


• suppose 

• and the last job assigned to machine  is 


• Before job  is assigned, machine  is the least heavily loaded 

    

n p1, …, pn m

Cmax = Ci*
i* ℓ

ℓ i*
⟹ Ci* − pℓ ≤

1
m ∑

j≠ℓ

pj

List algorithm (Graham 1966):

For  :


assign job  to the current

least heavily loaded machine;

j = 1,2,…, n
j

OPT ≥ max
1≤ j≤n

pj OPT ≥
1
m

n

∑
j=1

pj

pℓ ≤ max
1≤ j≤n

pj
}

≤ (1−
1
m ) pℓ +

1
m ∑

1≤ j≤n

pj ≤ (2−
1
m ) OPT



Graham’s List Algorithm
List algorithm (Graham 1966):

For  :


assign job  to the current

least heavily loaded machine;

j = 1,2,…, n
j

•  jobs are assigned to  machines


• The List algorithm returns a schedule with makespan:


• 


• This is tight in the worst case.

n m

Cmax ≤ (2 −
1
m ) OPT



Local Search

locally improve the solution until no improvement can be made

(local optima, fixpoint)

Local search:  
Start from an arbitrary schedule;

repeat until no job is reassigned (a local optima):


if the last finished job  can finish earlier by moving to machine 

transfer job  to machine ; 

ℓ i
ℓ i



Local search:  
Start from an arbitrary schedule;

repeat until no job is reassigned (a local optima):


if the last finished job  can finish earlier by moving to machine 

transfer job  to machine ; 

ℓ i
ℓ i

• Optimal makespan:      


• In a local optima:


• suppose 

• and job  finishes the last


• local optima   is the least heavy load

Cmax = Ci*
ℓ

⟹ Ci* − pℓ

OPT ≥ max
1≤ j≤n

pj OPT ≥
1
m ∑

1≤ j≤n

pj

Ci* − pℓ ≤
1
m ∑

j≠ℓ

pj

pℓ ≤ max
1≤ j≤n

pj

≤ (1−
1
m ) pℓ +

1
m ∑

1≤ j≤n

pj ≤ (2−
1
m ) OPT

}



Local search:  
Start from an arbitrary schedule;

repeat until no job is reassigned (a local optima):


if the last finished job  can finish earlier by moving to machine 

transfer job  to machine ; 

ℓ i
ℓ i

For a local optima:    Cmax ≤ (2−
1
m ) OPT

List algorithm (Graham 1966):

For  :


assign job  to the current

least heavily loaded machine;

j = 1,2,…, n
j

the schedule returned

by the List algorithm


must be a local optima

•  the schedule returned by the List algorithm:


 

⟹

Cmax ≤ (2−
1
m ) OPT



Longest Processing Time (LPT)
n jobsm machines

List algorithm (Graham 1966):

For  :


assign job  to the current

least heavily loaded machine;

j = 1,2,…, n
j



• Optimal makespan:


• Solution returned by the LPT algorithm:


• suppose 

• and the last job assigned to machine  is 


• Before job  is assigned, machine  is the least heavily loaded 

    

Cmax = Ci*
i* ℓ

ℓ i*
⟹ Ci* − pℓ ≤

1
m ∑

1≤ j≤n

pj ≤ OPT

Longest Processing Time (LPT) 
; 

For  :

assign job  to the current

least heavily loaded machine;

p1 ≥ p2 ≥ ⋯ ≥ pn
j = 1,2,…, n

j

OPT ≥
1
m ∑

1≤ j≤n

pj

≤
3
2

⋅ OPT

WLOG: ℓ > m ⟹ pℓ ≤ pm+1

OPT ≥ pm + pm+1 ≥ 2pm+1 } ⟹ pℓ ≤
1
2

OPTPigeonhole :



• Solution returned by the LPT algorithm:


• makespan 


• Can be improved to 4/3-approx. with a more careful analysis.


• The problem of minimum makespan on identical machines has a 
PTAS (Polynomial-Time Approximation Scheme):


,  a -approx. solution can be returned                       
in time  

Cmax ≤
3
2

⋅ OPT

∀ϵ > 0 (1 + ϵ)
f(ϵ) ⋅ poly(n)

Longest Processing Time (LPT) 
; 

For  :

assign job  to the current

least heavily loaded machine;

p1 ≥ p2 ≥ ⋯ ≥ pn
j = 1,2,…, n

j



Online Scheduling

List algorithm (Graham 1966):

Upon receiving a job:


assign the job to the current

least heavily loaded machine;

n jobs arrive one-by-onem machines

schedule decision must be made when a job arrives

without seeing jobs in the future



Competitive Analysis
List algorithm (Graham 1966):

Upon receiving a job:


assign the job to the current

least heavily loaded machine;

An online algorithm  for a minimization problem 
has competitive ratio  if


 instance ,     

𝒜
α

∀ I
SOLI

OPTI
≤ α

•  : solution returned by the online algorithm on instance 


•  : solution returned by an optimal offline algorithm on 

SOLI I
OPTI I

the list algorithm is -competitive (2 − 1/m)



Set Cover



Set Cover

Instance: A sequence of subsets .

Find the smallest  s.t. .

S1, …, Sm ⊆ U
C ⊆ {1,…, m} ⋃i∈C Si = U

U

S1

S2

S3

S4

x1

x2

x3

x4

x5



Hitting Set
Instance: A sequence of subsets .

Find the smallest  s.t. .

S1, …, Sn ⊆ U
H ⊆ U ∀i : Si ∩ H ≠ ∅

U

S1

S2

S3

S4

x1

x2

x3

x4
S5



Set Cover

Instance: A sequence of subsets .

Find the smallest  s.t. .

S1, …, Sm ⊆ U
C ⊆ {1,…, m} ⋃i∈C Si = U

U

S1

S2

S3

S4

x1

x2

x3

x4

x5

•NP-hard 

• one of Karp’s 21 NP-complete 
problems


• frequency of an element

frquency(x) = {i ∣ x ∈ Si}



Vertex Cover

Instance: An undirected graph .

Find the smallest  that intersects all edges.

G(V, E)
C ⊆ V

v1 v2

v3

v4

e1 e3

e2

e4

e1

e2

e3

e4

v1

v2

v3

v4e5

e6

incidence 
graph

set cover instance
with frequency =2

e5 e6



Vertex Cover

Instance: An undirected graph .

Find the smallest  that intersects all edges.

G(V, E)
C ⊆ V

• NP-hard


• one of Karp’s 21 NP-complete problems


VC is NP-hard  SC is NP-hard ⟹



Greedy Set Cover

Instance: A sequence of subsets .

Find the smallest  s.t. .

S1, …, Sm ⊆ U
C ⊆ {1,…, m} ⋃i∈C Si = U

U

S1

S2

S3

S4

x1

x2

x3

x4

x5

Greedy Cover:

initially ;

while  do:


add  with largest  to ;

;

C = ∅
U ≠ ∅

i |Si ∩ U | C
U = U∖Si



• Averaging principle:  require  sets to cover 


 


•  first element covered by the GreedyCover algorithm 

≥ |U |
maxi |Si |

U

OPT ≥
|U |

maxi |Si |
x1 :

Greedy Cover:

initially ;

while  do:


add  with largest  to ;

;

C = ∅
U ≠ ∅

i |Si ∩ U | C
U = U∖Si

S1

S2

S3

S4

x1

x2

x3

x4

x5

Instance: A sequence of subsets .S1, …, Sm ⊆ U

∀x∈Si∩U, price(x)=1/|Si∩U|<

price=1/3

price=1

price=1/3

price=1/3

price=1 |C | = ∑x∈U price(x)|C | = ∑x∈U price(x)

price(x1) =
1

maxi |Si |
price(x1) ≤

OPT
|U |

⟹



•  covered in the 1st iteration in GreedyCover x1, …, xℓ :

Greedy Cover:

initially ;

while  do:


add  with largest  to ;

;

C = ∅
U ≠ ∅

i |Si ∩ U | C
U = U∖Si

S1

S2

S3

S4

x1

x2

x3

x4

x5

Instance: A sequence of subsets .S1, …, Sm ⊆ U

∀x∈Si∩U, price(x)=1/|Si∩U|<

price=1/3

price=1

price=1/3

price=1/3

price=1 |C | = ∑x∈U price(x)|C | = ∑x∈U price(x)

price(xk) ≤
OPT
|U |

≤
OPT

|U |−k + 1

∀1 ≤ k ≤ ℓ : price(xk) = price(x1) =
1

maxi |Si |

∀1 ≤ k ≤ ℓ :



•  covered in the 1st iteration in GreedyCover 

•  1st element covered by GreedyCover on a new 

instance  with  and 

x1, …, xℓ :
xℓ+1 :

I′ |U′ | = |U | − ℓ OPT′ ≤ OPT

Greedy Cover:

initially ;

while  do:


add  with largest  to ;

;

C = ∅
U ≠ ∅

i |Si ∩ U | C
U = U∖Si

S1

S2

S3

S4

x1

x2

x3

x4

x5

Instance: A sequence of subsets .S1, …, Sm ⊆ U

∀x∈Si∩U, price(x)=1/|Si∩U|<

price=1/3

price=1

price=1/3

price=1/3

price=1 |C | = ∑x∈U price(x)|C | = ∑x∈U price(x)

price(xk) ≤
OPT′ 

|U′ |
≤

OPT
|U |−k + 1

for k = ℓ + 1 :



•  th element covered by the GreedyCover algorithmxk : k

Greedy Cover:

initially ;

while  do:


add  with largest  to ;

;

C = ∅
U ≠ ∅

i |Si ∩ U | C
U = U∖Si

S1

S2

S3

S4

x1

x2

x3

x4

x5

Instance: A sequence of subsets .S1, …, Sm ⊆ U

∀x∈Si∩U, price(x)=1/|Si∩U|<

price=1/3

price=1

price=1/3

price=1/3

price=1 |C | = ∑x∈U price(x)|C | = ∑x∈U price(x)

price(xk) ≤
OPT

|U |−k + 1

SOL =
n=|U|

∑
k=1

price(xk) ≤
n

∑
k=1

OPT
n−k + 1

= Hn ⋅ OPT

Harmonic number



Greedy Cover:

initially ;

while  do:


add  with largest  to ;

;

C = ∅
U ≠ ∅

i |Si ∩ U | C
U = U∖Si

Approximation of Set Cover

• GreedyCover has approx. ratio .


• [Lund, Yannakakis 1994; Feige 1998]  There is no poly-time      
-approx. algorithm unless NP  quasi-poly-time.


• [Ras, Safra 1997]  For some constant  there is no poly-time 
-approximation algorithm unless NP = P.


• [Dinur, Steuer 2014]  There is no poly-time 
-approximation algorithm unless NP = P.

Hn = (1 + o(1))ln n

(1 − o(1))ln n ⊆
c

c ln n
(1 − o(1))ln n



Submodular 
Optimization



Set Cover with Budget
Instance: A sequence of subsets .


(Minimum set cover)

Find the smallest  s.t. .


(Maximum -cover)

Find  with  to maximize .

S1, …, Sn ⊆ U

C ⊆ {1,…, n} ⋃i∈C Si = U
k

C ⊆ {1,…, n} |C | ≤ k ⋃i∈C Si

x1

x2

x3

x4

x5

S1

S2

S3

S4

• Objective and constraint 
are switched.


• Max- -cover can solve 
minimum set cover


• Max- -cover is NP-hard

k

k



Instance: A sequence of subsets .

Find  with  to maximize .

S1, …, Sn ⊆ U
C ⊆ {1,…, n} |C | ≤ k ⋃i∈C Si

Greedy Cover:

initially ;

while  do:


add  with largest  to ;

;

C = ∅
|C | < k
i |Si ∩ U | C

U = U∖Si

•  # of elements covered additionally in the th iteration

•  # of elements covered within the first  iterations

Δℓ : ℓ
Σℓ : ℓ

Σℓ =
ℓ

∑
j=1

ΔjΣℓ = Σℓ−1 + Δℓ SOL = Σk



Greedy Cover:

initially ;

while  do:


add  with largest  to ;

;

C = ∅
|C | < k
i |Si ∩ U | C

U = U∖Si

• :  # of elements covered 
additionally in the th iteration


• :  # of elements covered 
within the first  iterations

Δℓ
ℓ

Σℓ
ℓ

Δℓ ≥
1
k

(OPT − Σℓ−1)

• # of elements covered in OPT but not in the first  iterations 
are 


• There are at most  sets in OPT.

• There is a set in OPT that can cover (in addition to the  elements 

covered in the first  iterations)  elements.


• GreedyCover will select that set (or a better set) in the th iteration.

ℓ − 1
≥ OPT − Σℓ−1

k
Σℓ−1

ℓ − 1 ≥
1
k

(OPT − Σℓ−1)

ℓ



Greedy Cover:

initially ;

while  do:


add  with largest  to ;

;

C = ∅
|C | < k
i |Si ∩ U | C

U = U∖Si

Δℓ ≥
1
k

(OPT − Σℓ−1) OPT − Σℓ ≤ (1 −
1
k ) (OPT − Σℓ−1)⟹

Σℓ − Σℓ−1 ≥
1
k

(OPT − Σℓ−1)

⟹

⟹

• :  # of elements covered 
additionally in the th iteration


• :  # of elements covered 
within the first  iterations

Δℓ
ℓ

Σℓ
ℓ



Greedy Cover:

initially ;

while  do:


add  with largest  to ;

;

C = ∅
|C | < k
i |Si ∩ U | C

U = U∖Si

Δℓ ≥
1
k

(OPT − Σℓ−1) ⟹

OPT − Σk ≤ (1 −
1
k )

k

OPT ≤
1
e

OPT⟹

⟹ SOL = Σk ≥ (1 −
1
e ) OPT

• [Feige 1998]  There is no poly-time  -approximation 
algorithm unless NP=P

(1 − 1/e + ϵ)

• :  # of elements covered 
additionally in the th iteration


• :  # of elements covered 
within the first  iterations

Δℓ
ℓ

Σℓ
ℓ

OPT − Σℓ ≤ (1 −
1
k ) (OPT − Σℓ−1)

  -approx(1 − 1/e)



Submodular Function
Submodular function:

A set function  is submodular if


   
f : 2[n] → ℝ

∀S, T ⊆ [n] : f(S ∪ T ) ≤ f(S) + f(T ) − f(S ∩ T )

Proposition:  For set function , define:


      


A set function  is submodular iff:


    

f : 2[n] → ℝ
∀S ⊆ [n], ∀i ∈ [n] : fS(i) ≜ f(S ∪ {i}) − f(S)

f : 2[n] → ℝ
∀S ⊆ T, ∀i ∉ T : fS(i) ≥ fT(i)

• Submodular function captures the law of diminishing marginal 
productivity (diminishing returns) in many natural applications



• Coverage: given sets 


        


• Cut:  graph ,      


• Linear function:     


• Entropy:   for random variables  


• Matroid rank:   for  matrix 


• Facility location, social welfare, influence in a social network, … 

S1, …, Sn ⊆ Ω

∀C ⊆ [n] : f(C) = ⋃
i∈C

Si

G([n], E) ∀S ⊆ [n] : f(S) = E(S, V∖S)

∀S ⊆ [n] : f(S) = ∑
i∈S

wi

f(S) = H(Xi : i ∈ S) X1, …, Xn

f(S) = rank(A[m]×S) m × n A

Examples of Submodular Functions



Submodular Function
Submodular function:

A set function  is submodular if


   
f : 2[n] → ℝ

∀S, T ⊆ [n] : f(S ∪ T ) ≤ f(S) + f(T ) − f(S ∩ T )

Proposition:  For set function , define:


      


A set function  is submodular iff:


    

f : 2[n] → ℝ
∀S ⊆ [n], ∀i ∈ [n] : fS(i) ≜ f(S ∪ {i}) − f(S)

f : 2[n] → ℝ
∀S ⊆ T, ∀i ∉ T : fS(i) ≥ fT(i)

• Submodular function captures the law of diminishing marginal 
productivity (diminishing returns) in many natural applications



Submodularity of Coverage
Proposition:  For set function , define:


      


A set function  is submodular iff:


    

f : 2[n] → ℝ
∀S ⊆ [n], ∀i ∈ [n] : fS(i) ≜ f(S ∪ {i}) − f(S)

f : 2[n] → ℝ
∀S ⊆ T, ∀i ∉ T : fS(i) ≥ fT(i)

Instance: A sequence of subsets .

Find  with  to maximize .

S1, …, Sn ⊆ U
C ⊆ {1,…, n} |C | ≤ k ⋃i∈C Si

∀C ⊆ {1,…, n} : f(C) = ⋃
i∈C

Si

A set function  is monotone if

   

f : 2[n] → ℝ
∀S ⊆ T : f(S) ≤ f(T )



Submodular Maximization
Instance: A monotone submodular set function .


Maximize  subject to .

f : 2[n] → ℝ

f(S) |S | ≤ k (cardinality constraint)

Greedy Submodular Maximization:

initially ;

while  do:


add  with largest  into ;

S = ∅
|S | < k
i ∉ S fS(i) S

Proposition:  For set function , define:


      


A set function  is submodular iff:


    

f : 2[n] → ℝ
∀S ⊆ [n], ∀i ∈ [n] : fS(i) ≜ f(S ∪ {i}) − f(S)

f : 2[n] → ℝ
∀S ⊆ T, ∀i ∉ T : fS(i) ≥ fT(i)



Submodular Maximization

Greedy Submodular Maximization:

initially ;

while  do:


add  with largest  into ;

S = ∅
|S | < k
i ∉ S fS(i) S

Theorem (Nemhauser, Wolsey, Fisher 1978):  

For monotone submodular set function ,   
the greedy algorithm gives a -approximation of 


 

f : 2[n] → ℝ≥0
(1 − 1/e)

OPT = max {f(S) ∣ |S | ≤ k}

Instance: A monotone submodular set function .


Maximize  subject to .

f : 2[n] → ℝ

f(S) |S | ≤ k (cardinality constraint)



Greedy Submodular Maximization:

initially ;

while  do:


add  with largest  into ;

S = ∅
|S | < k
i ∉ S fS(i) S

f : 2[n] → ℝ
fS(i) ≜ f(S ∪ {i}) − f(S)

Submodular: 

 ∀S ⊆ T, ∀i ∉ T : fS(i) ≥ fT(i)

•  current  in an iteration

•  the  added into  in that iteration

S : S
i : i S

fS(i) ≥
1
k (OPT − f(S))

• Let  be the optimal solution that achieves .


 

S* OPT = f(S*)

fS(S*) ≜ f(S* ∪ S) − f(S) ≤ ∑
j∈S*

fS( j) ≤ k ⋅ fS(i)

(submodular) (greedy)

OPT − f(S) ≤

(monotone)



Greedy Submodular Maximization:

initially ;

while  do:


add  with largest  into ;

S = ∅
|S | < k
i ∉ S fS(i) S

f : 2[n] → ℝ
fS(i) ≜ f(S ∪ {i}) − f(S)

Submodular: 

 ∀S ⊆ T, ∀i ∉ T : fS(i) ≥ fT(i)

•  current  in an iteration

•  the  added into  in that iteration

S : S
i : i S

OPT − f (S(ℓ)) ≤ (1 −
1
k ) (OPT − f (S(ℓ−1)))

•  the  constructed after  iterationsS(ℓ) : S ℓ

fS(i) ≥
1
k (OPT − f(S))

f (S(ℓ)) − f (S(ℓ−1)) ≥
1
k (OPT − f (S(ℓ−1)))

⟹



OPT − f (S(ℓ)) ≤ (1 −
1
k ) (OPT − f (S(ℓ−1)))

•  the  constructed after  iterationsS(ℓ) : S ℓ

Greedy Submodular Maximization:

initially ;

while  do:


add  with largest  into ;

S = ∅
|S | < k
i ∉ S fS(i) S

f : 2[n] → ℝ
fS(i) ≜ f(S ∪ {i}) − f(S)

Submodular: 

 ∀S ⊆ T, ∀i ∉ T : fS(i) ≥ fT(i)

OPT − f (S(k)) ≤ (1 −
1
k )

k

(OPT − f(∅))⟹ ≤
1
e

OPT

SOL = f (S(k)) ≥ (1 −
1
e ) OPT⟹



Greedy Submodular Maximization:

 with  maximizing  S(ℓ) ← S(ℓ−1) ∪ {iℓ} iℓ f(S(ℓ−1) ∪ {iℓ}) − f(S(ℓ−1))

1 2 3 4 5 6 7 8
0.1

0.2

0.3

0.4

0.5

0.6

ℓ

f(S(ℓ))
OPT

1 − 1/e

• Submodularity + monotonicity: 


   f(S(ℓ−1) ∪ {iℓ}) − f(S(ℓ−1)) ≥
1
k (OPT − f(S(ℓ−1)))

OPT − f(S(ℓ)) ≤ (1 −
1
k ) (OPT − f(S(ℓ−1)))

⟹ OPT − f(S(k)) ≤ (1 −
1
k )

k

OPT ≤
1
e

OPT

k



Submodular Maximization

Greedy Submodular Maximization:

initially ;

while  do:


add  with largest  into ;

S = ∅
|S | < k
i ∉ S fS(i) S

Theorem (Nemhauser, Wolsey, Fisher 1978):  

For monotone submodular set function ,   
the greedy algorithm gives a -approximation of 


 

f : 2[n] → ℝ≥0
(1 − 1/e)

OPT = max {f(S) ∣ |S | ≤ k}

Instance: A monotone submodular set function .


Maximize  subject to .

f : 2[n] → ℝ

f(S) |S | ≤ k (cardinality constraint)



Submodular Maximization

From Prof. Jan Vondrák’s slides “Optimization of Submodular Functions”



Submodular Minimization

From Prof. Jan Vondrák’s slides “Optimization of Submodular Functions”


