Advanced Algorithms

Greedy and Local Search

#F—i@ Nanjing University, 2022 Fall

Max-Cut

Instance: An undirected graph G(V, E).

Solution: A bipartition of Vinto § and T that
maximizes the cut E(S,T) = {{u,v} EE|ue SAv ET}.

e NP-hard.

* One of Karp’s 21 NP-complete
problems (reduction from the
Partition problem).

e a typical Max-CSP (Constraint
Satisfaction Problem).

* Greedy is 1/2-approximate.

Greedy Algorithm

Instance: An undirected graph G(V, E).

Solution: A bipartition of Vinto § and T that
maximizes the cut E(S,T) = {{u,v} EE|ue SAv ET}.

Greedy Cut:
initially, S = T = @;
fori = 1,2,...,n:

V; joins one of §, T

to maximize current E(S, T);

Approximation Ratio

Algorithm &f: Instance G:

Greedy Cut:

initially, S = T = @;
fori = 1,2,...,n:

V; joins one of §, T

OPT: value of max-cut in G
SOL;: value of the cut returned by & on G

to maximize current E(S, T); ‘

po
[

Algorithm & has approximation ratio o if

SOL
Y instance G, > a
OPT;

Approximation Algorithm

Greedy Cut:

initially, § = T = &; S, T)):
fori =1,2,...,n:

current (S, 7)) in the
V; joins one of S, T beginning of i-th iteration
to maximize current E(S, T);

G(V, E)

".. - 1 SOL . SOL . l

' ‘| OP1T; | E| 2

]

: Y, > 1/20f [ES,v) | + | E(T,v)]
0 [contributes to SOL

" '

« ’

[El =) (IES.v)| + |ET,v)|)
ES,TY={uweE|lueS,veT} i=1

Local Search

Instance: An undirected graph G(V, E).

Solution: A bipartition of Vinto § and T that
maximizes the cut E(S,T) = {{u,v} EE|ue SAv ET}.

Local Search:

initially, (S, T') is an arbitrary cut;
repeat until nothing changed:

if dv switching side increases cut

v switches to the other side;

locally improve the solution until
no improvement can be made
(local optima, fixpoint)

Local Search

Local Search:
initially, (S, T') is an arbitrary cut;
repeat until nothing changed:
if dv switching side increases cut
v switches to the other side;

In a local optima:

Vves:
VveT:

EW,S)| < [EW,T)
Ew,T)| < [E®,S)

E(S,S)| < [E(S,T)]
E(T,T)| < |E(S,T)]

[E(S,S) | + |E(T,T)| < |E(S,T)]

OPT < |E| = |ES,S) |+ |E(T,T)| + |E(S, T)| < 2[E(S,T)]

|
— |E(S,T)| > —OPT

2

Scheduling

Scheduling

processing
m machines n jobs time pj

V)

— —] —1 —

W K DD D LW DN N B

Scheduling

m machines
[11 1 jobs with
% | | ' processing
I | E time p;

Completion time: C; = Z p;

J: jobs assigned
to machine i

Makespan: C

ax = max C;

1<i<

Instance: 7 jobsj = 1,..., n with processing times p; € R*

Solution: An assignment of n jobs to m identical machines
that minimizes the makespan C, .,

“minimum makespan on identical machines”: P||C, .

Graham’s “a | #|y” notation for scheduling

* o: machine environment

* 1: asingle machine;

 P: m identical machines;

« Q: m machines with different speed s;, the length of job j on machine i is pj/si;
R: m unrelated machines, the length of job j on machine i is Pij

e [3: Job characteristics

e 7. release times; d] deadlines; pmtn: preemption;

J
* v: Objective
. C

max- Makespan; Z,-Ci5 total completion time; L _..: maximum lateness;

Instance: 7 jobsj = 1,..., n with processing times p; € R*

Solution: An assignment of n jobs to m identical machines
that minimizes the makespan C, .,

“minimum makespan on identical machines”: P||C, .

* Reducible from the partition problem:

Instance: n numbers x;,...,.x, € Z*
Determine whether 3 a partition of {1,2,...,n} into A and B

such that Z X; = Z X;.

IEA €D

 One of Karp’s 21 NPC problems

Approximation Ratio

Instance: 7 jobs j = 1,..., n with processing times p; € R™

Solution: An assignment of n jobs to m identical machines
that minimizes the makespan C, .,

An algorithm & for a minimization problem has
approximation ratio « if

SOL,
Y instance I, <a
OPT,;

« SOL,; : solution returned by the algorithm on instance /

« OPT;: optimal solution of instance /

Graham’s List Algorithm

m machines n jobs

APT > miax p,

1<j<n

— —] —1 —

1 n
QPT=—) p,
i1=1

List algorithm (Graham 1966):
Forj=1,2,..., n:

assign job j to the current

least heavily loaded machine;

List algorithm (Graham 1966):
Forj=1,2,...,n:
assign job j to the current

least heavily loaded machine;

n jobs with processing times pq, ..., p,, assigned to m machines:

1 n
Optimal makespan: OPT > max p; OPT > — Z p;
m

1<j<n
Solution returned by the List algorithm:

e suppose C,,, = Cix < 2-0OPT
» and the last job assigned to machine i* is £

j=1

Before job £ is assigned, machine i* is the least heavily loaded)
1
—> Cp—pp < — Z p; < OPT
m =
1<j<n

pr< maxp; < OPT

1<j<n

List algorithm (Graham 1966):
Forj=1,2,...,n:
assign job j to the current

least heavily loaded machine;

n jobs with processing times pq, ..., p,, assigned to m machines:

1 n
Optimal makespan: OPT > max p; OPT > — Z p;
m

1<j<n

Solution returned by the List algorithm:

1

j=1
1 1
e SUPPOSE Cmax — U x < <1—E>Pbﬂ+z Z Pj < (2——> OPT
ISjsn, g N T

« and the last job assigned to machine 1™

Before job £ is assigned, machine i* is the least heavily /oade f_"_j;—;

1
— C—pr S _ij
m -
JFC
Py < mMax p;
1<j<n

Graham’s List Algorithm

List algorithm (Graham 1966):
Forj=1,2,...,n:

assign job j to the current

least heavily loaded machine;

* 1 jobs are assigned to m machines

* The List algorithm returns a schedule with makespan:

1
L C < (2 — —> OPT

m

* This is tight in the worst case.

Local Search

ﬁll=.ll=.ll=.l

locally improve the solution until no improvement can be made
(local optima, fixpoint)

Local search:
Start from an arbitrary schedule;
repeat until no job is reassigned (a local optima):

if the last finished job # can finish earlier by moving to machine 1
transfer job £ to machine i;

Local search:

Start from an arbitrary schedule;
repeat until no job is reassigned (a local optima):

if the last finished job £ can finish earlier by moving to machine 1
transfer job £ to machine i;

1
Optimal makespan: OPT > max b. > .
" B 13anp] OPT 2 m 2 Fi
In a local optima: l<j<n
1 1 1
e suppose C ., = Cix = (1—;>Pf+g 2 h < (2——> OPT

1<j<n m
 and job Z finishes the last

local optima = C;« — p, is the least heavy load

1
Cix = Pp < P ij
JEC

Py < max p;
1<j<n

Local search:

Start from an arbitrary schedule;
repeat until no job is reassigned (a local optima):

if the last finished job £ can finish earlier by moving to machine 1
transfer job £ to machine i;

|
For alocal optima: C., < (2——) OPT
m

List algorithm (Graham 1966):
Forj=1,2,....,n:

the schedule returned
by the List algorithm
assign job j to the current must be a local optima

least heavily loaded machine;

« —> the schedule returned by the List algorithm:
1
C... < (2--) OPT
m

Longest Processing Time (LPT)

m machines n jobs

— —] —1 —

List algorithm (Graham 1966):
Forj=1,2,...,n:

assign job j to the current

least heavily loaded machine;

Longest Processing Time (LPT)

P12Py2 " 2 Py
Forj=1,2,....,n:
assign job j to the current
least heavily loaded machine;

1
+ Optimal makespan: ~ OFI'2— Z p;
1<j<n

e Solution returned by the LPT algorithm:

3 ..
» suppose C, ., = C:x < -+ OPT G
 and the last job assigned to machine i* is £

 Before job £ is assigned, machine i* is the least heavily

1
m :
1<j<n

WLOG: ¢>m = Pz < Pt

1]
Pigeonhole: OPT >p. +p,.; > 2P, } be =75

Longest Processing Time (LPT)

P12Py2 " 2 Py
Forj=1,2,....,n:
assign job j to the current
least heavily loaded machine;

e Solution returned by the LPT algorithm:

3
. makespan C_ ., < 5 OPT

* Can be improved to 4/3-approx. with a more careful analysis.

* The problem of minimum makespan on identical machines has a
PTAS (Polynomial-Time Approximation Scheme):

Ve > 0, a(l + €)-approx. solution can be returned
in time f(¢) - poly(n)

Online Scheduling

m machines n Jobs arrive one-by-one

I
I
I
I

schedule decision must be made when a job arrives
without seeing jobs in the future

List algorithm (Graham 1966):
Upon receiving a job:
assign the job to the current

least heavily loaded machine;

Competitive Analysis

List algorithm (Graham 1966):
Upon receiving a job:
assign the job to the current

least heavily loaded machine;

the list algorithm is (2 — 1/m)-competitive

An online algorithm & for a minimization problem

has competitive ratio o if

SOL,;
Y instance I, <a
OPT,;

« SOL,; : solution returned by the online algorithm on instance /

« OPT,; : solution returned by an optimal offline algorithm on /

Set Cover

Set Cover

Instance: A sequence of subsets Sl, cees Sm cU.
Find the smallest C C {1,...,m} s.t. | J,cS; = U.

Hitting Set

Instance: A sequence of subsets §;, ...,S, C U.
Find the smallest H C Us.t. Vi: §,NH # @.

Set Cover

Instance: A sequence of subsets Sl, cees Sm cU.
Find the smallest C C {1,...,m} s.t. | J,cS; = U.

(O 51 eNP-hard

(O 82 eone of Karp’s 21 NP-complete
O S problems

Os, ° frequency of an element

S® ®6 6 6

frquency(x) = | {i | x € Sl-} |

Vertex Cover

Instance: An undirected graph G(V, E).
Find the smallest C' C V that intersects all edges.

Q)

> oo
incidence 2
graph

set cover instance
with frequency =2

Vertex Cover

Instance: An undirected graph G(V, E).
Find the smallest C' C V that intersects all edges.

e NP-hard
* one of Karp’s 21 NP-complete problems

VC is NP-hard = SC is NP-hard

Greedy Set Cover

S® ®6 6 6

Instance: A sequence of subsets Sl, cees Sm cU.
Find the smallest C C {1,...,m} s.t. | J,cS; = U.

() S1
ORY)
O S
ORY

Greedy Cover:

initially C = &;

while U # @& do:
add i with largest |S; N U| to C;
U= U\S;

Instance: A sequence of subsets Sl, e Sm cU.
Greedy Cover:
initially C = @&;
while U # @ do:

add iwithéargest 1S;n U] to C;
U=U\S;">"" price(x)=1/ISiNU|

IC| = erUprice(x)

U
» Averaging principle: require > 7] sets to cover U

max; | .S; |
| U]
OPT >
max; | S, |
» X, : first element covered by the GreedyCover algorithm
ce(x,) — | price(r) <
price(x;) = price(x;) <
max; | S; | | U]

Instance: A sequence of subsets Sl, e Sm cU.
Greedy Cover:
initially C = @&;
while U # @ do:

add iwithéargest |S;N U] to C:
U=U\S;">"" price(x)=1/ISiNU|

IC| = erUprice(x)

* X{,...,X, : covered in the 1st iteration in GreedyCover

Vi<k<?: price(x;,) = price(x;) =
max; | S; |

, OPT OPT
VI<kZZ?: price(x;) < <
| U| |U|—k+ 1

Instance: A sequence of subsets Sl, e Sm cU.
Greedy Cover:
initially C = @&;
while U # @ do:

add iwithéargest |S;N U] to C:
U=U\S;">"" price(x)=1/ISiNU|

IC| = erUprice(x)

* X{,...,X, : covered in the 1st iteration in GreedyCover

» X, 1 . 1st element covered by GreedyCover on a new
instance I' with |U’| = |U| — £ and OPT" < OPT

fork=7¢+1:

ey < OPT __ OPT
Ir'1CE X,) < S
PR =0 = Tur=r+ 1

Instance: A sequence of subsets Sl, e Sm cU.
Greedy Cover:
initially C = @&;
while U # @ do:

add iwithéargest |S;N U] to C:
U=U\S;">"" price(x)=1/ISiNU|

IC| = erUprice(x)

* X, : kth element covered by the GreedyCover algorithm
OPT
| U|—k+1

price(x;,) <

=0 S OPT

SOL ; price(x) < g; —

Harmonic number

Approximation of Set Cover

Greedy Cover:

initially C = &;

while U # @& do:
add i with largest |S; N U| to C;
U= U\S;

» GreedyCover has approx. ratio H, = (1 + o(1))Inn.

* [Lund, Yannakakis 1994; Feige 1998] There is no poly-time
(1 — o(1))In n-approx. algorithm unless NP C quasi-poly-time.

* [Ras, Safra 1997] For some constant ¢ there is no poly-time
¢ In n-approximation algorithm unless NP = P.

e [Dinur, Steuer 2014] There is no poly-time (1 — o(1))Inn
-approximation algorithm unless NP = P.

Submodular
Optimization

Set Cover with Budget

Instance: A sequence of subsets Sl, Cees Sn cU.

(Minimum set cover)
Find the smallest C C {1,...,n} s.t. | J,.S; = U.

(Maximum k-cover)
Find C C {1,...,n} with |C| < k to maximize | J,cS;.

(x1) Objective and constraint

® () 51 are switched.

& O % e Max-k-cover can solve
Q S; minimum set cover

® O Sy « Max-k-cover is NP-hard

Instance: A sequence of subsets §;, ...,S, C U.
Find C C {1,...,n} with | C| < k to maximize | ;.S

Greedy Cover:

initially C = @&;

while | C'| < k do:
add i with largest | S, N U| to C;
U= U\S;

« A, : # of elements covered additionally in the Z’th iteration
« 2, : # of elements covered within the first £ iterations

4
j=1

Greedy Cover: « A : # of elements covered

initially C' = @; additionally in the £th iteration
while | C'| < k do:

add i with largest | S, N U| to C;

« 2., # of elements covered
within the first £ iterations

1
B2 —(OPT =X,)

o # of elements covered in OPT but not in the first £ — 1 iterations
are > OPT — 2 ,_,

e There are at most k sets in OPT.

* There is a set in OPT that can cover (in addition to the £ ,_; elements

covered in the first £ — 1 iterations) > ;(OPT — 2.,_) elements.

« GreedyCover will select that set (or a better set) in the £th iteration.

Greedy Cover: « A, # of elements covered

initially C = ; additionally in the Zth iteration
while | C| < k do:
add i with largest | S, N U| to C;

« 2., # of elements covered
within the first £ iterations

1 1
AKZ;(OPT_ZK—I) —>| OPT-3, < (1—;) (OPT-%,_))

\ %

1

Greedy Cover: « A, # of elements covered

initially C = ; additionally in the Zth iteration
while | C| < k do:
add i with largest | S, N U| to C;

« 2., # of elements covered
within the first £ iterations

1 1
A2 —(OPT=%,.,) |=> OPT-X,< <1—;) (OPT-%,_,)

k
1 1
= OPT-3%, < (1—;) OPT <—OPT
C

1
—> SOL=2, > (1 — €> OPT (1 — 1/e)-approx

o [Feige 1998] There is no poly-time (1 — 1/e + €)-approximation
algorithm unless NP=P

Submodular Function

Submodular function:

A set function f : 21" — R is submodular if

VS, TCIn]: fSUT) < A(S)+AT)-HSNT)

Proposition: For set function f : 2lnl 5 R, define:
VSCnlYienl: i) 2ASU i) —AS)

A set function f : 21" — R is submodular iff:
VSCTVigT: fi)>fAi)

* Submodular function captures the law of diminishing marginal
productivity (diminishing returns) in many natural applications

Examples of Submodular Functions

« Coverage: given sets 5, ..., S, C Q

n

vCcnl: fO) =S

eC

. Cut: graph G([n].E), VS C[n]: f(S) = |E(S,V\S)]

Linear function: VS C [n] : f(S) = Z w;
eS

 Entropy: f(5) = H(X; : i € §) for random variables X;, ..., X

n

- Matroid rank: f(S) = rank(A,,;«s) for m X n matrix A

* Facility location, social welfare, influence in a social network, ...

Submodular Function

Submodular function:

A set function f : 21" — R is submodular if

VS, TCIn]: fSUT) < A(S)+AT)-HSNT)

Proposition: For set function f : 2lnl 5 R, define:
VSCnlYienl: i) 2ASU i) —AS)

A set function f : 21" — R is submodular iff:
VSCTVigT: fi)>fAi)

* Submodular function captures the law of diminishing marginal
productivity (diminishing returns) in many natural applications

Submodularity of Coverage

Proposition: For set function f: 2" — R, define:
VS C[nl,Vi€lnl: fii) 2 ASU (i}) - fS)

A set function f : 21" — R is submodular iff:
VSCTVigT: fili)>f)

A set function f : 21" — R is monotone if

VS CT: f(S) < f(T)

Instance: A sequence of subsets §;,...,S, C U.
Find C C {1,...,n} with | C| < k to maximize | J,cS.

VCC {L...n}: fO) =S,

eC

Submodular Maximization

Instance: A monotone submodular set function f: 2" = R.

Maximize f(S) subjectto | S| < k. (cardinality constraint)

Greedy Submodular Maximization:
initially S = &;
while | S| < k do:

add i & S with largest f¢(i) into S;

Proposition: For set function f : 2lnl 5 R, define:
VS C[nl.Vie[n]: fG)=2ASu{i})—fS)

A set function f : 21" — R is submodular iff:
VSCT.VigT: fi)=>fr(7)

Submodular Maximization

Instance: A monotone submodular set function f: 2" = R.

Maximize f(S) subjectto | S| < k. (cardinality constraint)

Greedy Submodular Maximization:
initially S = &;
while | S| < k do:

add i & S with largest f¢(i) into S;

Theorem (Nemhauser, Wolsey, Fisher 1978):

For monotone submodular set function f : olal IRZO,
the greedy algorithm gives a (1 — 1/e)-approximation of

OPT = max {f(S) | | S| <k}

Greedy Submodular Maximization: fi2"M >R
nitially S = &: fo@) £ S U {i}) = f(S)
while | S| < k do: Submodular:

add i & S with largest f¢(i) into S; VS CT,Vi & T:fi) > fr(i)

e S :current S in an iteration
e | :the i added into S in that iteration

1
fild) 2 (OPT - f(S))

+ Let §* be the optimal solution that achieves OPT = f(5%).

OPT - f(S) < fy(S*) 2 f(S*US) = f(S) < Y fi() < k- £i(i)
es*
(monotone) (submodiular) (greedy)

Greedy Submodular Maximization: fi2"M >R
nitially S = &: fo@) £ S U {i}) = f(S)
while | S| < k do: Submodular:

add i & S with largest f¢(i) into S; VS CT,Vi & T:fi) > fr(i)

e S :current S in an iteration
e | :the i added into S in that iteration

1
fild) 2 (OPT - f(S))

e S@ - the S constructed after Z iterations

FS) =F(5) 2 7 (0T =5 (50))

—> | OPT-f(5Y) < (1 —%> <0PT—f(S<f—1>))

Greedy Submodular Maximization: fi2"M >R
nitially S = &: fo@) £ S U {i}) = f(S)
while | S| < k do: Submodular:

add i & S with largest f¢(i) into S; VS CT,Vi & T:fi) > fr(i)

e S@ - the S constructed after £ iterations

OPT —f(S) < (1 —%) (OPT—f(S“—U))

k
—> OPT—-f(SW) < (1 —%) (OPT - f(@)) < éOPT

—> SOL=f(SW) > (1 — l) OPT
C

Greedy Submodular Maximization:
S — SC=Dy {i,} with i, maximizing f(S“~D U {i,}) — ASYD)

 Submodularity + monotonicity:

ST U (i) - f(SYTD) 2 % (OPT - f(S“~1))

o/

OPT - f(S©) < (1 - %) (OPT — f(S~1))
1\"* 1
— OPT — f(S®) < <1 _ Z) OPT < —OPT
C

Submodular Maximization

Instance: A monotone submodular set function f: 2" = R.

Maximize f(S) subjectto | S| < k. (cardinality constraint)

Greedy Submodular Maximization:
initially S = &;
while | S| < k do:

add i & S with largest f¢(i) into S;

Theorem (Nemhauser, Wolsey, Fisher 1978):

For monotone submodular set function f : olal IRZO,
the greedy algorithm gives a (1 — 1/e)-approximation of

OPT = max {f(S) | | S| <k}

Submodular Maximization

MONOTONE MAXIMIZATION

Constraint Approximation | Hardness technique
S| <k —1/e [1-1/e [__greedy)
matroid —1/e —1/e | multilinear ext.
O(1) knapsacks —1/e — 1/e | multilinear ext.
k matroids K—+e k/logk | local search
k matroids & O(1) knapsacks O(k) k/log k | multilinear ext.

NON-MONOTONE MAXIMIZATION

Constraint Approximation | Hardness technique
Unconstrained 1/2 1/2 combinatorial
matroid 1/e 0.48 | multilinear ext.
O(1) knapsacks 1/e 0.49 multilinear ext.
k matroids k+ O(1) k/logk | local search
k matroids & O(1) knapsacks O(k) k/log k | multilinear ext.

From Prof. Jan Vondrak’s slides “Optimization of Submodular Functions”

Submodular Minimization

Constraint Approximation | Hardness | alg. technique
Unconstrained 1 1 combinatorial
Parity families 1 1 combinatorial

Vertex cover 2 2 _ovasz ext.
k-unif. hitting set K K _ovasz ext.
Multiway k-partition 2 —2/k 2 —2/k | Lovasz ext.
Facility location log n logn combinatorial
Set cover n n/ log” n trivial
S| > k O(v/n) Q(y/n) | combinatoria
Shortest path O(n?/3) Q(n?/3) | combinatoria
Spanning tree O(n) Q(n) combinatoria

From Prof. Jan Vondrak’s slides “Optimization of Submodular Functions”

