Advanced Algorithms LP Duality

Flow Network

• Digraph: D(V, E)

• source: $s \in V$ sink: $t \in V$

• Capacity $c: E \to \mathbb{R}_{>0}$

Network Flow

• Digraph: D(V, E)

• source: $s \in V$ sink: $t \in V$

- Capacity $c: E \to \mathbb{R}_{\geq 0}$
- Flow $f: E \to \mathbb{R}_{\geq 0}$

- Capacity: $\forall (u, v) \in E$, $f_{uv} \leq c_{uv}$
- Conservation: $\forall u \in V \setminus \{s, t\}, \quad \sum_{(w, u) \in E} f_{wu} = \sum_{(u, v) \in E} f_{uv}$

Network Flow

- Capacity: $\forall (u, v) \in E$, $f_{uv} \leq c_{uv}$
- Conservation: $\forall u \in V \setminus \{s, t\}, \quad \sum_{(w, u) \in E} f_{wu} = \sum_{(u, v) \in E} f_{uv}$
- Value of flow: $\sum_{(s,u)\in E} f_{su} = \sum_{(v,t)\in E} f_{vt}$

Maximum Flow

- Capacity: $\forall (u, v) \in E$, $f_{uv} \leq c_{uv}$
- Conservation: $\forall u \in V \setminus \{s, t\}, \quad \sum_{(w, u) \in E} f_{wu} = \sum_{(u, v) \in E} f_{uv}$

• Value of flow:
$$\sum_{(s,u)\in E} f_{su} = \sum_{(v,t)\in E} f_{vt}$$

Cut

• Digraph: D(V, E)

• source: $s \in V$ sink: $t \in V$

- Capacity $c: E \to \mathbb{R}_{>0}$
- Cut $S \subset V$, $s \in S$, $t \notin S$

Value of cut:

$$\sum_{u \in S, v \notin S, (u,v) \in E} c_{uv}$$

Minimum Cut

• Digraph: D(V, E)

• source: $s \in V$ sink: $t \in V$

Value of cut:

$$\sum_{u \in S, v \notin S, (u,v) \in E} c_{uv}$$

- Flow network: D(V, E), $s, t \in V$, and $c: E \to \mathbb{R}_{\geq 0}$
 - Max-flow = min-cut
 - With integral capacity $c: E \to \mathbb{Z}_{\geq 0}$, the maximum flow is achieved by an integer flow $f: E \to \mathbb{Z}_{\geq 0}$.

- Flow network: D(V, E), $s, t \in V$, and $c: E \to \mathbb{R}_{\geq 0}$
 - Max-flow = min-cut
 - With integral capacity $c: E \to \mathbb{Z}_{\geq 0}$, the maximum flow is achieved by an integer flow $f: E \to \mathbb{Z}_{\geq 0}$.

- Flow network: D(V, E), $s, t \in V$, and $c: E \to \mathbb{R}_{\geq 0}$
 - Max-flow = min-cut
 - With integral capacity $c: E \to \mathbb{Z}_{\geq 0}$, the maximum flow is achieved by an integer flow $f: E \to \mathbb{Z}_{\geq 0}$.

- Flow network: D(V, E), $s, t \in V$, and $c: E \to \mathbb{R}_{\geq 0}$
 - Max-flow = min-cut
 - With integral capacity $c: E \to \mathbb{Z}_{\geq 0}$, the maximum flow is achieved by an integer flow $f: E \to \mathbb{Z}_{\geq 0}$.

- An elementary proof by augmenting path.
- An advanced proof by LP duality and integrality.

Estimate the Optima

```
minimize 7x_1 + x_2 + 5x_3

VI

subject to x_1 - x_2 + 3x_3 \ge 10

x_1 + 2x_2 - x_3 \ge 6

x_1, x_2, x_3 \ge 0
```

 $16 \le OPT \le any feasible solution$

Estimate the Optima

$$10y_1 + 6y_2 \le OPT$$

 $x_1, x_2, x_3 \geq 0$

for any
$$y_1 + 5y_2 \le 7$$

 $-y_1 + 2y_2 \le 1$ $y_1, y_2 \ge 0$
 $3y_1 - y_2 \le 5$

Primal-Dual

Primal:

min
$$7x_1 + x_2 + 5x_3$$

s.t. $x_1 - x_2 + 3x_3 \ge 10$
 $5x_1 + 2x_2 - x_3 \ge 6$
 $x_1, x_2, x_3 \ge 0$

Dual:

$$\begin{array}{llll} \max & 10y_1 + 6y_2 \\ \text{s.t.} & y_1 & + & 5y_2 & \leq & 7 \\ & -y_1 & + & 2y_2 & \leq & 1 \\ & 3y_1 & - & y_2 & \leq & 5 \\ & & y_1, \, y_2 \, \geq 0 \end{array}$$

∀dual feasible ≤ primal OPT

 $LP \in NP \cap coNP$

Diet Problem

cal	or	ies
vita	ami	n 1

•

vitamin *m*

<i>C</i> ₁	<i>C</i> 2	• • • •	C_n
a_{11}	a_{12}	• • • •	a_{1n}
•	•		•
a_{m1}	a_{m2}	• • • •	a_{mn}

 $\geq b_1$ \vdots

healthy

 $\geq b_m$

solution:

 x_1

 χ_2

• • • • •

 χ_n

minimize the calories while keeping healthy

Surviving Problem

price	
vitamin	1

• vitamin *m*

<i>C</i> ₁	<i>C</i> ₂	• • • •	C_n
a_{11}	a_{12}	• • • •	a_{1n}
•	•		•
a_{m1}	a_{m2}	• • • •	a_{mn}

solution:

 x_1

 χ_2

• • • • •

 χ_n

healthy

minimize the total price while keeping healthy

Surviving Problem

min
$$c^{\mathrm{T}}x$$

s.t.
$$Ax \ge b$$

$$x \ge 0$$

price	<i>C</i> 1
vitamin 1	a_1
•	•
vitamin m	a_m

<i>C</i> ₁	<i>C</i> 2	• • • •	C_n	healthy
a_{11}	a_{12}	• • • •	a_{1n}	$\geq b_1$
•	•		•	•
a_{m1}	a_{m2}	• • • •	a_{mn}	$\geq b_m$

 χ_n

solution: x_1 χ_2 minimize the total price while keeping healthy

Primal:

Dual:

min
$$c^{\mathrm{T}}x$$

$$\max b^{T}y$$

s.t.
$$Ax \ge b$$

s.t.
$$A^{T}y \leq c$$

$$x \ge 0$$

$$y \ge 0$$

dual

solution: price

vitamin 1

 y_m vitamin m

<i>C</i> ₁	<i>C</i> 2	• • • •	C_n
a_{11}	a_{12}	• • • •	a_{1n}
•	•		•
a_{m1}	a_{m2}	• • • •	a_{mn}

healthy

$$\begin{vmatrix} \geq b_1 \\ \vdots \\ \geq b_m \end{vmatrix}$$

m types of vitamin pills, design a pricing system competitive to n natural foods, max the total price

Primal:

min $c^{\mathrm{T}}x$

s.t. $Ax \ge b$

$$x \ge 0$$

Dual:

 $\max b^{T}y$

s.t. $A^{T}y \leq c$

 $y \ge 0$

- Monogamy: dual(dual(LP)) = LP
- Weak duality:
 - \forall feasible primal solution x and \forall feasible dual solution y

$$y^{\mathrm{T}}b \leq y^{\mathrm{T}}Ax \leq c^{\mathrm{T}}x$$

Primal:

min $c^{\mathrm{T}}x$

s.t. $Ax \ge b$

$$x \ge 0$$

Dual:

 $\max b^{T}y$

s.t. $A^{T}y \leq c$

$$y \ge 0$$

Weak Duality Theorem:

 \forall feasible primal solution x and \forall feasible dual solution y:

$$b^{\mathrm{T}}y \leq c^{\mathrm{T}}x$$

Primal:

min $c^{\mathrm{T}}x$

s.t. $Ax \ge b$

$$x \ge 0$$

Dual:

 $\max b^{T}y$

s.t. $A^{\mathrm{T}}y \leq c$

$$y \ge 0$$

Strong Duality Theorem:

Primal LP has an optimal solution x^*

 \iff Dual LP has an optimal solution y^*

$$b^{\mathrm{T}}y^* = c^{\mathrm{T}}x^*$$

Maximum Flow

- Digraph: D(V, E)
- Capacity $c: E \to \mathbb{R}_{\geq 0}$

$$\max_{u:(s,u)\in E} \int_{su}$$

$$\sum_{w:(w,u)\in E} f_{wu} - \sum_{v:(u,v)\in E} f_{uv} = 0$$

$$f_{uv} \ge 0$$

• source: $s \in V$ sink: $t \in V$

$$\forall (u, v) \in E$$

$$\forall u \in V \setminus \{s, t\}$$

$$\forall (u, v) \in E$$

Maximum Flow

- Digraph: D(V, E)
- Capacity $c: E \to \mathbb{R}_{>0}$

 $\max f_{ts}$

$$d_{uv}$$
 s.t. $f_{uv} \leq c_{uv}$

$$\sum_{w:(w,u)\in E'} f_{wu} - \sum_{v:(u,v)\in E'} f_{uv} \leq 0$$

$$f_{uv} \ge 0$$

$$\forall (u, v) \in E$$

$$\forall u \in V$$

$$\forall (u, v) \in \mathbf{E}' = E \cup \{(t, s)\}\$$

Dual LP

- Digraph: D(V, E)
- Capacity $c: E \to \mathbb{R}_{\geq 0}$

$$\min \sum_{(u,v)\in E} c_{uv} d_{uv}$$

$$s.t. d_{uv} - p_u + p_v \ge 0$$

$$p_s - p_t \ge 1$$

$$d_{uv} \ge 0$$
 $p_u \ge 0$

• source: $s \in V$ sink: $t \in V$

$$\forall (u, v) \in E$$

$$\forall (u, v) \in E \quad \forall u \in V$$

Minimum Cut

- Digraph: D(V, E)
- Capacity $c: E \to \mathbb{R}_{\geq 0}$

$$\min \sum_{(u,v)\in E} c_{uv} d_{uv}$$

$$s.t. d_{uv} - p_u + p_v \ge 0$$

$$p_s - p_t \ge 1$$

$$d_{uv}, p_u \in \{0,1\}$$

• source: $s \in V$ sink: $t \in V$

$$\forall (u, v) \in E$$

$$\forall (u, v) \in E \quad \forall u \in V$$

Primal-Dual Schema

LP-based Algorithms

- LP relaxation and rounding:
 - Relax the Integer Linear Program to an LP.
 - Round the optimal LP solution to a feasible integral solution.
- Primal-dual schema:
 - Find a pair of feasible solutions to the primal and dual programs which are close to each other.

close to dual feasible solution \Longrightarrow closer to OPT

Vertex Cover

Instance: An undirected graph G(V, E).

Find the smallest $C \subseteq V$ that intersects all edges.

Vertex Cover

Instance: An undirected graph G(V, E). Find the smallest $C \subseteq V$ that intersects all edges.

Find a *maximal matching* $M \subseteq E$; return $C = \{v \mid \{u, v\} \in M\}$;

- Matching $\Longrightarrow |M| \le OPT_{VC}$ (weak duality)
- Maximality $\Longrightarrow C$ is a vertex cover

$$|C| \le 2|M| \le 2OPT_{VC}$$

Duality

vertex cover: constraints variables

 $\sum_{v \in e} x_v \ge 1 \qquad x_v \in \{0,1\}$

matching: variables constraints

 $y_e \in \{0,1\}$ $\sum_{e \ni v} y_e \le 1$

Duality

Instance: graph G(V,E)

primal: minimize $\sum_{v \in V} x_v$

(vertex cover)

subject to
$$\sum_{v \in e} x_v \ge 1$$
, $\forall e \in E$

$$x_v \in \{0, 1\}, \quad \forall v \in V$$

dual: maximize $\sum_{e \in E} y_e$

(matching)

subject to
$$\sum_{e\ni v}y_e\leq 1, \quad \forall v\in V$$

$$y_e \in \{0, 1\}, \quad \forall e \in E$$

Duality for LP-Relaxations

Instance: graph G(V,E)

primal: minimize $\sum_{v \in V} x_v$

subject to
$$\sum_{v \in e} x_v \ge 1$$
, $\forall e \in E$

$$x_v \ge 0, \quad \forall v \in V$$

dual: maximize $\sum_{e \in E} y_e$

subject to
$$\sum_{e\ni v}y_e\leq 1, \quad \forall v\in V$$

$$y_e \ge 0, \quad \forall e \in E$$

Primal:

min $c^{\mathrm{T}}x$

s.t. $Ax \ge b$

$$x \ge 0$$

Dual:

 $\max b^{T}y$

s.t. $A^{\mathrm{T}}y \leq c$

$$y \ge 0$$

Strong Duality Theorem:

Primal LP has an optimal solution x^*

 \iff Dual LP has an optimal solution y^*

$$\boldsymbol{b}^{\mathrm{T}} \mathbf{y}^* = \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}^*$$

Complementary Slackness

Primal: min $c^{T}x$

s.t. $Ax \ge b$

$$x \ge 0$$

Dual: $\max b^{\mathrm{T}} y$

s.t. $A^{\mathrm{T}}y \leq c$

$$y \ge 0$$

Theorem (Complementary Slackness Condition):

For feasible primal solution x and feasible dual solution y, x and y are both optimal iff:

•
$$\mathbf{y}^{\mathrm{T}}(A\mathbf{x} - \mathbf{b}) = 0;$$

•
$$\mathbf{x}^{\mathrm{T}}(\mathbf{c} - A^T \mathbf{y}) = 0$$
;

•
$$\mathbf{y}^{\mathrm{T}}(A\mathbf{x} - \mathbf{b}) = 0; \quad \forall i : y_i > 0 \implies A_i \cdot \mathbf{x} = b_i$$

•
$$\mathbf{x}^{\mathrm{T}}(\mathbf{c} - A^{T}\mathbf{y}) = 0; \quad \forall j : x_{j} > 0 \implies A_{\cdot j}^{\mathrm{T}}\mathbf{y} = c_{j}$$

Complementary Slackness

Primal: min $c^{T}x$

s.t. $Ax \ge b$

 $x \ge 0$

Dual: $\max b^{T}y$

s.t. $A^{\mathrm{T}}y \leq c$

 $y \ge 0$

 \forall feasible primal solution x and feasible dual solution y:

$$y^{\mathrm{T}}b \leq y^{\mathrm{T}}Ax \leq c^{\mathrm{T}}x$$

x and y are both optimal \iff $y^Tb = y^TAx = c^Tx$

$$y^{\mathrm{T}}b = y^{\mathrm{T}}Ax = c^{\mathrm{T}}x$$

$$\forall i: y_i > 0 \implies A_i \cdot x = b_i \\ \forall j: x_j > 0 \implies A_j \cdot y = c_j$$

$$\Leftrightarrow \begin{array}{c} \bullet \quad \mathbf{y}^{\mathrm{T}}(A\mathbf{x} - \mathbf{b}) = 0; \\ \bullet \quad \mathbf{x}^{\mathrm{T}}(\mathbf{c} - A^T\mathbf{y}) = 0; \end{array}$$

$$\forall j: x_j > 0 \implies A_{\cdot j}^{\mathrm{T}} \mathbf{y} = c_j$$

$$\cdot \mathbf{y}^{\mathrm{T}}(A\mathbf{x} - \mathbf{b}) = 0;$$

•
$$\mathbf{x}^{\mathrm{T}}(\mathbf{c} - A^T \mathbf{y}) = 0;$$

Complementary Slackness

Primal: min $c^{T}x$

s.t. $Ax \ge b$

$$x \ge 0$$

Dual: $\max b^{\mathrm{T}} y$

s.t. $A^{\mathrm{T}}y \leq c$

$$y \ge 0$$

Theorem (Complementary Slackness Condition):

For feasible primal solution x and feasible dual solution y, x and y are both optimal iff:

•
$$\mathbf{y}^{\mathrm{T}}(A\mathbf{x} - \mathbf{b}) = 0;$$

•
$$\mathbf{x}^{\mathrm{T}}(\mathbf{c} - A^T \mathbf{y}) = 0$$
;

•
$$\mathbf{y}^{\mathrm{T}}(A\mathbf{x} - \mathbf{b}) = 0; \quad \forall i : y_i > 0 \implies A_i \cdot \mathbf{x} = b_i$$

•
$$\mathbf{x}^{\mathrm{T}}(\mathbf{c} - A^T \mathbf{y}) = 0; \quad \forall j : x_j > 0 \implies A_{\cdot j}^{\mathrm{T}} \mathbf{y} = c_j$$

Complementary Slackness

Primal: min $c^{T}x$

s.t. $Ax \ge b$

 $x \ge 0$

Dual: $\max b^{T}y$

s.t. $A^{T}y \leq c$

 $y \ge 0$

Theorem:

 \forall feasible primal solution x and feasible dual solution y,

if for
$$\alpha, \beta \geq 1$$
: $\forall i: y_i > 0 \implies A_i. x \leq \alpha b_i$

$$\forall j: x_j > 0 \implies A_{\cdot j}^{\mathrm{T}} \mathbf{y} \ge c_j / \beta$$

$$\implies c^{\mathrm{T}}x \leq \alpha\beta b^{\mathrm{T}}y \leq \alpha\beta OPT_{LP}$$

$$\sum_{j=1}^{n} c_j x_j \le \sum_{j=1}^{n} \left(\beta \sum_{i=1}^{m} a_{ij} y_i \right) x_j = \beta \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} x_j \right) y_i \le \alpha \beta \sum_{i=1}^{m} b_i y_i$$

Primal-Dual Schema

Primal min $c^{T}x$ IP: s.t. $Ax \ge b$ $x \in \mathbb{Z}_{\ge 0}^{n}$

Dual max $b^{T}y$ LP-Relax: s.t. $A^{T}y \leq c$ $y \geq 0$

Primal-Dual Schema:

Find a pair (x, y) of feasible primal *integral* solution x and feasible dual solution y such that for some $\alpha, \beta \geq 1$:

$$\forall i: y_i > 0 \implies A_i \cdot \mathbf{x} \le \alpha b_i$$

$$\forall j: x_j > 0 \implies A_{\cdot j}^{\mathrm{T}} \mathbf{y} \ge c_j / \beta$$

$$\implies c^{\mathrm{T}}x \leq \alpha\beta b^{\mathrm{T}}y \leq \alpha\beta OPT_{LP} \leq \alpha\beta OPT_{IP}$$

Primal-Dual Schema

Primal min $c^{T}x$ IP: s.t. $Ax \ge b$ $x \in \mathbb{Z}_{\ge 0}^{n}$

Dual max $b^{T}y$ LP-Relax: s.t. $A^{T}y \leq c$ $y \geq 0$

Primal-Dual Schema:

Raise a pair (x, y) of infeasible primal *integral* solution x and feasible dual solution y continuously, satisfying:

$$\forall i: y_i > 0 \implies A_i \cdot x \le \alpha b_i$$

$$\forall j: x_j > 0 \implies A_{\cdot j}^{\mathrm{T}} y = c_j$$

for some $\alpha \geq 1$

until x becomes feasible.

$$\implies c^{\mathrm{T}}x \leq \alpha b^{\mathrm{T}}y \leq \alpha OPT_{LP} \leq \alpha OPT_{IP}$$

$$\min \sum_{v \in V} x_v$$

$$\mathbf{s.t.} \quad \sum_{v \in e} x_v \ge 1, \quad \forall e \in E$$

$$x_v \in \{0, 1\}, \quad \forall v \in V$$

dual-relax:
$$\max_{e \in E} y_e$$

$$\mathbf{s.t.} \quad \sum_{e \ni v} y_e \le 1, \quad \forall v \in V$$

$$y_e \ge 0, \quad \forall e \in E$$

vertex cover:

constraints

 $\sum_{v \in e} x_v \ge 1$

 $x_{v} \in \{0,1\}$

variables

matching:

variables

 $y_e \in \{0,1\}$

constraints

$$\sum_{e\ni v} y_e \le 1$$

Find feasible (x, y) such that:

$$\forall e: y_e > 0 \implies \sum_{v \in e} x_v \le \alpha$$

$$\forall v: x_v > 0 \implies \sum_{e \ni v} y_e = 1$$

$$\min \sum_{v \in V} x_v$$

s.t.
$$\sum_{v \in e} x_v \ge 1$$
, $\forall e \in E$ $x_v \in \{0,1\}$, $\forall v \in V$

dual-relax:

$$\max \quad \sum_{e \in E} y_e$$

$$\mathbf{s.t.} \quad \sum_{e \ni v} y_e \le 1, \quad \forall v \in V$$

$$y_e \ge 0, \quad \forall e \in E$$

initially
$$x = 0$$
, $y = 0$;

while $E \neq \emptyset$: (constraints currently violated by x)

pick an $e \in E$ and raise y_e until $\sum_{e \ni v} y_e = 1$ for some $v \in V$; to 1 set $x_v = 1$ for all such $v \in e$ and remove all $e' \ni v$ from E;

$$\forall e: y_e > 0 \implies \sum_{v \in e} x_v \le \alpha = 2$$

$$\forall v: x_v > 0 \implies \sum_{e \ni v} y_e = 1$$

Complementary slackness:

$$\forall v: x_v > 0 \implies \sum_{e \ni v}^{v \in e} y_e = 1 \qquad \Longrightarrow \sum_{v \in V}^{v} x_v \le 2 \sum_{e \in E}^{v} y_e \le 2 OPT$$

$$\min \sum_{v \in V} x_v$$

s.t.
$$\sum_{v \in e} x_v \ge 1$$
, $\forall e \in E$ $x_v \in \{0,1\}$, $\forall v \in V$

dual-relax:

$$\max \quad \sum_{e \in E} y_e$$

$$\mathbf{s.t.} \quad \sum_{e \ni v} y_e \le 1, \quad \forall v \in V$$

$$y_e \ge 0, \quad \forall e \in E$$

initially
$$x = 0$$
, $y = 0$;

while $E \neq \emptyset$: (constraints violated by current x)

pick an $e \in E$ and raise y_e until $\sum_{e \ni v} y_e = 1$ for some $v \in V$; to 1

set $x_v = 1$ for all such $v \in e$ and remove all $e' \ni v$ from E; (constraints satisfied by current x)

$$\forall e: y_e > 0 \implies \sum_{v \in e} x_v \le \alpha = 2$$

$$\forall v: x_v > 0 \implies \sum_{e \ni v} y_e = 1$$

Complementary slackness:

$$\forall v : x_v > 0 \implies \sum_{e \ni v} y_e = 1 \qquad \Longrightarrow \sum_{v \in V} x_v \le 2 \sum_{e \in E} y_e \le 2 \text{ OPT}$$

$$\begin{array}{ll} \mathbf{min} & \displaystyle\sum_{v \in V} x_v \\ \\ \mathbf{s.t.} & \displaystyle\sum_{v \in e} x_v \geq 1, \quad \forall e \in E \\ \\ x_v \in \{0,1\}, \quad \forall v \in V \end{array}$$

dual-relax:

$$\begin{array}{ll} \max & \sum_{e \in E} y_e \\ \text{s.t.} & \sum_{e \ni v} y_e \le 1, \quad \forall v \in V \\ & y_e \ge 0, \quad \forall e \in E \end{array}$$

initially
$$x=\mathbf{0},y=\mathbf{0};$$
 while $E\neq\varnothing$: (constraints currently violated by x) pick an $e\in E$ and raise y_e until $\sum_{e\ni v}y_e=1$ for some $v\in V$; to 1 set $x_v=1$ for all such $v\in e$ and remove all $e'\ni v$ from E ;

Find a *maximal matching* $M \subseteq E$; return $C = \{v \mid \{u, v\} \in M\}$;

Primal-Dual Schema

 Modeling: Express the optimization problem as an Integer Linear Program (ILP) and write its dual relaxed program.

min
$$c^{T}x$$

s.t. $Ax \ge b$
 $x \in \mathbb{Z}_{\ge 0}$

min
$$c^{T}x$$

s.t. $Ax \ge b$
 $x \in \mathbb{Z}_{\ge 0}$

$$max b^{T}y$$
s.t. $y^{T}A \le c^{T}$

$$y \ge 0$$

- Initialization: Start from a primal infeasible solution x and a dual feasible solution y (usually x = 0, y = 0).
- Raise x and y until x becomes feasible:
 - raise ${m y}$ continuously until dual constraints getting tight $A_{\cdot j}^{\rm T} {m y} = c_j$;
 - raise corresponding x_i integrally so that $x_i > 0 \implies A_{i}^{T} y = c_i$.
- Verify complementary slackness condition:

$$y_i > 0 \implies A_i \cdot x \le \alpha b_i \implies c^T x \le \alpha b^T y \le \alpha OPT$$

Integrality Gap

• minimum vertex cover of G(V, E):

minimize
$$\sum_{v \in V} x_v$$
 subject to
$$\sum_{v \in e} x_v \ge 1, \qquad e \in E$$

$$x_v \in \{0,1\}, \quad v \in V$$

integrality gap =
$$\sup_{G} \frac{\text{OPT}(G)}{\text{OPT}_{\text{LP}}(G)}$$

For LP relaxation of vertex cover: integrality gap = 2

Facility Location

Facility Location

hospitals in Nanjing

Facility Location

Instance: set F of facilities; set C of clients; facility opening costs $f: F \rightarrow [0, \infty)$; connection costs $c: F \times C \rightarrow [0, \infty)$;

Find a subset $I \subseteq F$ of opening facilities and a way $\phi \colon C \to I$ of connecting all clients to them such that the total cost $\sum_{j \in C} c_{\phi(j),j} + \sum_{i \in I} f_i$ is minimized.

- uncapacitated facility location;
- **NP**-hard; AP(Approximation Preserving)-reduction from Set Cover;
- [Dinur, Steuer 2014] no poly-time $(1-o(1))\ln n$ -approx. algorithm unless $\mathbf{NP} = \mathbf{P}$.

Metric Facility Location

Instance: set F of facilities; set C of clients; facility opening costs $f: F \rightarrow [0, \infty)$; connection metric $d: F \times C \rightarrow [0, \infty)$; Find a subset $I \subseteq F$ of opening facilities and a way $\phi: C \rightarrow I$ of connecting all clients to them such that the total cost $\sum d_{\phi(j),j} + \sum f_i$ is minimized.

triangle inequality: $\forall i_1, i_2 \in F, \forall j_1, j_2 \in C$ $d_{i_1j_1} + d_{i_2j_1} + d_{i_2j_2} \geq d_{i_1j_2}$

 $j \in C$

Instance: set F of facilities; set C of clients; facility opening costs $f: F \rightarrow [0, \infty)$; connection metric $d: F \times C \rightarrow [0, \infty)$;

Find $\phi: C \rightarrow I \subseteq F$ to minimize $\sum_{j \in C} d_{\phi(j),j} + \sum_{i \in I} f_i$

$$\begin{array}{ll} \textbf{LP-relaxation:} & \min & \sum_{i \in F, j \in C} d_{ij} x_{ij} + \sum_{i \in F} f_i y_i \\ & \textbf{s.t.} & y_i \geq x_{ij}, \quad \forall i \in F, j \in C \\ & \sum_{i \in F} x_{ij} \geq 1, \qquad \forall j \in C \\ & x_{ij}, y_i \geq 0, \quad x_{ij}, y_i \in \{0,1\}, \quad \forall i \in F, j \in C \\ \end{array}$$

Primal:

$$\begin{array}{ll} \mathbf{min} & \sum_{i \in F, j \in C} d_{ij} x_{ij} + \sum_{i \in F} f_{i} y_{i} \\ \mathbf{s.t.} & y_{i} - x_{ij} \geq 0, \quad \forall i \in F, j \in C \\ & \sum_{i \in F} x_{ij} \geq 1, \quad \forall j \in C \\ & x_{ij}, y_{i} \in \{0, 1\}, \quad \forall i \in F, j \in C \end{array}$$

Dual-relax:

$$\begin{array}{ll} \mathbf{max} & \sum_{j \in C} \alpha_j \\ \mathbf{s.t.} & \alpha_j - \beta_{ij} \leq d_{ij}, \quad \forall i \in F, j \in C \\ & \sum_{j \in C} \beta_{ij} \leq f_i, \quad \forall i \in F \\ & \alpha_j, \beta_{ij} \geq 0, \quad \forall i \in F, j \in C \end{array}$$

 α_j : amount of value paid by client j to all facilities $\beta_{ij} \ge \alpha_i - d_{ij}$: payment to facility i by client j (after deduction)

complimentary slackness conditions: (if ideally held) $x_{ij} = 1 \Rightarrow \alpha_j - \beta_{ij} = d_{ij}; \qquad \alpha_j > 0 \Rightarrow \sum_{i \in F} x_{ij} = 1;$ (if ideally held) $y_i = 1 \Rightarrow \sum_{j \in C} \beta_{ij} = f_i; \qquad \beta_{ij} > 0 \Rightarrow y_i = x_{ij};$

$$\begin{array}{ll} \mathbf{min} & \sum_{i \in F, j \in C} d_{ij} x_{ij} + \sum_{i \in F} f_i y_i \\ \mathbf{s.t.} & y_i - x_{ij} \geq 0, \quad \forall i \in F, j \in C \\ & \sum_{i \in F} x_{ij} \geq 1, \quad \forall j \in C \\ & x_{ij}, y_i \in \{0, 1\}, \quad \forall i \in F, j \in C \end{array}$$

$$\begin{array}{ll} \mathbf{max} & \sum_{j \in C} \alpha_j \\ \mathbf{s.t.} & \alpha_j - \beta_{ij} \leq d_{ij}, \ \forall i \in F, j \in C \\ & \sum_{j \in C} \beta_{ij} \leq f_i, \ \forall i \in F \\ & \alpha_j, \beta_{ij} \geq 0, \ \forall i \in F, j \in C \end{array}$$

Initially $\alpha = 0$, $\beta = 0$, no facility is open, no client is connected; raise α_j for all client j simultaneously at a uniform continuous rate:

- upon $\alpha_j = d_{ij}$ for a closed facility i: edge (i,j) is paid; fix $\beta_{ij} = \alpha_j d_{ij}$ as α_j being raised;
- upon $\sum_{j \in C} \beta_{ij} = f_i$: tentatively open facility i; all unconnected clients j with paid edge (i, j) to facility i are declared connected to facility i and stop raising α_i ;
- upon $\alpha_j = d_{ij}$ for an *unconnected* client j and tentatively open facility i: client j is declared connected to facility i: and stop raising α_j ;

Initially $\alpha = 0$, $\beta = 0$, no facility is open, no client is connected; raise α_j for all client j simultaneously at a uniform continuous rate:

- upon $\alpha_j = d_{ij}$ for a closed facility i: edge (i,j) is paid; fix $\beta_{ij} = \alpha_j d_{ij}$ as α_j being raised;
- upon $\sum_{j \in C} \beta_{ij} = f_i$: tentatively open facility i; all unconnected clients j with paid edge (i, j) to facility i are declared connected to facility i and stop raising α_j ;
- upon $\alpha_j = d_{ij}$ for an *unconnected* client j and tentatively open facility i: client j is declared connected to facility i: and stop raising α_j ;
- The events that occur at the same time are processed in arbitrary order.
- Fully paid facilities are tentatively open: $\sum_{i \in C} \beta_{ij} = f_i$
- Each client is connected through a tight edge $(\alpha_j \beta_{ij} = d_{ij})$ to an open facility.
- Eventually all clients connect to tentatively opening facilities.

A client may have tight edges to more than one facilities: We might have opened more facilities than necessary!

Phase I:

Initially $\alpha = 0$, $\beta = 0$, no facility is open, no client is connected; raise α_j for all client j simultaneously at a uniform continuous rate:

- upon $\alpha_j = d_{ij}$ for a closed facility i: edge (i,j) is paid; fix $\beta_{ij} = \alpha_j d_{ij}$ as α_j being raised;
- upon $\sum_{j \in C} \beta_{ij} = f_i$: tentatively open facility i; all unconnected clients j with paid edge (i, j) to facility i are declared connected to facility i and stop raising α_j ;
- upon $\alpha_j = d_{ij}$ for an *unconnected* client j and tentatively open facility i: client j is declared connected to facility i and stop raising α_j ;

Phase II:

- "i is j's connecting witness"

construct graph G(V, E) where $V=\{\text{tentatively open facilities}\}$

and $\{i_1, i_2\} \in E$ if \exists client j s.t. both $\beta_{i_1 j} > 0$ and $\beta_{i_2 j} > 0$ in **Phase I**;

find a maximal independent set I of G and permanently open facilities in I;

For each client j: if the facility i with $\beta_{ij} > 0$ has $i \in I$ or j's connecting witness i has $i \in I$, then j is connected to i (directly connected); otherwise, client j is connected to an arbitrary $i' \in I$ that is adjacent (in G) to j's connecting witness i (indirectly connected);

Primal:

$$\begin{array}{ll} \mathbf{min} & \sum_{i \in F, j \in C} d_{ij} x_{ij} + \sum_{i \in F} f_{i} y_{i} \\ \mathbf{s.t.} & y_{i} - x_{ij} \geq 0, \quad \forall i \in F, j \in C \\ & \sum_{i \in F} x_{ij} \geq 1, \quad \forall j \in C \\ & x_{ij}, y_{i} \in \{0, 1\}, \quad \forall i \in F, j \in C \end{array}$$

Dual-relax:

$$\begin{array}{ll} \mathbf{max} & \sum_{j \in C} \alpha_j \\ \mathbf{s.t.} & \alpha_j - \beta_{ij} \leq d_{ij}, \quad \forall i \in F, j \in C \\ & \sum_{j \in C} \beta_{ij} \leq f_i, \quad \forall i \in F \\ & \alpha_j, \beta_{ij} \geq 0, \quad \forall i \in F, j \in C \end{array}$$

 α_j : amount of value paid by client j to all facilities $\beta_{ij} \ge \alpha_i - d_{ij}$: payment to facility i by client j (after deduction)

complimentary slackness conditions: (if ideally held)
$$x_{ij} = 1 \Rightarrow \alpha_j - \beta_{ij} = d_{ij}; \qquad \alpha_j > 0 \Rightarrow \sum_{i \in F} x_{ij} = 1;$$
 (if ideally held)
$$y_i = 1 \Rightarrow \sum_{j \in C} \beta_{ij} = f_i; \qquad \beta_{ij} > 0 \Rightarrow y_i = x_{ij};$$

Phase I:

Initially $\alpha = 0$, $\beta = 0$, no facility is open, no client is connected; raise α_j for all client j simultaneously at a uniform continuous rate:

- upon $\alpha_j = d_{ij}$ for a closed facility i: edge (i,j) is paid; fix $\beta_{ij} = \alpha_j d_{ij}$ as α_j being raised;
- upon $\sum_{j \in C} \beta_{ij} = f_i$: tentatively open facility i; all unconnected clients j with paid edge (i, j) to facility i are declared connected to facility i and stop raising α_j ;
- upon $\alpha_j = d_{ij}$ for an *unconnected* client j and tentatively open facility i: client j is declared connected to facility i: and stop raising α_j ;

Phase II:

"i is j's connecting witness" \vee

construct graph G(V, E) where $V = \{\text{tentatively open facilities}\}$ and $\{i_1, i_2\} \in E$ if $\exists \text{client } j \text{ s.t. both } \beta_{i_1 j} > 0 \text{ and } \beta_{i_2 j} > 0 \text{ in Phase I};$

find a maximal independent set I of G and permanently open facilities in I;

For each client j: if the facility i with $\beta_{ij} > 0$ has $i \in I$ or j's connecting witness i has $i \in I$, then j is connected to i (directly connected); otherwise, client j is connected to an arbitrary $i' \in I$ that is adjacent (in G) to j's connecting witness i (indirectly connected);

Denote by ϕ the output mapping from clients to facilities.

$$SOL = \sum_{i \in I} f_i + \sum_{\substack{j: \text{ directly} \\ \text{connected}}} d_{\phi(j)j} + \sum_{\substack{j: \text{ indirectly} \\ \text{connected}}} d_{\phi(j)j} \leq 3 \sum_{j \in C} \alpha_j \leq 3 \text{ } OPT$$

$$\leq \sum_{\substack{j: \text{ directly} \\ \text{connected}}} \alpha_j + \max_{\substack{j: \text{ indirectly} \\ \text{connected}}} \leq 3 \sum_{\substack{j: \text{ indirectly} \\ \text{connected}}} \alpha_j$$

Phase I:

Initially $\alpha = 0$, $\beta = 0$, no facility is open, no client is connected; raise α_j for all client j simultaneously at a uniform continuous rate:

- upon $\alpha_j = d_{ij}$ for a closed facility i: edge (i,j) is paid; fix $\beta_{ij} = \alpha_j d_{ij}$ as α_j being raised;
- upon $\sum_{j \in C} \beta_{ij} = f_i$: tentatively open facility i; all unconnected clients j with paid edge (i, j) to facility i are declared connected to facility i and stop raising α_j ;
- upon $\alpha_j = d_{ij}$ for an *unconnected* client j and tentatively open facility i: client j is declared connected to facility i: and stop raising α_j ;

Phase II:

construct graph G(V, E) where $V=\{\text{tentatively open facilities}\}$ and $\{i_1, i_2\} \in E$ if $\exists \text{client } j \text{ s.t. both } \beta_{i_1 j} > 0 \text{ and } \beta_{i_2 j} > 0 \text{ in Phase I};$ find a maximal independent set I of G and permanently open facilities in I;

For each client j: if the facility i with $\beta_{ij} > 0$ has $i \in I$ or j's connecting witness i has $i \in I$, then j is connected to i (directly connected); otherwise, client j is connected to an arbitrary $i' \in I$ that is adjacent (in G) to j's connecting witness i (indirectly connected);

$$SOL \leq 3 OPT$$

can be implemented discretely: in $O(m \log m)$ time, m=|F||C|

- sort all edges $(i,j) \in F \times C$ by non-decreasing d_{ij}
- dynamically maintain the time of next event by heap

Instance: set F of facilities; set C of clients; facility opening costs $f: F \rightarrow [0, \infty)$; connection metric $d: F \times C \rightarrow [0, \infty)$;

Find $\phi: C \rightarrow I \subseteq F$ to minimize $\sum_{j \in C} d_{\phi(j),j} + \sum_{i \in I} f_i$

$$\begin{aligned} & \min & \sum_{i \in F, j \in C} d_{ij} x_{ij} + \sum_{i \in F} f_i y_i \\ & \text{s.t.} & y_i - x_{ij} \geq 0, \qquad \forall i \in F, j \in C \\ & \sum x_{ij} \geq 1, \qquad \forall j \in C \end{aligned}$$

$$x_{ij}, y_i \in \{0, 1\}, \quad \forall i \in F, j \in C$$

- Integrality gap = 3
- no poly-time <1.463-approx. algorithm unless **NP=P**
- [Li 2011] 1.488-approx. algorithm

k-Median

Instance: set F of facilities; set C of clients; connection metric $d: F \times C \rightarrow [0, \infty)$;

Find a subset $I \subseteq F$ of $\leq k$ opening facilities and a way $\phi \colon C \to I$ of connecting all clients to them such that the total cost $\sum_{j \in C} d_{\phi(j),j}$ is minimized.