Advanced Algorithms

Greedy and Local Search

Max-Cut

Instance: An undirected graph G(V, E).

Solution: A bipartition of V into S and T that

maximizes the cut $E(S,T) = \{\{u,v\} \in E \mid u \in S \land v \in T\}.$

- **NP**-hard.
- One of Karp's 21 **NP**-complete problems (reduction from the *Partition* problem).
- a typical Max-CSP (Constraint Satisfaction Problem).
- Greedy is 1/2-approximate.

Greedy Algorithm

Instance: An undirected graph G(V, E).

Solution: A bipartition of V into S and T that

maximizes the cut $E(S,T) = \{\{u,v\} \in E \mid u \in S \land v \in T\}.$

Greedy Cut:

initially, $S = T = \emptyset$;

for i = 1, 2, ..., n:

 v_i joins one of S, T

to maximize current E(S, T);

Approximation Ratio

Algorithm \mathscr{A} :

Greedy Cut:

initially, $S = T = \emptyset$; for i = 1, 2, ..., n: $v_i \text{ joins one of } S, T$ to maximize current E(S, T);

Instance G:

 OPT_G : value of max-cut in G

 SOL_G : value of the cut returned by \mathscr{A} on G

Algorithm $\mathscr A$ has approximation ratio α if

$$\forall \text{ instance } G, \quad \frac{SOL_G}{OPT_G} \ge \alpha$$

Approximation Algorithm

Greedy Cut:

initially, $S = T = \emptyset$; for i = 1, 2, ..., n: $v_i \text{ joins one of } S, T$ to maximize current E(S, T);

 (S_i, T_i) : current (S, T) in the beginning of i-th iteration

$$E(S,T) = \{uv \in E \mid u \in S, v \in T\}$$

$$\frac{SOL_G}{OPT_G} \ge \frac{SOL_G}{|E|} \ge \frac{1}{2}$$

$$\forall v_i$$
, $\geq 1/2$ of $|E(S_i, v_i)| + |E(T_i, v_i)|$ contributes to SOL_G

$$|E| = \sum_{i=1}^{n} (|E(S_i, v_i)| + |E(T_i, v_i)|)$$

Local Search

Instance: An undirected graph G(V, E).

Solution: A bipartition of V into S and T that

maximizes the cut $E(S,T) = \{\{u,v\} \in E \mid u \in S \land v \in T\}.$

Local Search:

initially, (S, T) is an arbitrary cut; repeat until nothing changed:

if $\exists v$ switching side increases cut v switches to the other side;

locally improve the solution until no improvement can be made (local optima, fixpoint)

Local Search

Local Search:

initially, (S, T) is an arbitrary cut; repeat until nothing changed:

if $\exists v$ switching side increases cut v switches to the other side;

in a local optima:

$$\forall v \in S : |E(v,S)| \le |E(v,T)| \implies 2|E(S,S)| \le |E(S,T)|$$

$$\forall v \in T : |E(v,T)| \le |E(v,S)| \implies 2|E(T,T)| \le |E(S,T)|$$

$$|E(S,S)| + |E(T,T)| \le |E(S,T)|$$

$$OPT \le |E| = |E(S, S)| + |E(T, T)| + |E(S, T)| \le 2|E(S, T)|$$

$$\implies |E(S,T)| \ge \frac{1}{2}OPT$$

Scheduling

Scheduling

m machines

I I I I

Scheduling

m machines

Completion time:
$$C_i = \sum_{\substack{j: jobs \ assigned \ to \ machine \ i}} p_j$$

Makespan:
$$C_{\max} = \max_{1 \le i \le i} C_i$$

Instance: n jobs j=1,...,n with processing times $p_j \in \mathbb{R}^+$

Solution: An assignment of *n* jobs to *m identical* machines

that minimizes the $\it makespan \ C_{\it max}$

"minimum *makespan* on *identical* machines": $P \mid |C_{\max}|$ Graham's " $\alpha \mid \beta \mid \gamma$ " notation for scheduling

- α: machine environment
 - 1: a single machine;
 - P: m identical machines;
 - Q: m machines with different speed s_i , the length of job j on machine i is p_j/s_i ;
 - R: m unrelated machines, the length of job j on machine i is p_{ij} ;
- β: job characteristics
 - r_i : release times; d_i : deadlines; pmtn: preemption;
- γ: objective
 - C_{\max} : makespan; $\sum_i C_i$: total completion time; L_{\max} : maximum lateness;

Instance: n jobs j=1,...,n with processing times $p_j \in \mathbb{R}^+$

Solution: An assignment of *n* jobs to *m identical* machines

that minimizes the $\it makespan \ C_{\it max}$

Reducible from the partition problem:

Instance: n numbers $x_1, ..., x_n \in \mathbb{Z}^+$

Determine whether \exists a partition of $\{1,2,\ldots,n\}$ into A and B such that $\sum x_i = \sum x_i$.

 $\sum_{i \in A} x_i - \sum_{i \in B} x_i$

One of Karp's 21 NPC problems

Approximation Ratio

Instance: n jobs j = 1,...,n with processing times $p_j \in \mathbb{R}^+$

Solution: An assignment of *n* jobs to *m identical* machines

that minimizes the *makespan* $C_{
m max}$

An algorithm $\mathscr A$ for a minimization problem has approximation ratio α if

$$\forall$$
 instance I , $\frac{SOL_I}{OPT_I} \leq \alpha$

- SOL_I : solution returned by the algorithm on instance I
- OPT_I : optimal solution of instance I

Graham's List Algorithm

m machines

List algorithm (Graham 1966):

For
$$j = 1, 2, ..., n$$
:

assign job j to the current

least heavily loaded machine;

List algorithm (Graham 1966):

For
$$j = 1, 2, ..., n$$
:

assign job *j* to the current

least heavily loaded machine;

- n jobs with processing times p_1, \ldots, p_n assigned to m machines:
- n jobs with processing a.
 Optimal makespan: $OPT \ge \max_{1 \le j \le n} p_j$ $OPT \ge \frac{1}{m} \sum_{j=1}^n p_j$
- Solution returned by the List algorithm:
 - suppose $C_{\text{max}} = C_{i*} \leq 2 \cdot OPT$
 - and the last job assigned to machine i^* is ℓ
- Before job ℓ is assigned, machine i^* is the least heavily loaded

$$\implies C_{i^*} - p_{\ell} \leq \frac{1}{m} \sum_{1 \leq j \leq n} p_j \leq OPT$$

$$p_{\ell} \leq \max_{1 \leq j \leq n} p_j \leq OPT$$

List algorithm (Graham 1966):

For
$$j = 1, 2, ..., n$$
:

assign job j to the current
least heavily loaded machine;

- n jobs with processing times p_1, \ldots, p_n assigned to m machines:
- n jobs with processing \dots $PT = \max_{1 \le j \le n} p_j$ $OPT \ge \frac{1}{m} \sum_{j=1}^n p_j$
- Solution returned by the List algorithm:
 - suppose $C_{\max}=C_{i^*}\le \left(1-\frac{1}{m}\right)p_\ell+\frac{1}{m}\sum_{1\le j\le n}p_j\le \left(2-\frac{1}{m}\right)\mathit{OPT}$ and the last job assigned to machine i^* is ℓ
- Before job ℓ is assigned, machine i^* is the least heavily loaded

efore job
$$\ell$$
 is assigned, machine ℓ
$$\Longrightarrow C_{i^*} - p_{\ell} \leq \frac{1}{m} \sum_{\substack{j \neq \ell \\ 1 \leq j \leq n}} p_j$$

Graham's List Algorithm

List algorithm (Graham 1966):

For
$$j = 1, 2, ..., n$$
:

assign job j to the current

least heavily loaded machine;

- *n* jobs are assigned to *m* machines
- The List algorithm returns a schedule with makespan:

$$C_{\max} \le \left(2 - \frac{1}{m}\right) OPT$$

This is tight in the worst case.

Local Search

locally improve the solution until no improvement can be made (local optima, fixpoint)

Local search:

Start from an arbitrary schedule; repeat until no job is reassigned (a local optima): if the last finished job ℓ can finish earlier by moving to machine i transfer job ℓ to machine i;

Local search:

Start from an arbitrary schedule; repeat until no job is reassigned (a local optima):

if the last finished job ℓ can finish earlier by moving to machine itransfer job ℓ to machine i;

- Optimal makespan: $OPT \ge \max_{1 \le j \le n} p_j$ $OPT \ge \frac{1}{m} \sum_{1 \le j \le n} p_j$
- In a local optima:
 - suppose $C_{\max} = C_{i^*} \le \left(1 \frac{1}{m}\right) p_\ell + \frac{1}{m} \sum_{1 \le j \le n} p_j \le \left(2 \frac{1}{m}\right) OPT$
 - and job ℓ finishes the last
- local optima $\Longrightarrow C_{i^*} p_{\ell}$ is the least heavy load

$$C_{i^*} - p_{\ell} \leq \frac{1}{m} \sum_{\substack{j \neq \ell \\ p_{\ell} \leq \max \\ 1 \leq j \leq n}} p_j$$

Local search:

Start from an arbitrary schedule; repeat until no job is reassigned (a local optima):

if the last finished job ℓ can finish earlier by moving to machine i transfer job ℓ to machine i;

For a local optima:
$$C_{\text{max}} \le \left(2 - \frac{1}{m}\right) OPT$$

List algorithm (Graham 1966):

For
$$j = 1, 2, ..., n$$
:

assign job j to the current least heavily loaded machine;

the schedule returned by the *List* algorithm must be a **local optima**

• \Longrightarrow the schedule returned by the *List* algorithm:

$$C_{\max} \le \left(2 - \frac{1}{m}\right) OPT$$

Longest Processing Time (LPT)

m machines

List algorithm (Graham 1966):

For
$$j = 1, 2, ..., n$$
:

assign job j to the current

least heavily loaded machine;

n jobs

Longest Processing Time (LPT)

$$p_1 \geq p_2 \geq \cdots \geq p_n;$$

For $j=1,2,\ldots,n$: assign job j to the current least heavily loaded machine;

- Optimal makespan: $OPT \ge \frac{1}{m} \sum_{1 \le j \le n} p_j$
- Solution returned by the LPT algorithm:
 - suppose $C_{\max} = C_{i^*} \le \frac{3}{2} \cdot OPT$
 - and the last job assigned to machine i^* is ℓ
- Before job ℓ is assigned, machine i^* is the least heavily loaded

$$\implies C_{i^*} - p_{\ell} \le \frac{1}{m} \sum_{1 \le j \le n} p_j \le OPT$$

WLOG:
$$\ell > m \implies p_{\ell} \le p_{m+1}$$

Pigeonhole:
$$OPT \ge p_m + p_{m+1} \ge 2p_{m+1}$$
 $\Longrightarrow p_{\ell} \le -OP$

Longest Processing Time (LPT)

$$p_1 \geq p_2 \geq \cdots \geq p_n;$$

For $j=1,2,\ldots,n$: assign job j to the current least heavily loaded machine;

- Solution returned by the LPT algorithm:
 - makespan $C_{\text{max}} \leq \frac{3}{2} \cdot OPT$
- Can be improved to 4/3-approx. with a more careful analysis.
- The problem of minimum makespan on identical machines has a PTAS (Polynomial-Time Approximation Scheme):

$$\forall \epsilon > 0$$
, a $(1 + \epsilon)$ -approx. solution can be returned in time $f(\epsilon) \cdot \operatorname{poly}(n)$

Online Scheduling

m machines

n jobs arrive one-by-one

schedule decision must be made when a job arrives without seeing jobs in the future

List algorithm (Graham 1966):

Upon receiving a job:

assign the job to the current

least heavily loaded machine;

Competitive Analysis

List algorithm (Graham 1966):

Upon receiving a job:

assign the job to the current

least heavily loaded machine;

the list algorithm is (2 - 1/m)-competitive

An online algorithm $\mathscr A$ for a minimization problem has competitive ratio α if

$$\forall$$
 instance I , $\frac{SOL_I}{OPT_I} \leq \alpha$

- SOL_I : solution returned by the online algorithm on instance I
- OPT_I : solution returned by an optimal offline algorithm on I

Set Cover

Set Cover

Instance: A sequence of subsets $S_1, ..., S_m \subseteq U$. Find the smallest $C \subseteq \{1, ..., m\}$ s.t. $\bigcup_{i \in C} S_i = U$.

Hitting Set

Instance: A sequence of subsets $S_1, ..., S_n \subseteq U$.

Find the smallest $H \subseteq U$ s.t. $\forall i : S_i \cap H \neq \emptyset$.

Set Cover

Instance: A sequence of subsets $S_1, ..., S_m \subseteq U$. Find the smallest $C \subseteq \{1, ..., m\}$ s.t. $\bigcup_{i \in C} S_i = U$.

- NP-hard
- one of Karp's 21 NP-complete problems
- frequency of an element

frquency
$$(x) = \left| \left\{ i \mid x \in S_i \right\} \right|$$

Vertex Cover

Instance: An undirected graph G(V, E).

Find the smallest $C \subseteq V$ that intersects all edges.

Vertex Cover

Instance: An undirected graph G(V, E). Find the smallest $C \subseteq V$ that intersects all edges.

- **NP**-hard
- one of Karp's 21 NP-complete problems

 $VC \text{ is } NP\text{-hard} \Longrightarrow SC \text{ is } NP\text{-hard}$

Greedy Set Cover

Instance: A sequence of subsets $S_1, ..., S_m \subseteq U$. Find the smallest $C \subseteq \{1, ..., m\}$ s.t. $\bigcup_{i \in C} S_i = U$.

Greedy Cover:

```
initially C=\varnothing; while U\neq\varnothing do: add i with largest |S_i\cap U| to C; U=U\backslash S_i;
```

U

Greedy Cover:

initially $C=\varnothing$; while $U\neq\varnothing$ do: add i with largest $|S_i\cap U|$ to C; $U=U\backslash S_i^{\forall \mathsf{x}\in \mathsf{S}_i\cap \mathsf{U},\;\mathsf{price}(\mathsf{x})=1/|\mathsf{S}_i\cap \mathsf{U}|}$

$$|C| = \sum_{x \in U} \operatorname{price}(x)$$

. Averaging principle: require $\geq \frac{|U|}{\max_i |S_i|}$ sets to cover U

$$OPT \ge \frac{|U|}{\max_i |S_i|}$$

• x_1 : first element covered by the *GreedyCover* algorithm

$$\operatorname{price}(x_1) = \frac{1}{\max_i |S_i|} \Longrightarrow \operatorname{price}(x_1) \le \frac{OPT}{|U|}$$

Greedy Cover:

initially $C=\varnothing$; while $U\neq\varnothing$ do: add i with largest $|S_i\cap U|$ to C; $U=U\backslash S_i^{\forall x\in S_i\cap U,\ price(x)=1/|S_i\cap U|}$

$$|C| = \sum_{x \in U} \operatorname{price}(x)$$

• $x_1, ..., x_\ell$: covered in the 1st iteration in *GreedyCover*

$$\forall 1 \le k \le \ell$$
: $\operatorname{price}(x_k) = \operatorname{price}(x_1) = \frac{1}{\max_i |S_i|}$

$$\forall 1 \le k \le \ell$$
: $\operatorname{price}(x_k) \le \frac{OPT}{|U|} \le \frac{OPT}{|U|-k+1}$

Greedy Cover:

initially $C=\varnothing$; while $U\neq\varnothing$ do: add i with largest $|S_i\cap U|$ to C; $U=U\backslash S_i^{\forall x\in S_i\cap U, \; price(x)=1/|S_i\cap U|}$

$$|C| = \sum_{x \in U} \operatorname{price}(x)$$

- $x_1, ..., x_\ell$: covered in the 1st iteration in *GreedyCover*
- $x_{\ell+1}$: 1st element covered by GreedyCover on a new instance I' with $|U'| = |U| \ell'$ and $OPT' \leq OPT$

for
$$k = \ell + 1$$
: $\operatorname{price}(x_k) \le \frac{OPT'}{|U'|} \le \frac{OPT}{|U|-k+1}$

Greedy Cover:

initially $C=\varnothing$; while $U\neq\varnothing$ do: add i with largest $|S_i\cap U|$ to C; $U=U\backslash S_i^{\forall x\in S_i\cap U,\; price(x)=1/|S_i\cap U|}$

$$|C| = \sum_{x \in U} \operatorname{price}(x)$$

x_k: kth element covered by the GreedyCover algorithm

$$\operatorname{price}(x_{k}) \leq \frac{OPT}{|U| - k + 1}$$

$$SOL = \sum_{k=1}^{n=|U|} \operatorname{price}(x_k) \le \sum_{k=1}^{n} \frac{OPT}{n-k+1} = H_n \cdot OPT$$
Harmonic number

Approximation of Set Cover

Greedy Cover:

```
initially C=\varnothing; while U\neq\varnothing do: add i with largest |S_i\cap U| to C; U=U\backslash S_i;
```

- *GreedyCover* has approx. ratio $H_n = (1 + o(1)) \ln n$.
- [Lund, Yannakakis 1994; Feige 1998] There is no poly-time $(1 o(1)) \ln n$ -approx. algorithm unless **NP** \subseteq quasi-poly-time.
- [Ras, Safra 1997] For some constant c there is no poly-time $c \ln n$ -approximation algorithm unless $\mathbf{NP} = \mathbf{P}$.
- [Dinur, Steuer 2014] There is no poly-time $(1 o(1)) \ln n$ -approximation algorithm unless **NP** = **P**.

Submodular Optimization

Set Cover with Budget

Instance: A sequence of subsets $S_1, ..., S_n \subseteq U$.

(Minimum set cover)

Find the smallest $C \subseteq \{1,...,n\}$ s.t. $\bigcup_{i \in C} S_i = U$.

(Maximum k-cover)

Find $C \subseteq \{1,...,n\}$ with $|C| \le k$ to maximize $\bigcup_{i \in C} S_i$.

- Objective and constraint are switched.
- Max-k-cover can solve minimum set cover
- Max-k-cover is NP-hard

Instance: A sequence of subsets $S_1, ..., S_n \subseteq U$. Find $C \subseteq \{1,...,n\}$ with $|C| \le k$ to maximize $\bigcup_{i \in C} S_i$.

Greedy Cover:

```
initially C=\varnothing; while |C| < k do: add i with largest |S_i \cap U| to C; U = U \backslash S_i;
```

- Δ_{ℓ} : # of elements covered additionally in the ℓ th iteration
- $\Sigma_{\mathscr{C}}$: # of elements covered within the first \mathscr{C} iterations

$$\Sigma_{\ell} = \Sigma_{\ell-1} + \Delta_{\ell}$$
 $\Sigma_{\ell} = \sum_{j=1}^{\ell} \Delta_{j}$ $SOL = \Sigma_{k}$

Greedy Cover:

initially $C=\varnothing$; while |C| < k do: add i with largest $|S_i \cap U|$ to C; $U = U \backslash S_i$;

- Δ_{ℓ} : # of elements covered additionally in the ℓ th iteration
- Σ_{ℓ} : # of elements covered within the first ℓ iterations

$$\Delta_{\ell} \geq \frac{1}{k}(OPT - \Sigma_{\ell-1})$$

- # of elements covered in OPT but not in the first $\ell-1$ iterations are $\geq OPT \Sigma_{\ell-1}$
- There are at most k sets in OPT.
- There is a set in OPT that can cover (in addition to the $\Sigma_{\ell-1}$ elements covered in the first $\ell-1$ iterations) $\geq \frac{1}{k}(OPT-\Sigma_{\ell-1})$ elements.
- GreedyCover will select that set (or a better set) in the ℓ th iteration.

Greedy Cover:

initially $C=\varnothing$; while |C| < k do: add i with largest $|S_i \cap U|$ to C; $U = U \backslash S_i$;

- Δ_{ℓ} : # of elements covered additionally in the ℓ th iteration
- Σ_{ℓ} : # of elements covered within the first ℓ iterations

$$\Delta_{\ell} \ge \frac{1}{k} (OPT - \Sigma_{\ell-1}) \implies OPT - \Sigma_{\ell} \le \left(1 - \frac{1}{k}\right) \left(OPT - \Sigma_{\ell-1}\right)$$

$$\Sigma_{\ell} - \Sigma_{\ell-1} \ge \frac{1}{k} (OPT - \Sigma_{\ell-1})$$

Greedy Cover:

initially $C=\varnothing$; while |C|< k do: add i with largest $|S_i\cap U|$ to C; $U=U\backslash S_i$;

- Δ_{ℓ} : # of elements covered additionally in the ℓ th iteration
- Σ_{ℓ} : # of elements covered within the first ℓ iterations

$$\Delta_{\ell} \ge \frac{1}{k} (OPT - \Sigma_{\ell-1}) \quad \Longrightarrow \quad OPT - \Sigma_{\ell} \le \left(1 - \frac{1}{k}\right) \left(OPT - \Sigma_{\ell-1}\right)$$

$$\implies OPT - \Sigma_k \le \left(1 - \frac{1}{k}\right)^k OPT \le \frac{1}{e}OPT$$

$$\implies SOL = \Sigma_k \ge \left(1 - \frac{1}{e}\right) OPT$$
 (1 - 1/e)-approx

• [Feige 1998] There is no poly-time $(1-1/e+\epsilon)$ -approximation algorithm unless **NP=P**

Submodular Function

Submodular function:

A set function $f: 2^{[n]} \to \mathbb{R}$ is submodular if

$$\forall S, T \subseteq [n]: f(S \cup T) \le f(S) + f(T) - f(S \cap T)$$

Proposition: For set function $f: 2^{[n]} \to \mathbb{R}$, define:

$$\forall S \subseteq [n], \forall i \in [n]: f_S(i) \triangleq f(S \cup \{i\}) - f(S)$$

A set function $f: 2^{[n]} \to \mathbb{R}$ is submodular iff:

$$\forall S \subseteq T, \forall i \notin T: f_S(i) \ge f_T(i)$$

 Submodular function captures the law of diminishing marginal productivity (diminishing returns) in many natural applications

Examples of Submodular Functions

• Coverage: given sets $S_1, ..., S_n \subseteq \Omega$

$$\forall C \subseteq [n]: \quad f(C) = \left| \bigcup_{i \in C} S_i \right|$$

- Cut: graph G([n], E), $\forall S \subseteq [n]$: $f(S) = \Big| E(S, V \setminus S) \Big|$
- Linear function: $\forall S \subseteq [n]: f(S) = \sum_{i \in S} w_i$
- Entropy: $f(S) = H(X_i : i \in S)$ for random variables $X_1, ..., X_n$
- Matroid rank: $f(S) = \operatorname{rank}(A_{\lceil m \rceil \times S})$ for $m \times n$ matrix A
- Facility location, social welfare, influence in a social network, ...

Submodular Function

Submodular function:

A set function $f: 2^{[n]} \to \mathbb{R}$ is submodular if

$$\forall S, T \subseteq [n]: f(S \cup T) \le f(S) + f(T) - f(S \cap T)$$

Proposition: For set function $f: 2^{[n]} \to \mathbb{R}$, define:

$$\forall S \subseteq [n], \forall i \in [n]: f_S(i) \triangleq f(S \cup \{i\}) - f(S)$$

A set function $f: 2^{[n]} \to \mathbb{R}$ is submodular iff:

$$\forall S \subseteq T, \forall i \notin T: f_S(i) \ge f_T(i)$$

 Submodular function captures the law of diminishing marginal productivity (diminishing returns) in many natural applications

Submodularity of Coverage

Proposition: For set function $f: 2^{[n]} \to \mathbb{R}$, define:

$$\forall S \subseteq [n], \forall i \in [n]: f_S(i) \triangleq f(S \cup \{i\}) - f(S)$$

A set function $f: 2^{[n]} \to \mathbb{R}$ is submodular iff:

$$\forall S \subseteq T, \forall i \notin T: f_S(i) \ge f_T(i)$$

A set function $f: 2^{[n]} \to \mathbb{R}$ is monotone if

$$\forall S \subseteq T : f(S) \leq f(T)$$

Instance: A sequence of subsets $S_1, ..., S_n \subseteq U$.

Find $C \subseteq \{1,...,n\}$ with $|C| \le k$ to maximize $\bigcup_{i \in C} S_i$.

$$\forall C \subseteq \{1, ..., n\} : f(C) = \left| \bigcup_{i \in C} S_i \right|$$

Instance: A monotone submodular set function $f: 2^{[n]} \to \mathbb{R}$.

Maximize f(S) subject to $|S| \le k$. (cardinality constraint)

Greedy Submodular Maximization:

initially $S = \emptyset$;

while |S| < k do:

add $i \notin S$ with largest $f_S(i)$ into S;

Proposition: For set function $f: 2^{[n]} \to \mathbb{R}$, define:

$$\forall S \subseteq [n], \forall i \in [n]: f_S(i) \triangleq f(S \cup \{i\}) - f(S)$$

A set function $f: 2^{[n]} \to \mathbb{R}$ is submodular iff:

$$\forall S \subseteq T, \forall i \notin T: f_S(i) \ge f_T(i)$$

Instance: A monotone submodular set function $f: 2^{[n]} \to \mathbb{R}$.

Maximize f(S) subject to $|S| \le k$. (cardinality constraint)

Greedy Submodular Maximization:

initially $S = \emptyset$; while |S| < k do: add $i \notin S$ with largest $f_S(i)$ into S;

Theorem (Nemhauser, Wolsey, Fisher 1978):

For monotone submodular set function $f: 2^{[n]} \to \mathbb{R}_{\geq 0}$, the greedy algorithm gives a (1-1/e)-approximation of

$$OPT = \max \{ f(S) \mid |S| \le k \}$$

initially $S = \emptyset$; while |S| < k do: add $i \notin S$ with largest $f_S(i)$ into S;

$$f: 2^{[n]} \to \mathbb{R}$$
$$f_S(i) \triangleq f(S \cup \{i\}) - f(S)$$

Submodular:

$$\forall S \subseteq T, \forall i \notin T : f_S(i) \ge f_T(i)$$

- S: current S in an iteration
- i: the i added into S in that iteration

$$f_S(i) \geq \frac{1}{k} \left(OPT - f(S) \right)$$

• Let S^* be the optimal solution that achieves $OPT = f(S^*)$.

$$OPT - f(S) \le f_S(S^*) \triangleq f(S^* \cup S) - f(S) \le \sum_{j \in S^*} f_S(j) \le k \cdot f_S(i)$$

(monotone)

(submodular) (greedy)

initially $S = \emptyset$;

while |S| < k do:

add $i \notin S$ with largest $f_S(i)$ into S;

$$f: 2^{[n]} \to \mathbb{R}$$
$$f_S(i) \triangleq f(S \cup \{i\}) - f(S)$$

Submodular:

$$\forall S \subseteq T, \forall i \notin T : f_S(i) \ge f_T(i)$$

- S: current S in an iteration
- i: the i added into S in that iteration

$$f_S(i) \ge \frac{1}{k} \left(OPT - f(S) \right)$$

• $S^{(\ell)}$: the S constructed after ℓ iterations

$$f\left(S^{(\ell)}\right) - f\left(S^{(\ell-1)}\right) \geq \frac{1}{k} \left(OPT - f\left(S^{(\ell-1)}\right)\right)$$

$$\Longrightarrow OPT - f(S^{(\ell)}) \le \left(1 - \frac{1}{k}\right) \left(OPT - f(S^{(\ell-1)})\right)$$

initially $S = \emptyset$;

while |S| < k do:

add $i \notin S$ with largest $f_S(i)$ into S;

$$f: 2^{[n]} \to \mathbb{R}$$
$$f_S(i) \triangleq f(S \cup \{i\}) - f(S)$$

Submodular:

$$\forall S \subseteq T, \forall i \notin T : f_S(i) \ge f_T(i)$$

• $S^{(\ell)}$: the S constructed after ℓ iterations

$$OPT - f\left(S^{(\ell)}\right) \leq \left(1 - \frac{1}{k}\right) \left(OPT - f\left(S^{(\ell-1)}\right)\right)$$

$$\implies OPT - f(S^{(k)}) \le \left(1 - \frac{1}{k}\right)^k \left(OPT - f(\emptyset)\right) \le \frac{1}{e}OPT$$

$$\implies SOL = f(S^{(k)}) \ge \left(1 - \frac{1}{e}\right)OPT$$

$$S^{(\ell)} \leftarrow S^{(\ell-1)} \cup \{i_\ell\} \text{ with } i_\ell \text{ maximizing} f(S^{(\ell-1)} \cup \{i_\ell\}) - f(S^{(\ell-1)})$$

Submodularity + monotonicity:

$$f(S^{(\ell-1)} \cup \{i_{\ell}\}) - f(S^{(\ell-1)}) \ge \frac{1}{k} \left(OPT - f(S^{(\ell-1)})\right)$$

$$\frac{f(S^{(\ell)})_{0.4}}{OPT^{0.3}}$$

$$OPT - f(S^{(\ell)}) \le \left(1 - \frac{1}{k}\right) \left(OPT - f(S^{(\ell-1)})\right)$$

$$\implies OPT - f(S^{(k)}) \le \left(1 - \frac{1}{k}\right)^k OPT \le \frac{1}{e}OPT$$

$$\implies OPT - f(S^{(k)}) \le \left(1 - \frac{1}{k}\right)^k OPT \le \frac{1}{e}OPT$$

Instance: A monotone submodular set function $f: 2^{[n]} \to \mathbb{R}$.

Maximize f(S) subject to $|S| \le k$. (cardinality constraint)

Greedy Submodular Maximization:

initially $S = \emptyset$; while |S| < k do: add $i \notin S$ with largest $f_S(i)$ into S;

Theorem (Nemhauser, Wolsey, Fisher 1978):

For monotone submodular set function $f: 2^{[n]} \to \mathbb{R}_{\geq 0}$, the greedy algorithm gives a (1-1/e)-approximation of

$$OPT = \max \{ f(S) \mid |S| \le k \}$$

MONOTONE MAXIMIZATION

Constraint	Approximation	Hardness	technique
$ S \leq k$	1 – 1/ <i>e</i>	1 – 1/ <i>e</i>	greedy
matroid	1 – 1/ <i>e</i>	1 – 1/ <i>e</i>	multilinear ext.
O(1) knapsacks	1 – 1/ <i>e</i>	1 – 1/ <i>e</i>	multilinear ext.
k matroids	$k + \epsilon$	$k/\log k$	local search
k matroids & O(1) knapsacks	<i>O</i> (<i>k</i>)	$k/\log k$	multilinear ext.

NON-MONOTONE MAXIMIZATION

Constraint	Approximation	Hardness	technique
Unconstrained	1/2	1/2	combinatorial
matroid	1/ <i>e</i>	0.48	multilinear ext.
O(1) knapsacks	1/ <i>e</i>	0.49	multilinear ext.
k matroids	k + O(1)	$k/\log k$	local search
k matroids & O(1) knapsacks	<i>O</i> (<i>k</i>)	$k/\log k$	multilinear ext.

Constraint	Approximation	Hardness	alg. technique
Unconstrained	1	1	combinatorial
Parity families	1	1	combinatorial
Vertex cover	2	2	Lovász ext.
k-unif. hitting set	k	k	Lovász ext.
Multiway k-partition	2-2/k	2 - 2/k	Lovász ext.
Facility location	log n	log n	combinatorial
Set cover	n	$n/\log^2 n$	trivial
$ S \ge k$	$\tilde{O}(\sqrt{n})$	$\tilde{\Omega}(\sqrt{n})$	combinatorial
Shortest path	$O(n^{2/3})$	$\Omega(n^{2/3})$	combinatorial
Spanning tree	O(n)	$\Omega(n)$	combinatorial