Advanced Algorithms

Dimension Reduction

#F—i@ Nanjing University, 2022 Fall

Metric Embedding

 Two metric spaces: (X, dy) and (Y, dy)

low-distortion: for small a > 1

1
Vx,x, € X: ;dx(xl,xz) < dy(p(x)), P(x,)) < ady(xy, x,)

Dimension Reduction

Input: 7 points x,x,, ..., X, € R4
Output: 7 pointsy, ¥, ...,¥, € Rfst. V1<i,j<n:

(1 =o)llx; —xl < lly; =yl <A +e)llx; —x]

 Usually we want k < d.
« How small can k be?

 For what distance || - [|?

* The embedding should be efficiently constructible.

Johonson-Linenstrauss
Theorem/Transformation

(JLT)

Johonson-Linenstrauss Theorem

(Johnson-Lindenstrauss 1984)

“In Euclidian space, it is always possible to embed
a set of n points in arbitrary dimension to
O(log n) dimension with constant distortion.”

Theorem (Johnson-Lindenstrauss 1984):

V0O < € < 1, for any set S of n points from IRd, there is a
¢ : RY - R with k = O(e?logn), such that Vx,y € S :

(1= e)llx =yll5 < llpGe) = pWII5 < (1 + o)llx = yll3

Johonson-Linenstrauss Theorem

(Johnson-Lindenstrauss 1984)

“In Euclidian space, it is always possible to embed
a set of n points in arbitrary dimension to
O(log n) dimension with constant distortion.”

Theorem (Johnson-Lindenstrauss 1984):

V0O < € < 1, for any set S of n points from IRd, there is a
A € R™?with k = O(e~*logn), such that Vx,y € S :

(1 -ollx = yll5 < [l[Ax = Ay|l; < (1 + e)llx = ylI3

* The probabilistic method: for random A € RKxd

1
Pr[VayeS:(1-olx—yl3< [Ax—Ayl3< (I +o)lx—yl3] =1-0 <;>

w.h.p.

Theorem (Johnson-Lindenstrauss 1984):

V0 < € < 1, for any set S of n points from R, there is a
A € R with k = O(e~*logn), such that Vx,y € S :

(1= ollx —yll5 < [l[Ax — Ay|l5 < (1 + e)llx = ylI3

* The probabilistic method: for random A € RFXd
1
Pr(Ve,yeS:(I-ellx-yli<Ax—Ayl3 < (1 +e)llx—yll3] =1-0 (—)

n

. Efficient construction of random A € R**.

e projection onto uniform random k-dimensional subspace;
(Johnson Llndenstrauss Dasgupta Gupta))

jﬁ mdependent Gaussmn entrles (Indyk I\/Iotvvam)
e i.i.d. -1/+1 entrles (Achlloptas)

Dimension Reduction

Input: 7 points x,Xx,, ...,X, € R4

Output: 7 points y,¥,, ...,¥, € Rfst. V1 <i,j<n:
(1 —=e)llx; _xjH% < ly; _YJH% < (1 +é)llx; _xj”%

- for some suitable k = O(e " log n):

J-L Transformation (i.i.d. Gaussian entries):
Entries of A € R are chosen i.i.d. from (0,1/k):

Fori=1,2,...,n: lety, = Ax;

(Gaussian distribution with mean 0 and variance 1/k)

 Gaussian random variable X ~ /' (u, 6°):

! 1 = p)? El
PrIX <t] = e 22 dx
-0 \/ 271'62 Var|

I I
L] L)|

Norm Preservation

+ YO0 <e<1,V setS of npoints from R
. Random matrix A € R*? with k = (¢ % log n):

Johnson-Lindenstrauss Theorem:
With high probability (> 1 — O(1/n)): Vx,y € S,
(1=e)lx —yll5 < llAx — Ay|l5 < (1 + e)|lx — yll5

o4
|z—vy]|2,

|
/" "\ union bound

2 over all O(n?)

2§1+€ pairsof x,y € S

unit vector! ,
for any unit vector u € Ra:

Pr[|[[Aul3 — 1| > €] < 55

n3

1
A € Rkxd ; each entry of A is chosen i.i.d. from ./ (OZ)

for any unit vector u € R4
Pr [|[|Auf3 — 1] > <

k

|Aul} = " (Au)? [e2d |

1=1

k
Aulls] =) E [(Au)]]

| = e
N
o

2
d
=1

recall:

X ~ N (p1,0%) Y ~ N (p2,03) = X +Y ~ N (1 + pa, 05 + 03)

d d 2
Z.: U~ 1
> (Au); :;Az‘juj NN(O,]kl J) :N<O’E>

independently!

1
A € Rkxd ; each entry of A is chosen i.i.d. from ./ (O;)

for any unit vector u € R4
Pr [|[|Auf3 — 1] > <

k

k
|Aullf =) (Au)} [E [Aul3] = Y E [(Au)?]

1=1 1=1

(Au); ~ N (0, 7) iid.
> E[(4u)}] = Var[(Au)z-] +E[(Au)]? = -
> B[] Aul3 Z (Au)?] =1

1=1

1
A € Rkxd ; each entry of A is chosen i.i.d. from ./ (O;)

for any unit vector u € R4
Pr [|[|Auf3 — 1] > <

k

[Aul3 =S (Aw)? | (Aw) ~ N (0,1) iid

1=1

© [Aullz] =1

> foriid. Y1,Yo, ..., Y% NN(Oa%)

Pr||[[Aul| — 1] > €| =Pr [|D V2 —E | V?|| >«

L 2=1 L 1=1

1
A € Rkxd ; each entry of A is chosen i.i.d. from ./ (OZ)

for any unit vector u € R4
Pr [|[| Aul3 — 1] >] < &
foriid. Yi,Ys,...,Ys ~ N (0 l) consider X, — \F Y;

" k

r ||| Aull3 — 1| > €] =Pr ZYQ ZYZ > €

Chernoff bound for)(z-distributionS'

For independent Pr Zl X7 > +€)k < g k8

Xl,,XkEJV(O,l) —)
P X2 < (1 - k| < e

1
A € Rkxd ; each entry of A is chosen i.i.d. from ./ (OZ)

for any unit vector u € R4
Pr [|[|Auf3 — 1] > <

for i.i.d. Xl,Xz,. . ,Xk; NN(O 1)

Pr HHAuH% — 1| > e}: ZXQ

1=1

(1+¢e)k or ZX2 (1 —e)k

< % For suitable k£ = O(e2log n)

For independent Pr

X,...X, e (00,1 =
Pr

Chernoff bound for)(z-distributionS'

Zl | Ki >(1+€)k

zll ,<(1—e)k

< e—ezk/S

Chernoff bound for)(z-distributions:

For independent Pr Z;Xl? > (1+e)k| < o€ kI8
X, ... X, € H(0,1) = : :
ko x2 —2k/8
Pr _zizlxi < (I - €)k <e"©
<& -| [2 7
for all A>0: Pr X2 > - 2k ’
; e[
M T S
< o—(1+XE {e”\ % P~ bt
1~2¢) x°
g \T'L{Z ge‘(%
XNN(O,l)::> S e
s X? — 1 = —-—-—-—" 5 % ‘314 - ._l———-
s W‘M s
‘ =

Chernoff bound for)(z-distributionS'

For independent Pr Zl X 2> (1+ e)k < g €8

Pr Zl X 2 < (1 —e)k < o€k

for all A>0: Pr ZXQ (1+e)k| = Pr {e/\ LI e(1+e)>\k}

) k
< e_(1+€))‘k . K {e)‘ Zi:l Xii| — e—(l-l-ﬁ))\k , H n {eAXf}

3 k
X ~N(0,1) > <em (m)
7 [est} _ 1 < e—e)\k—|—2>\2k for 1<1/4
V1—25

— ¢~ < */8 choosing A = ¢/4

Johonson-Linenstrauss Theorem

(Johnson-Lindenstrauss 1984)

“In Euclidian space, it is always possible to embed
a set of n points in arbitrary dimension to
O(log n) dimension with constant distortion.”

Theorem (Johnson-Lindenstrauss 1984):

V0O < € < 1, for any set S of n points from IRd, there is a
A € R™?with k = O(e~*logn), such that Vx,y € S :

(1 -ollx = yll5 < [l[Ax = Ay|l; < (1 + e)llx = ylI3

* The probabilistic method: for random A € RKxd

1
Pr[VayeS:(1-olx—yl3< [Ax—Ayl3< (I +o)lx—yl3] =1-0 <;>

w.h.p.

Theorem (Johnson-Lindenstrauss 1984):

V0 < € < 1, for any set S of n points from R, there is a
A € R with k = O(e~*logn), such that Vx,y € S :

(1= ollx —yll5 < [l[Ax — Ay|l5 < (1 + e)llx = ylI3

* The probabilistic method: for random A € RFXd
1
Pr(Ve,yeS:(I-ellx-yli<Ax—Ayl3 < (1 +e)llx—yll3] =1-0 (—)

n

+ Efficient construction of random Ae [R{kXd

o prOJectlon onto uniform random #-dimensional subspace
‘ (Johnson Lindenstrauss; Dasgupta Gupta)

. mdependent Gaussmn entrles (Indyk I\/Iotvvam)
* i.i.d. -1/+1 entries; (Achlioptas)

Dimension Reduction

Input: 7 points X{,X,, ..., X, € R4
Output: 7 points y;,¥,, ..., ¥, € Rfst. V1<i,j<n:

(1 =e)llx; _xjH% < ly; —J’jH% < (1 +e)llx; _xjH%

- for some suitable k = O(e " log n):

J-L Transformation (uniform k-dim subspace):

The krows A, ...,A, of A € R**4 gre orthogonal unit
vectors € R chosen uniform at random;

d
Fori=1,2,...,n: lety, = \/%Axi;

- A € R . projection onto a uniform
k-dimensional subspace

A € Rkxd : projection onto uniform random k-dim subspace

for any unit vector u € R4

2

d 1
Pr —Au — 1] >€e| <—

k n3
2

=

prl fau|>> d+efor [laull’<d—-of]| <L
_ . d ? d.

A € Rkxd : projection onto uniform random k-dim subspace

for any unit vector u € R4
Pr | | Au | 2>(1+€)£_ <L
_ 2 d| 2n3
Pr | | Au | 2<(1—€)£_ <L
_ 2 dl 2n’
random
unit vector

fixed
subspace

unit vector

random
subspace

“inner-products are invariant under rotations™

A € Rkxd : projection onto uniform random k-dim subspace

for any unit vector u € R4
Pr | | Au | 2>(1+€)£_ <L
_ 2 d| 2n3
pr| [au | < -of| <1
_ 2 dl 2n’

random
unit vector

uniform random unit vector € R%:

Y= (Yl’”"Yk’ Yk+1”"’Yd)

fixed k-dimensional subspace:

fixed
subspace

' |Au|| is identically distributed as ||Z]|

uniform random unit vector € R% Y = (Y, ... Y

sample X = (X, ..., X;) € R¢ where X~ N(0,1)iid.;

Y = ——;
1X]]

. . d
density: PriX = x] H 1 =2 — (2=l
i=1 V27 : :
Spherically symmetric!

for some suitable k = O(e-2log n):

— -

k 1

Pr Y2>(1+e)—| <—

lzzll ()d 2n3
- _

k 1

Pr Y2<(l—-e)—| <—

lzzll ()d 2n3

i.i.d. Gaussian random variables X, X,, ...,

for some suitable £ = O(&2log n):

- P

k 1

Pr X2>(1+¢ X?| < —

; P>)a’izz1 : 2n3

Kk i rd 2' 1

Pr X< (]l —e)— X7 | < —

i=21 P < G)dizzl : 2n3
] k d] 1
Pr|d—(1+6k)) X' —(1+ek) X?>0| <—
i i=1 i=k+1) 2n
i |
Pr|(d-—(1-ek)) X*—(1—¢ek X?<0| <—
(d— (e))Z (1-¢) Z —

iI=k+1

= Pr |exp {ﬂ(((l—e)k d)ZX2+(1—e)k Z X?

i=k+1

<E exp{ <((1—€)k d)ZX2+(1—e)kZX2

iI=k+1

d

k
_ H[E [e/l((l—e)k—d)Xf] H = [eﬂ(l—e)ka]
i=1

i=k+1

)i

)j

(arbitrary 4 > 0)

(Markov’s inequality)

i.i.d. Gaussian random variables X, X,, ...,

for some suitable £ = O(&2log n):

Pr

Pr

= Pr

={

< (1 =24((1 —)k — d)~2(1 = 2A(1 — e)k)~ 7

<(1- er%<1 —

d—(1+ e)k)ZXZ—(He)k Z X?>0

iI=k+1

d— (1 —e)k)ZXz—(l Y Z X? <0

iI=k+1

(1 — ek — d)ZX2+(1 — o)k Z X2

i=k+1

)i

set:

d—k . A= ¢
ck 2 ek 2(1 —e)(d — (1 — e)k)
<exp| ——
d—k 4

(arbitrary 4 > 0)

Theorem (Johnson-Lindenstrauss 1984):

V0 < € < 1, for any set S of n points from R, there is a
A € R with k = O(e~*logn), such that Vx,y € S :

(1= ollx —yll5 < [l[Ax — Ay|l5 < (1 + e)llx = ylI3

» The probabilistic method: for random A € R¥*4

1
Pr[Va.y €5:(1-e)lx —yl} < JAx —Ayl3 < (A +o)llx —yl3] =1-0 <;>

. Efficient construction of random A € R**.

e projection onto uniform random k-dimensional subspace;
(Johnson-Lindenstrauss; Dasgupta-Gupta)

* independent Gaussian entries; (Indyk-Motwani)
* i.i.d. -1/+1 entries; (Achlioptas)

Nearest Neighbor
Search (NNS)

Nearest Neighbor Search (NNS)

» Metric space (X, dist):

Data: n pointsy;,¥,,...,y, € X
Query: apointx € X

Find the datapoint y; that is closest to x.

Applications In:

P e database systems
{;' .';r,' . ® e pattern matching
“ e e machine learning

® |mage processing
e bioinformatics

Nearest Neighbor Search (NNS)

Data: n points y,,¥,,...,¥, € [N]d
Query: a pointx € [NV]¢

Find the datapoint y. that is closest to x.

when dimension d is small:

k-d tree Voronoi diagram

Nearest Neighbor Search (NNS)

. Hamming space {0,1}%:

Data: 7 pointsy;,¥,,...,y, € 10,1 14
Query: a pointx € {0,1}¢

Find the datapoint y; that is closest to x.

when dimension d is high:

say d > logn

Curse of dimensionality:

It is conjectured that to solve NNS in high dimension requires
either super-polynomial(n) space or super-polynomial(d) time.

Blessing: randomization + approximation

Approximate Near Neighbor (ANN)
» Metric space (X, dist):

Data: 7 points y;,¥,,...,¥, € X
Query: apointx € X

c-ANN (Approximate Nearest Neighbor).

Find a y; such that dist(x, y;) < ¢ - min dist(x, y;)
1<j<n

(c, r)-ANN (Approximate Near Neighbor):
return a y; that dist(x, y,) < ¢ - rif dy; s.t. dist(x,y;) < r
“no” if Vy,, dist(x,y,) > c-r

arbitrary if otherwise

]/‘O = D,y = 1§1;;I£]Il§n dlSt(yza yg)

’”k:\/z””k—1

rlogc(Dmax/Dmin) = Dmax B 1§I§1<%X§n dlSt(y“ yj)

« Metric space (X, dist):

Data: n points y;,¥,,...,¥, € X

Query: apointx € X
c-ANN (Approximate Nearest Neighbor):
Find ay, such that dist(x, y;) < ¢ - min dist(x, y;)

1<j<n

(c, r)-ANN (Approximate Near Neighbor):
return ay; that dist(x,y;) < ¢ - rif dy; s.t. dist(x,y;) <7

Dmax Dmax =

let R = D Do —
1<i1<y<n

Vr : (¢, 7)-ANN

can be solved with space s

and query time 1

>

“no” if Vy., dist(x,y,) > c - r
arbitrary if otherwise

max dist(y..y.
| Jnax (Y, y;)

min dist(y;,y,)

c-ANN can be solved
within space O(s log.: R)
and query time O(? loglog. R)

. Hamming space {0,1}¢

Data: n points y{,y,, ..
Query: a pointx € {0,1}¢

(c, r)-ANN (Approximate Near Neighbor):
return a y; that dist(x,y;) < ¢ - rif dy; s.t. dist(x, y;) <7
answer “no” if Vy., dist(x,y;) > c - r

Ly, € (0,1}4

arbitrary if otherwise

» High dimension: d > logn

Dimension Reduction:

Let k, p and s to be fixed later;
sample k X d Boolean matrix A with i.i.d. entries € Bernoulli(p);

fori =1,2,...,n: letz, = Ay, € {0,1 1€ on finite field GF(2);
store all s-balls B(u) = {y; | dist(u,z;) < s} forallu € {0,1}%

zi(j) = (Ay;); <Z Ay, (¢) mod 2

. Hamming space {0,1}¢

Data: 7 pointsy,¥,,...,y, € 10,1 }d
Query: a pointx € {0,1}¢

» High dimension: d > logn

Dimension Reduction: zi(j) = (Ay;); (Z Ajey; (4) mod 2

Let k, p and s to be fixed later;
sample k X d Boolean matrix A with i.i.d. entries € Bernoulli(p);
fori =1,2,...,n: letz, = Ay, € {0,] 1X on finite field GF(2):

store all s-balls B(u) = {y; | dist(u,z;) < s} forallu € {0,1}%

To answer query x € {0,1}%: retrieve B (Ax);
if B(AXx) = & return “no”

else return any y; € B.(Ax)

Space. O(n2k) query time: O(kd) computation T O(l) memory access

. Hamming space {0,1}¢

Data: 7 pointsy,¥,,...,y, € 10,1 }d
Query: a pointx € {0,1}¢

» High dimension: d > logn

Dimension Reduction: zi(j) = (Ay,); (Z Ajey; (£) mod 2

Let k, p and s to be fixed later;
sample k X d Boolean matrix A with i.i.d. entries € Bernoulli(p);

fori =1,2,...,n: letz, = Ay, € {0,1}* on finite field GF(2);

for suitable £ = O(log n), p and s:

Vxye{0,1}4: dist(xy) <r = Pr[dist(Ax, Ay) > 5] < 1/n2
dist(x,y) >c-r = Pr[dist(Ax, Ay) <s] < 1/n?

union bound > (c¢,r)-ANN is solved w.h.p.

random kxd Boolean matrix A with ii.d. entries € Bernoulli(p);

computation on GF(2): (Ax); Zwaz mod 2

71=1

for suitable p and s:

Vxy€e {0,1}4: dist(xy)<r = Pr[dist(Ax, Ay) > s] < eL®
dist(x,y) >c-r = Pr[dist(Ax, Ay) < 5] < 5%

row vector A;.: ii.d.entries € Bernoulli(p)
Pr{(Az); # (Ay)i] = Pr[{4;.,) # (4i.,y)] = % (1 — (1= 2p)tistlew)
Why

For uniform u&€{0,1}% Pr[(u, z) # (u,y)] =

generate A;. as: | I. each jE[d] joins DC[d] independently with probability 2p;
2. for each j&D: samples a uniform and independent A;&{0,1};
3. for each j&D: A;=0;

A;. restricted on D is a uniform Boolean vector!

random kxd Boolean matrix A with ii.d. entries € Bernoulli(p);

computation on GF(2): (Ax); (ZA Ja:@) mod 2

for suitable p and s:

71=1

Vxy€e {0,1}4: dist(xy)<r = Pr[dist(Ax, Ay) > s] < eL®
dist(x,y) >c-r = Pr[dist(Ax, Ay) < 5] < 5%

row vector A;.: iid.entries € Bernoulli(p)

Pr[(Ax); # (Ay):] = Pr[(A;, @) # (Ai.,y)| =

choose p to satisfy (1-2p) = 2-1r

dist(x,y)<r = Pr[(Ax); # (Ay); |
dist(x,y) >c-r = Pr[(Ax); # (Ay);]

1 .
5 (1 L (1 L Qp)dlst(w,y))

< 1/4
> 1/2 - 2-(c+D)

random kxd Boolean matrix A with ii.d. entries € Bernoulli(p);

computation on GF(2): (Ax); (Z waz) mod 2

for suitable p and s:

71=1

Vxye{0,1}9: dist(xy) <r
dist(xy)>c-r = Pr]

choose p to satisfy (1-2p)

dist(x,y) <r = Pr]

dist(Ax, Ay) = X = ZX,,;

= Pr[dist(Ax, Ay) > 5] < e %)

= D-1/r
| (AXx)i # (Ay)i |
dist(x,y) >c-r = Pr[(Ax); # (Ay); |

where X, = /¢

dist(Ax, Ay) < 5] < e %20

<1/4
> 1/2 - 2-(c+])

1 if (Az); # (Ay),

0 otherwise

\

independent trials

random kxd Boolean matrix A with ii.d. entries € Bernoulli(p);

computation on GF(2): (Ax); (

for suitable p and s:

71=1

Zijz

) mod 2

Vxye{0,1}4:

dist(x,y) <r
dist(x,y) > c-

= Pr[dist(Ax, Ay) > 5] < e %)
r = Pr[dist(Ax, Ay) < 5] < e-2®

choose p to satisfy (1-2p) = 2-1/r

dist(x,y) <r

dist(Ax, Ay)

— PI‘:Xi=1:
dist(x,y) >c-r = Pr’Xl—l:

= X = ZX

< 1/4 = K
>1/2 - 2-(c+) = K

where X, = {

choose s= (1/4 + 1/2 - 2 (C+1>)k/2 (3/8 - 2- (C+2))k

dist(x,y) <r = Pr[dist(Ax, Ay) > s] < Pr[X > EX+ (1/8-2-(c+2))k]
dist(x,y) >c-r = Pr[dist(Ax, Ay) <s] <Pr[X< EX - (1/8-2-(c+2)k]

X
X
1 if (Az); # (Ay);

O otherwise

< k/4
< (1/2 - 2-(etD)k

Chernoff-Hoeffding Bound

Chernoff Bound:

n
For X = Z X, where X, ..., X, € {0,1} are independent

i=1
(or negatively associated),

forany t > O:
2t?
Pr|X>E[X]+7| <exp| —

212

Pr|X <E[X]—1t]| <exp <——>

n

random kxd Boolean matrix A with ii.d. entries € Bernoulli(p);

computation on GF(2): (Ax); (Z waz) mod 2

71=1

for suitable p and s:

Vxy€e {0,1}4: dist(xy)<r = Pr[dist(Ax, Ay) > s] < eL®
dist(x,y) >c-r = Pr[dist(Ax, Ay) < 5] < 5%

choose p to satisfy (1-2p) = 2-1/r
disttxy)<r = Pr[Xi=1]=<1/4 = E[X]<k/4
dist(x,y) >c-r = Pr’X, =1]>1/2-2(+h) = E[X] < (1/2 -2-(ctD)k

dist(Ax, Ay) = X = ZX where X, = ¢ L if (Az); 7 (Ay)

O otherwise

choose s= (1/4 + 1/2 - 2 (C+1>)k/2 (3/8 - 2- (C+2))k

dist(x,y) <r = Pr[dist(Ax, Ay) > s] < Pr[X > EX+ (1/8-2-(c+2)k | <exp(-2(1/8-2-(c+2)2k)
dist(x,y) > c-r = Pr[dist(Ax, Ay) < 5] < Pr[X < EX - (1/8-2-(c+2)k | < exp(-2(1/8-2-(c+2)2k)

. Hamming space {0,1}¢

Data: 7 pointsy,¥,,...,y, € 10,1 }d
Query: a pointx € {0,1}¢

» High dimension: d > logn

Dimension Reduction:

Let k = g tery, P=5 -2 /T s =(§ - 27Tk
sample k X d Boolean matrix A with i.i.d. entries € Bernoulli(p);
fori =1,2,...,n: letz, = Ay, € {0,1}* on finite field GF(2);
store all s-balls B(u) = {y; | dist(u,z,) < s} forallu € {0,1}%

To answer query x € {0,1}%: retrieve B (Ax);
if B(AXx) = & return “no”

else return any y; € B.(Ax)

space: nO) query time: O(d Inn) solve (c,r)-ANN w.h.p.

Locality Sensitive
Hashing (LSH)

Locality-Sensitive Hashing (LSH)

(Indyk-Motwani 1998)
« Metric space (X, dist):

Data: n pointsy,y,,...,¥, € X
Query: apointx € X
(c, r)-ANN (Approximate Near Neighbor):
return a y; that dist(x, y;) < ¢ - rif dy; s.t. dist(x,y;) <7

“no” if Vy,, dist(x,y,)) > c - r
arbitrary if otherwise

Locality-sensitive hashing (LSH):

Arandom h : X — Uisan (r,cr,p,q)-LSHif Vx,y € X:
dist(x,y) < r = Pr[h(x) = h(y)] = p
dist(x,y) > c-r = Pr[h(x) = h(y)] < ¢

Locality-Sensitive Hashing (LSH)

» Metric space (X, dist):

Locality-sensitive hashing (LSH):

Arandom h : X — Uisan (r,cr,p,q)-LSHif Vx,y € X:
dist(x,y) < r = Pr[h(x) = h(y)] = p
dist(x,y) > c-r= Pr[h(x) = h(y)] < g

Proposition:
d an (7, cr, p, q)-LSH i J an (r, cr,pk, qk) -LSH
h:X—->U h:X— U-

draw independent hy, ..., h;, according to distribution of /

g(x) = (hy(x), b (%), ..., h(x)) € U

« Metric space (X, dist):
Data: n pointsy,y,,...,¥, € X

Query: apointx € X
return a y; that dist(x, y;) < ¢ - rif dy; s.t. dist(x, y;) <7
“no” if Vy., dist(x,y;) > c-r

suppose we have (r, cr, p*, 1/n)-LSH g: X—=U

VxyeX: distxy)sr =Pr{gx)=gy)]zp"
dist(x,y)>c-r =Pr[gx)=g(y) | < 1/n

Data structure: sort y;, y,, ..., Y, according to g(y,);

Upon query x € X: find all y; that g(x) = g(y;) by binary search;
if encounter ay, that dist(x, y,) < ¢ - r return this y;;
else return “no”;

if real answer is “no”: always correct

if real answer is not “no”: correct with probability = p*
space: O(n) time: O(log n) + O(1) in expectation

Metric space (X, dist):
Data: n pointsy,y,,...,¥, € X

Query: apointx € X
return a y; that dist(x, y;) < ¢ - rif dy; s.t. dist(x, y;) <7
“no” if Vy., dist(x,y;) > c-r

suppose we have (r, cr, p*, 1/n)-LSH g: X—=U

Hash functions: i.i.d. instances g, ..., g, of g, where & = 1/p*;

Data structure: £ sorted tables;
in table-: sorty,,y,, ..., ¥, according to g/(y;)

Upon query x € X:
find < 10" such y; that 3/, g/(x) = g,(¥,) by binary search;

if encounter a y; that dist(x,y;) < ¢ - r return this y;
else return "no”;

metric space (X, dist) (r,cr,p”, 1/n)-LSH g: X—=U
Data: n points y1,y2, .., y,E€ X Query: x& X

Hash functions: i.i.d. instances g, ..., g, of g, where £ = 1/p*;

Data structure: £ sorted tables:
in table-j: sort y;, ¥,, ..., ¥, according to g(y;)

Upon query x € X:
find < 107 such y; that 3/, g(x) = g,(y,) by binary search;

if encounter a y; that dist(x,y,) < ¢ - r return thisy;
else return “no”;

space: O(nl) =0O(n/p”) time: O(/-log n) =O((log n) / p*)
if real answer is “no” : vV y;,dist(xy;)) >c-r IZ{> always correct

if Iy, s.t. dist(x,ys) <r

Pr[answer “no” | <?

metric space (X, dist) (r,cr,p”, 1/n)-LSH g: X—=U
Data: n points y1,y2, .., y,E€ X Query: x& X

Hash functions: i.i.d. instances g, ..., g, of g, where £ = 1/p*;

Data structure: £ sorted tables:
in table-j: sort y;, ¥,, ..., ¥, according to g(y;)

Upon query x € X:
find < 107 such y; that 3/, g(x) = g,(y,) by binary search;

if encounter a y; that dist(x,y,) < ¢ - r return thisy;
else return “no”;

if 3y, s.t.dist(x,ys) <r

— ¥\
Pr[answer “no” | <[Pr[Vj, gi(x) # gi(ys)] <({1-p7) <1/e

+ Pr[>10/ bad y; that dist(x,y;) > ¢ - r but Jj s.t. gi(x):gj(yl')]
Markov < B[# of such bad y;] / 10/ < “%0/™) <0.]

inequality linearity of expectation

metric space (X, dist) (r,cr,p”, 1/n)-LSH g: X—=U
Data: n points y1,y2, .., y,E€ X Query: x& X

Hash functions: i.i.d. instances g, ..., g, of g, where £ = 1/p*;

Data structure: £ sorted tables:
in table-j: sort y;, ¥,, ..., ¥, according to g(y;)

Upon query x € X:
find < 107 such y; that 3/, g(x) = g,(y,) by binary search;

if encounter a y; that dist(x,y,) < ¢ - r return thisy;
else return “no”;

space: O(nl) =0O(n/p”) time: O(/-log n) =O((log n) / p*)
if real answer is “no” : vV y;,dist(xy;)) >c-r IZ{> always correct

if Jys s.t. dist(x,ys) <r
:{>Pr[answer “no”’] <1/e+0.1 <0.5

* (¢, r)-ANN in metric space (X, dist):
Data: n pointsy,y,,...,¥, € X

Query: apointx € X
return a y; that dist(x, y;) < ¢ - rif dy; s.t. dist(x, y;) <7
“no” if Vy., dist(x,y;) > c-r

suppose we have (r, cr, p, q)-LSH h: X—=U

> we have (7, cr, p¥, 1/n)-LSH ¢: X—=U*
for k=loguipn so p~ = p'°8r/a™ = p=°r

log p
p=
0g ¢

where

> solve (¢, 7)-ANN with space O(n'*)

query time O(n¢ - log n) and one-sided error <0.5

* (¢, r)-ANN in metric space (X, dist):
Data: n pointsy,y,,...,¥, € X

Query: apointx € X
return a y; that dist(x, y;) < ¢ - rif dy; s.t. dist(x, y;) <7
“no” if Vy., dist(x,y;) > c-r

suppose we have (r, cr, p, q)-LSH h: X—=U

log p
,0:1
0g q

> solve (¢, 7)-ANN with space O(n'*)

query time O(n¢ - log n) and one-sided error <0.5

. (¢, 7)-ANN in Hamming space {0,1}¢
Data: n pointsy,y,,...,y, € {0,1 }d

Query: apointx € {0,1}¢
return a y; that dist(x, y;) < ¢ - rif dy; s.t. dist(x, y;) <7
“no” if Vy., dist(x,y;) > c-r

Vx&{0,1}: h(x)=x for uniform random i € [d]

dist(xy)<r =Pr[h(x)=nh(y)]=1-r/d
dist(xy)>c-r = Pr[h(x)=h(y) | < l-cr/d

h: {0,1}¢—{0,1} is an (r, cr, 1-r/d, 1-cr/d)-LSH

_ log(1 —1r/d)
log(1 — cr/d)

1
< =
C

0

> solve (¢, r)-ANN in Hamming space with space O(n'*V¢)
query time O(nl/c - log n) and one-sided error <0.5

RESEARCH

COMPUTER SCIENCE

A neural algorithm for a fundamental

computing problem

Sanjoy Dasgupta,’ Charles F. Stevens,?® Saket Navlakha**

Similarity search—for example, identifying similar images in a database or similar documents
on the web—is a fundamental computing problem faced by large-scale information retrieval
systems. We discovered that the fruit fly olfactory circuit solves this problem with a variant
of a computer science algorithm (called locality-sensitive hashing). The fly circuit assigns
similar neural activity patterns to similar odors, so that behaviors learned from one odor can
be applied when a similar odor is experienced. The fly algorithm, however, uses three
computational strategies that depart from traditional approaches. These strategies can be
translated to improve the performance of computational similarity searches. This
perspective helps illuminate the logic supporting an important sensory function and
provides a conceptually new algorithm for solving a fundamental computational problem.

n essential task of many neural circuits

is to generate neural activity patterns in

response to input stimuli, so that differ-

ent inputs can be specifically identified.

We studied the circuit used to process odors
in the fruit fly olfactory system and uncovered
computational strategies for solving a fundamen-
tal machine learning problem: approximate sim-
ilarity (or nearest-neighbors) search.

The fly olfactory circuit generates a “tag” for
each odor, which is a set of neurons that fire when
that odor is presented (I). This tag is critical for
learning behavioral responses to different odors
(2). For example, if a reward (e.g., sugar water) or
a punishment (e.g., electric shock) is associated
with an odor, that odor becomes attractive (a fly

pendence is removed (7, 8); that is, the distri-
bution of firing rates across the 50 PN types is
exponential, with close to the same mean for all
odors and all odor concentrations (). Thus, the
first step in the circuit essentially “centers the
mean”—a standard preprocessing step in many
computational pipelines—using a technique called
divisive normalization (8). This step is important
so that the fly does not mix up odor intensity with
odor type.

The second step, where the main algorithmic
insight begins, involves a 40-fold expansion in
the number of neurons: Fifty PNs project to 2000
Kenyon cells (KCs), connected by a sparse, binary
random connection matrix (9). Each KC receives
and sums the firing rates from about six randomly

out of the billions of images on the web—that
look most similar to your elephant image. This
is called the nearest-neighbors search problem,
which is of fundamental importance in infor-
mation retrieval, data compression, and machine
learning (10). Each image is typically represented
as a d-dimensional vector of feature values. (Each
odor that a fly processes is a 50-dimensional fea-
ture vector of firing rates.) A distance metric is
used to compute the similarity between two images
(feature vectors), and the goal is to efficiently find
the nearest neighbors of any query image. If the
web contained only a few images, then brute force
linear search could easily be used to find the exact
nearest neighbors. If the web contained many
images, but each image was represented by a low-
dimensional vector (e.g., 10 or 20 features), then
space-partitioning methods (12) would similarly
suffice. However, for large databases with high-
dimensional data, neither approach scales (11).

In many applications, returning an approximate
set of nearest neighbors that are “close enough” to
the query is adequate, so long as they can be found
quickly. This has motivated an approach for find-
ing approximate nearest neighbors by LSH (10).
For the fly, as noted, the locality-sensitive property
states that two odors that generate similar ORN
responses will be represented by two tags that are
themselves similar (Fig. 1B). Likewise, for image
search, the tag of an elephant image will be more
similar to the tag of another elephant image than
to the tag of a skyscraper image.

Unlike a traditional (non-LSH) hash function,
where the input points are scattered randomly
and uniformly over the range, a LSH function pro-
vides a distance-preserving embedding of points
from d-dimensional space into m-dimensional

RESEARCH | REPORT

A Step 1

Center the mean

Step 2 Step 3 B Ethanol Methanol Dimethyl Sulfide
Random projection Winner-take-all CH3CH,OH CHZ0H CoHgS

Y

Y

Y

Odor = (O)(e)
@)

) 4

OOOO
@)

Y

el

o°°

Y

©)
OOOO
©)

»
»-

0o

~50 odorant receptor
neuron (ORN) types

C

Input

»
>

~50 projection ~2000 Kenyon cells ~5% KCs active for each odor = “tag”
neurons (PNs) (KCs)

X1+ X4
w

e - Bl

LSH Fly
Fig. 1. Mapping between the fly olfactory circuit and locality-sensitive (hash) for the odor. (B) lllustrative odor responses. Similar pairs of odors
hashing (LSH). (A) Schematic of the fly olfactory circuit. In step 1, (e.g., methanol and ethanol) are assigned more similar tags than are
50 ORNSs in the fly's nose send axons to 50 PNs in the glomeruli; as a dissimilar odors. Darker shading denotes higher activity. (C) Differences
result of this projection, each odor is represented by an exponential between conventional LSH and the fly algorithm. In the example, the
distribution of firing rates, with the same mean for all odors and all computational complexity for LSH and the fly are the same. The input
odor concentrations. In step 2, the PNs expand the dimensionality, dimensionality d = 5. LSH computes m = 3 random projections, each of which
projecting to 2000 KCs connected by a sparse, binary random requires 10 operations (five multiplications plus five additions). The fly
projection matrix. In step 3, the KCs receive feedback inhibition from the = computes m = 15 random projections, each of which requires two addition
anterior paired lateral (APL) neuron, which leaves only the top 5% of operations. Thus, both require 30 total operations. x, input feature vector; r,

KCs to remain firing spikes for the odor. This 5% corresponds to the tag Gaussian random variable; w, bin width constant for discretization.

