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Flow Network

° D|graph D(V, E) e source:s €V sinkireV

» Capacity c : E — R
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Network Flow

° D|graph D(V, E) e source:s €V sinkireV

» Capacityc : £ - R ’ JiE =Ry
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 Capacity: V(u,v) € E, [, <c,,

» Conservation: Yu € V\{s, t}, Z(W,u)eE Jou = Z(u,v)eE T



Network Flow
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Maximum Flow
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 Capacity: V(u,v) € E, [, <c,,

 Conservation: Yu € V\{s, t}, Z(W,u)eE Jou = Z(M,V)EE T
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Cut

 Digraph: D(V, E) e source:s €V sinkireV

» Capacity c : £ — R, eCut SCV,sel§,te&d

 Value of cut:

ueSVvES,(u,v)er



Minimum Cut
« Digraph: D(V, E) e source:s €V sinkkreV

- .
- o A
5

N\
1

» Capacity c : £ — R, eCut SCV,sel§,te&d
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 Value of cut:

ueSVvES,(u,v)er



Fundamental Theorem of Flow

» Flow network: D(V, E),s,t € V,andc : E - R,
e Max-flow = min-cut

» With integral capacity ¢ : £ — Z,, the maximum flow is
achieved by an integer flow f : £ — Z,,
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Fundamental Theorem of Flow

» Flow network: D(V, E),s,t € V,andc : E - R,
e Max-flow = min-cut

» With integral capacity ¢ : £ — Z,, the maximum flow is
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Fundamental Theorem of Flow

» Flow network: D(V, E),s,t € V,andc : E - R,
e Max-flow = min-cut

» With integral capacity ¢ : £ — Z,, the maximum flow is
achieved by an integer flow f : £ — Z,,
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Fundamental Theorem of Flow

» Flow network: D(V, E),s,t € V,andc : E - R,
e Max-flow = min-cut

» With integral capacity ¢ : £ — Z,, the maximum flow is
achieved by an integer flow f : £ — Z,,

* An elementary proof by augmenting path.

* An advanced proof by LP duality and integrality.



Estimate the Optima

minimize
subject to > 10
+
> 6
1l
T, Ta, x3 = 0 16

16 = OPT =< any feasible solution



Estimate the Optima

“Tra) > 10 Y1
} = 6y

10y; +6y2 < OPT

forany 4 + 5y, < 7
—UY1 T 2y2 < 1 Y1, Y2 > 0
Y1 — Y2 <




Primal-Dual

Primal: | mi
Dual: | max 10y + 6y vdual feasible
< primal OPT
.. w» oYy < 7 P
Y1+ 2y2 < 1
3y7. — ya < b LP & NPMcoNP

Y1, Y2 ZO



Diet Problem

calories | ¢ I R cn |healthy
vitarpin | ail A12 | *ooo e Aln > b
vitamin m Aml Adm2 | **°*°*°*"° Amn > bm
solution: x X2  eeeees Xn

minimize the calories while keeping healthy



Surviving Problem

price
vitarpin |

vitamin m

solution:

Cl 62 oooooo Cl’l
all alz oooooo all’l
aml amz oooooo amn
x1 xz oooooo xn

healthy

> b

> bm

minimize the total price while keeping healthy



Surviving Problem

min cTx
Ss.t. Ax>
x=>0
price Cl C2 |ttt Cn
vitarpin 1 aii A1D | seeoses Aln
Vitamin m Aml Am2 | **°*°*°"° UAmn
solution:  xj X2  eeeees X/,

healthy

> b

> b,

minimize the total price while keeping healthy



LP Duality

Primal: Dual
min c¢Tx max bTy
s.t. Ax=>b s.l. ATy<c
x>0 yz0
dual

solution: price Ci cp | v o
Y1 vitamin 1 aii A1y | e Aln
y.m vitamin m aml dm2 | **°*°*°° UAmn

m types of vitamin pills,
competitive to n natural foods,

healthy

> b

> bm

design a pricing system

max the total price



LP Duality
 Primal: N\ (Dual R

min c¢Tx > max bTy
st. Ax=b s.l. ATy<c

\_ xZOJ _ )’ZOJ

* Monogamy: dual(dual(LP)) = LP

* Weak duality:
» v feasible primal solution x and v feasible dual solution y

yIb < yTAx < c'x



LP Duality

min cTx

s.t. Ax=b

fPrimaI: N fDuaI: R

\_ xZOJ _ )’ZOJ

Weak Duality Theorem:

V feasible primal solution x and V feasible dual solution y:

bly <c'x




LP Duality
 Primal: N\ (Dual R

min cTx max bTy

\_ xZOJ _ )’ZOJ

Strong Duality Theorem:

Primal LP has an optimal solution x*

<= Dual LP has an optimal solution y*

bly* = ¢'x*




Maximum Flow

° D|graph D(V, E) e source:s €V sink:reV
0/1

» Capacity c : E — R

u:(s,u)eE
0/1
s.t. I 2 ¢y, V(u,v) € E
2 Fou = 2 Juv = Yu e V\{s,t}
w:(w,u)eE v:(u,v)EE

f =0 Vu,v) e £



Maximum Flow

o D|graph D(V, E) * source:. § & V sink: f € V
0/1
e C ityc: E—-> R
apactty ¢ 0 0/1 0/1 0/1
0/3
O (D
0/3
maxXx ]Cts 0/4 0/1 0/4
0/1
duv S.1. fuv > Gy V(u, v) ek
Py 2 Fou = 2 Jw <0 VueV

w:(w,u)EE’ vi(u,v)eE’

f, =0 V(u,v)y e E'=EU{(t,s)}



Dual LP
« Digraph: D(V, E)

» Capacity c : E — R

e source:s €V
0/1

0/1

Vu,v) e E

Vu,v) e £

sink:r€V

YueV



Minimum Cut

° D|graph D(V, E) e source: s €V Sink:__t eV
o N

» Capacity c : E — R

d,.p, € 10,1} Viu,v)€eE YueV



Primal-Dual Schema




LP-based Algorithms

* LP relaxation and rounding:
* Relax the Integer Linear Program to an LP.

* Round the optimal LP solution to a feasible integral
solution.

* Primal-dual schema:

* Find a pair of feasible solutions to the primal and dual
programs which are close to each other.

close to dual feasible solution = closer to OPT



Vertex Cover

Instance: An undirected graph G(V, E).
Find the smallest C' C V that intersects all edges.

Q)

> oo
incidence 2
graph

set cover instance
with frequency =2



Vertex Cover

Instance: An undirected graph G(V, E).
Find the smallest C' C V that intersects all edges.

Find a maximal matching M C E; v

return C = {v | {u,v} € M}; 2

« Matching = |M| < OPTy, @"\®

(weak duality)

« Maximality = (' is a vertex cover @

|C| <2|M| <20PTy,




Duality

@

2 X
@~
és5 V4
€5

vertex cover: constraints variables
2veeXy = 1 x&{0,1}

matching: variables constraints
Yee{oal} 2esvYe < 1



Duality

Instance: graph G(V,E)

primal: minimize ) =,
(vertex cover) vEV

subject to va >1, VeeFE

vee

Ly - {07 1}7 \V/’U - V

dual: maximize Zye
(matching) ecE

subjectto » y. <1, VeeV

eV

ye 6 {07 1}7 \Vle - E



Duality for LP-Relaxations

Instance: graph G(V,E)

primal: minimize ) =,
veV

subject to va >1, VeeFE

vEe

Ty=> 0, YoeV

dual: maximize Zye
ec kb

subjectto » y. <1, VeeV

eV

yeZ 07 \V/EB E E



LP Duality
fPrimaI: \ KDuaI: R

min cTx max bTy

\_ xZOJ _ )’ZOJ

Strong Duality Theorem:

Primal LP has an optimal solution x*

<= Dual LP has an optimal solution y*

bly* = ¢lx*




Complementary Slackness

KPrimaI: min cTx \

s.t. Ax=b

N r=0,

Gual: max bTy \
S.t. Aly<c¢

N y20,

X and y are both optimal iff:
- y'(Ax —b) = 0;
« x1(c — Aly) = 0;

Theorem (Complementary Slackness Condition):

For feasible primal solution X and feasible dual solution y,

. . T .
Viix;>0 = Ay =g




Complementary Slackness

KPrimaI: min cTx \

s.t. Ax=b

N r=0,

Gual: maxXx bTy \
S.t. Aly<c¢

N y20,

V feasible primal solution x and feasible dual solution y:

y'b <y'Ax <c'x

X and y are both optimal <=

J

y'b=y'Ax =c'x

|
+ y'(Ax — b) = 0;
- x(c —Aly) =0;




Complementary Slackness

KPrimaI: min cTx \

s.t. Ax=b

N r=0,

Gual: max bTy \
S.t. Aly<c¢

N y20,

X and y are both optimal iff:
- y'(Ax —b) = 0;
« x1(c — Aly) = 0;

Theorem (Complementary Slackness Condition):

For feasible primal solution X and feasible dual solution y,

. . T .
Viix;>0 = Ay =g




Complementary Slackness

\_

rPrimaI: min c¢Tx \ Gual: max bTy \

s.t. Ax=b s.t. ATy <c

v20) L y20,

Theorem:

if fora, f > 1 :

V feasible primal solution x and feasible dual solution y,

Vi:y, >0 = A, x < ab,
Vitx; >0 = A;rchj/,B

—c'x < aofb'y < aff OPT,,

n

j=1

m
Z CiXj < i <ﬂi aijyi) X = ﬂi i a;;i X | Vi < aﬂz by,
j=1 i=1 i=1 i=1




Primal-Dual Schema

\_

fPrimaI min c¢Tx \

er”J \_

g Dual max bTy )
Pl st Ax=b LP-Relaxig t. ATy <¢

y=0

feasible dua

Primal-Dual Schema:

Find a pair (x, y) of feasible primal integral solution X and

solution y such that for some a, / > 1:

Vi:y,>0 = A, x < ab,
Vjix; >0 ;"A y=¢lp

— ¢Tx < apbTy < afOPT,p, < affOPT;p



Primal-Dual Schema

\_

KPrimaI min c¢Tx \

Pl st Ax=b

xezgy

K Dual max bTy \

LP-ReIax:S_t_ ATy < ¢

N y20,

feasible dua

Primal-Dual Schema:

Raise a pair (x, y) of infeasible primal integral solution X and
solution y continuously, satisfying:

‘v’j:xj>0:"A}y=c- vz 1

J

until x becomes feasible.




(€D primal: | min ) =,
eV
€2 Y ;
N v S.t Za:v >1, Vee E
é3 vEe
<N\ r, € {0,1}, Yv eV
@ '® N y
\
es V49 dual-relax:| max > v
@ ec K
s.t. Ye <1, YoeV
vertex Cover: ;
constraints variables Yo >0, Vee E
SvceXy = 1 x»<E{0,1} - 7
matching: Find feasible (x, y) such that:
variables constraints

yeE{O,l} Eeavye < 1

Vwwix,>0 = ) _y,=1

eV




primal. dual-relax:

r N 4 )
min ", max
veV eckE
st. > 2, >1, Ve€E st. Y Yy <1, YWweV
vee EDV
r, €{0,1}, YvoeV Ye >0, Vee E
N y _ Y

initially x = 0,y = 0;
while E # @: (constraints currently violated by x)
pick an e € £ and raise y, etit=e-

set x, = 1 for all such v & ¢ and remove all ¢’ 5 v from E;

Complementary

Ve:y,>0 = Y x <a=2| slackness:

vee V —

y, =1 — vas22y6S20PT
€

veV eck

Vwix, >0 = )

eV




primal. dual-relax:

r A ~ R
min Z% max Zye
veEV eck
Nz, >1, VeeE st. Y ye <1, YWweV
vee XY
r, €{0,1}, YvoeV Ye >0, Vee E
- y g Y,

initially x = 0,y = 0;
while £ # @: (constraints violated by current x)

pick an e € E and raise y, aptit= sy seandfOr-0O MGGV

set x, = 1 for all such v & ¢ and remove all ¢’ 3 v from E;
(constraints satisfied b)Lcj_u:r;PnT X)

to 1

Complementary

Ve:y,>0 = > _ x,<a=2| slackness:
y=1 = 2%<2)y S20PT
€

veV eck

Vvix, >0 = )

eV




primal. dual-relax:

4 ~N s ~N
min 3" max 3.
veV eckE
st. > 2, >1, Ve€E st. Y Yy <1, YWweV
vee XY
r, €{0,1}, YvoeV Ye >0, Vee E
\_ Y, g V,

initially x = 0,y = 0;
while E # @: (constraints currently violated by x)
pick an e € £ and raise y, etit=e-

.,"‘.“ e O D i p oy v mma g N Al P e L S S
set x, = 1 for all such v & ¢ and remove all ¢’ 5 v from E;

Find a maximal matching M C E;
return C = {v | {u, v} € M};




Primal-Dual Schema

Modeling: Express the optimization problem as an Integer
Linear Program (ILP) and write its dual relaxed program.

- R
min clx

s.t. Ax=>Db
L XEZZOJ

" max bTy |
s.t. ylIA<ct?
=0

Initialization: Start from a primal infeasible solution X and a
dual feasible solutiony (usuallyx = 0,y = 0).

Raise X and y until X becomes feasible:

o raise y continuously until dual constraints getting tight A.JT. y =c¢j;

J

« raise corresponding X; integrally so that X; > 0 = A;Fy = (-

Verify complementary slackness condition:

y, >0 = A, x<abp,

— c¢'x<ab'y <aOPT



Integrality Gap

* minimum vertex cover of G(V, E):

8 5 A

minimize X,

vevV
subject to va > 1, ec E

vee

K x, € {0,1}, vEVJ
integrality gap OF1G)
= sup
¢ OP1ip(G)

« For LP relaxation of vertex cover: integrality gap = 2



Facility Location



Facility Location
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Facility Location

facilities: - /[Z]f’\ )R

Instance: set F of facilities; set C of clients;
facility opening costs f: F'— [0, *);
connection costs c¢: FxC— |0, );

Find a subset ICF of opening facilities and a way

¢: C—I of connecting all clients to them such that

the total cost ) "cy(;); + » f; is minimized.
jec icl

* uncapacitated facility location;

e NP-hard; AP(Approximation Preserving)-reduction from Set Cover;
* [Dinur, Steuer 2014] no poly-time (1-0(1))In n-approx. algorithm unless NP = P.



Metric Facility Location

facilities: - /[ﬂf’\ )R

Instance: set F of facilities; set C of clients;
facility opening costs f: F'— [0, «);
connection metric d: FxC— [0, «);

Find a subset ICF of opening facilities and a way

¢: C—I of connecting all clients to them such that

the total cost ) “d,;) ; + » f; is minimized.
jec icl

i1 I

triangle inequality: Vii, i3 € F, V51,52 € C "
di1j1 T dizjl T dizjz > d’iljz @ @



Instance: set I of facilities; set C of clients;
facility opening costs f. F— [0, ©);
connection metric d: FxC— [0, );

Find ¢: C—I1 C F to minimize Y_dei)i+ Y/

jecC iel

y; € {0,1} indicates i € 1

facilities:

clients: Cg/ e o

LP-relaxation: ~ min Y dizig+ Y fiyi

S.t. yZZZL‘w, \V/iGF,jEC
ZCEZ'J'ZL Viel

Vie F.jeC




facilities: ’\ . /ﬂfz\ ..
clients: Cg/ o oo

Primal:
r °
Mmin Z di;jTi; + Z JiYi
icF,jEC ieF
S.t. yi—ZEz’jZO, Vie F,j€(C
inj >1, VvjeC
1€F
Tij,Yi € {0,1}, Vi € F,] c(C
Y

OL]‘:

dij | B, j

Dual-relax:

(" )
MaxXx ZO&j
jel
S.t. Oéj—ﬂijgdij, \V/iEF,jEC
Zﬁz‘j <fi, VieF
jel
04375@3207 ViEFajEC

. _/

amount of value paid by client j to all facilities

pii= a;- d;: payment to facility i by client j (after deduction)

complimentary
slackness conditions:

(if ideally held)

xij =1 = a;- fij = dy;
yi=l = 2> jec ﬁij = fi;

aj>0=Xierxj=1,;
pij >0 = yi= xij;



facilities: ’\ .o

clients: Cg/ ¢ oo

\

-~
min Z dijTij ‘I‘Zfiyi
iCF,jeC icF
St yi—x;; >0, VieFjeC
Zﬂfij >1, VjeC
i€F

zij,yi € {0,1}, Vie F,jeC

_/

Q;
- R
max » aj
jeC
S.t. Oéj—ﬁijgdij, \V/’iEF,jEC
jeC
o, B;: >0 YeF jel
N i Pig 2 Y

Initially & = 0, # = 0, no facility is open, no client is connected;
raise a;for all client j simultaneously at a uniform continuous rate:
e upon a; = d;; for a closed facility i edge (i, j) is paid; fix p; = a; — d;; as @; being raised;

e upon ..ZJE C p;; =J; tentatively open facil?t.y i;.all unconnec.t(-::d clients j with paid edge (i, j)
to facility 7 are declared connected to facility i and stop raising a;;

e upon ; = d;; for an unconnected client j and tentatively open facility i: client j is declared

connected to facility i:and stop raising a;;

J




facilities: ’\ )@ /.\
L0

Initially & = 0, # = 0, no facility is open, no client is connected;
raise a; for all client j simultaneously at a uniform continuous rate:
e upon a; = d;; for a closed facility i edge (i, j) is paid; fix p; = a; — d;; as @; being raised;
e upon Z Cﬁl] = f;: tentatively open facility i; all unconnected clients j with paid edge (i, j)
to faC|I|ty I are declared connected to facility i and stop raising a;;
e upon ; = d;; for an unconnected client j and tentatively open facility i: client j is declared

J
connected to facility i:and stop raising a;

* The events that occur at the same time are processed in arbitrary order.
e Fully paid facilities are tentatively open: ZjeC B = f;
e Each client is connected through a tight edge (a; — f;; = d;;) to an open facility.

* Eventually all clients connect to tentatively opening facilities.

A client may have tight edges to more than one facilities:
We might have opened more facilities than necessary!




facilities: ’\ ' )fl\ ' /.\

dij | By,
clients: Cg/ \@/\6
Phase I:

Initially & = 0, f = 0, no facility is open, no client is connected,
raise a;for all client j simultaneously at a uniform continuous rate:
e upon a; = d;; for a closed facility i edge (i, j) is paid; fix p; = a; — d;; as @; being raised;
* upon Zje - Pij = Ji tentatively open facility i; all unconnected clients j with paid edge (i, j)
to facility 7 are declarediconnected to facility ijand stop raising a;

e upon a; = d;; for an unconnected client j aRd tentatively open facility i: client j is declared
connected to facility i{and stop raising a; ; °

<‘
Phase 11: — “[ is J's connecting witness”

construct graph G(V, ') where V={tentatively open facilities }
and {i},1,} € E if Iclient j s.t.both f; ;> 0 and f; ; > 0 in Phase I;

find a maximal independent set I of G and permanently open facilities in /;

For each client j: if the facility i with ﬁij > 0 has i € [ or j’s connecting witness i has i € I,

then j is connected to i (directly connected); otherwise, client j is connected to an arbitrary
i" € I that is adjacent (in G) to j’s connecting witness i (indirectly connected);




facilities: ’\ . /ﬂfz\ ..
clients: Cg/ o oo

Primal:
r °
Mmin Z di;jTi; + Z JiYi
icF,jEC ieF
S.t. yi—ZEz’jZO, Vie F,j€(C
inj >1, VvjeC
1€F
Tij,Yi € {0,1}, Vi € F,] c(C
Y

OL]‘:

dij | B, j

Dual-relax:

(" )
MaxXx ZO&j
jel
S.t. Oéj—ﬂijgdij, \V/iEF,jEC
Zﬁz‘j <fi, VieF
jel
04375@3207 ViEFajEC

. _/

amount of value paid by client j to all facilities

pii= a;- d;: payment to facility i by client j (after deduction)

complimentary
slackness conditions:

(if ideally held)

xij =1 = a;- fij = dy;
yi=l = 2> jec ﬁij = fi;

aj>0=Xierxj=1,;
pij >0 = yi= xij;



Phase I:
Initially & = 0, # = 0, no facility is open, no client is connected,
raise a;for all client j simultaneously at a uniform continuous rate:
o upon a; = d;; for a closed facility i edge (i, j) is paid; fix p; = a; — d;; as @; being raised;
e upon Z ,BU = f;: tentatively open facility i; all unconnected cllents j W|th paid edge (i, j)
to faC|I|ty i are declarediconnected to facility z;and stop raising o;

e upon a; = d;; for an unconnected client j and tentatively open facility i: client j is declared
connected to facility l%iﬂd stop raising o; . .

Phase II: — “[ is j's connecting witness”
construct graph G(V, E') where V={tentatively open facilities }

and {i},i,} € E'if dclientj s.t.both f; . > 0 and f; ;> 0 in Phase [;

find a maximal independent set I of G and permanently open facilities in /;

SsoulIm

For each client j: if the facility i with f,; > 0 has i € [ or j's connecting witness i has i € [,

then j is connected to i (directly connected); otherwise, client j is connected to an arbitrary
i" € I that is adjacent (in (G) to j’s connecting witness i (indirectly connected);

Dnote bgb the output mapping from clients to facilities.

; J: |nd|rectly

triangle inequality <3 Z .

+ maximality of / ]
Jj: directly J:indirectly
connected connected

Jj: directly




Phase I:
Initially & = 0, # = 0, no facility is open, no client is connected,
raise a;for all client j simultaneously at a uniform continuous rate:
o upon a; = d;; for a closed facility i edge (i, j) is paid; fix p; = a; — d;; as @; being raised;
e upon Zje - Pij = Ji tentatively open facility 7; all unconnected clients j with paid edge (i, j)
to facility 7 are declared connected to facility i and stop raising a;

e upon ; = d;; for an unconnected client j and tentatively open facility i: client j is declared

connected to facility i: and stop raising a;;

Phase 11:
construct graph G(V, E') where V={tentatively open facilities }

and {i},i,} € E'if dclientj s.t.both f; . > 0 and f; ;> 0 in Phase [;

find a maximal independent set I of G and permanently open facilities in /;

For each client j: if the facility i with f,; > 0 has i € [ or j's connecting witness i has i € [,

then j is connected to i (directly connected); otherwise, client j is connected to an arbitrary
i' € I that is adjacent (in G) to j’s connecting witness i (indirectly connected);

SOL <3 OPT

can be implemented discretely: in O(m log m) time, m=IFIIC]
e sort all edges (i,j) € FXC by non-decreasing d;
* dynamically maintain the time of next event by heap




Instance: set I of facilities; set C of clients;
facility opening costs f. F— [0, ©);
connection metric d: FxC— [0, );

Find ¢: C—I C F to minimize ) _doiy;+ ) [

jel el

facilities: e /[E\ )R

min Z di;T;i; + Z fiyi * Integrality gap = 3
ieF,jeC ek * no poly-time <1.463-approx.
s.t. y; —xi; >0, Viec F,j€C  algorithm unless NP=P

inj >1, VieC * [Li QQ._I] 1.488-approx.
algorithm

iCF
zij,yi €{0,1},  Vie F,jeC




k-Median

facilities: - /[Z]f’\ )R

Instance: set F of facilities; set C of clients;
connection metric d: FxC— [0, );

Find a subset ICF of <k opening facilities and a
way ¢: C—1I of connecting all clients to them

such that the total cost » "4y, ; is minimized.
jel



