Advanced Algorithms

Hashing and Sketching

#F—i@ Nanjing University, 2023 Fall

Balls into Bins

Balls into Bins (Random Function)

e 5 balls into m bins:

[m]

mmm”

* uniform random function: * .,
1 1 R
Pr(f] = —
mn

n m
‘[=1]‘ uniform random function

f:n] = [m]

1 3
Pr|assignment| = —--- R
._-‘:\-‘ "7"")

1-1 birthday

on-to coupon collector

pre-image size occupancy

Birthday Paradox

Paradox:

(i) a statement that leads to a contradiction;
(ii) a situation which defies intuition.

In a class of m>57 students, with >99% probability,
there are two students with the same birthday.

Assumption: birthdays are uniformly & independently distributed.

n balls are thrown into m bins:
event &: each bin receives < 1 balls

Birthday Paradox

n balls are thrown into m bins:
event &: each bin receives < 1 balls

[n] = [m] Cm(m—1)e(m—n+ 1)

Pr[&] =

(2] = [m]| m

110 -5)

Birthday Paradox

n balls are thrown into m bins:
event &: each bin receives < 1 balls

Suppose that balls are thrown one-by-one:

Pr[#] = Pr[all n balls are thrown into ditinct bins]

chain = HPr[the ith ball is thrown into an empty bin |

rule i=1
first i — 1 balls are thrown into ditinct bins]

-T1(-57) -1I(-+)

Birthday Paradox

n balls are thrown into m bins:
event &: each bin receives < 1 balls

(Taylor: 1 —x ~ e forx = o(1))

n—1 . n—1
l i
PI'[%] — I I (1 _;) ~ c " =~ e—n2/2m

=0

n—1 :
Formally: e~(+e(m2m < (1 _ L) < e—(1=o(L)n*/2m

, m
(assuming n < m) i=0

1
when n = \/zmlnp —> Pr[&] = (1 %= o(1))p

Birthday Paradox

n balls are thrown into m bins:
event &: each bin receives < 1 balls

1 08 |
n— .
H ! Zo
Pl'[g] — (1 — —) §0 .
m g
l:O 0.2+ |
o
Forma”y: e_(1+0(1))n2/2m] o 0.02;
s,
(assuming n K m) 202 . . , , |
10 20 30 40 50 80

m

1
when n = \/zmlnp — Pr[é&] =1 X o(l))p

Hash Tables & Filters

Data Structure for Set

Data: a set $ of nitems x, x,, ...,x, € U = [N]
Query: anitemx € U

Determine whether x € §.

 Space cost: size of data structure (in bits)
N

n

. entropy of a set: log (> = (O(nlog N) bits (when N > n)

 Time cost: time to answer a query (in memory accesses)
 Balanced tree: O(nlog N) space, O(log n) time
» Perfect hashing: O(nlog N) space, O(1) time

Perfect Hashing

S=1{a,b,c,d,e,f} C|N] of sizen

uniform
random

Table T:

no collision
h| [N] — [m] Prperfect] ~ e 72" > 1/2
_ m = n2
e cld
bl |d f Birthday

SUHA: Simple Uniform Hash Assumption

Query(x):

retrieve hash function 7;

check whether TTA(x)] = x;

Universal Hashing

Universal Hash Family (Carter and Wegman 1979):

A family #Z of hash functions in U — [m] is k-universal
if for any distinct x;, ..., x;, € U,

h};{ [h(x1) S h(xk)] < —

Moreover, # is strongly k-universal (k-wise independent)
if for any distinct x;, ...,x, € Uand any y, ..., ¥, € [m],

he# mk .

- -
1
| i=1 |

k-Universal Hash Family

hash functions h : U — [m]

* Linear congruential hashing:

« Represent U C Zp for sufficiently large prime p
e h,,(x) = ((ax + b) mod p) mod m

L H = {ha,b la€ Z\(0}.b e zp}

Theorem:
The linear congruential family #Z is 2-wise independent.

« Degree-k polynomial in finite field with random coefficients
- Hashing between binary fields: GF(2") — GF(2))
h, ,(x) = (a*x+b)>>(w-1)

Blrthday Paradox (pairwise independence)

n balls are thrown into m bins: by 2-universal hashing
event &: each bin receives < 1 balls

e Location of n balls: X, X,,...,X &€ [m]
e Total # of collisions:
Y=) I[X, = X]
i<j
* Linearity of expectation:

(Y] =) Pr(X, = X]] < (Z)%

I<J 2-universal

Markov’s Inequality

Markov’s Inequality

PriX > 1] <

For nonnegative random variable X, for any ¢ > 0,

ElX]

LetY={1 X210, yo
0 o.w.

PriX >t =E|Y] <L

~ |
]
o
s

p(X= a)

Blrthday Paradox (pairwise independence)

event &: each bin receives < 1 balls

n balls are thrown into m bins: by 2-universal hashing

Location of n balls: X, X,,...,X € [m]
Total # of collisions:
Y=) I[X, = X]
i<j
Linearity of expectation:

E[Y] = Y PrlX; = X]| < (Z)%

I<J 2-universal

n <a/2me

when

Markov’s inequality: Pr[—~&] =Pr[Y > 1] < E[Y] fe€

Perfect Hashing

S=1{a,b,c,d,e,f} C|N] of sizen

2-universal | h

N| — |m Pr[imperfect] =

nn—1)

2m

m

Table T: | e

bl dl /] |c

A

For 2-universal family #Z from [N] to [m], if m > <
of size n, there is an h € # that cause no collisions over S.

n
2

), for any S C [NV]

Query(x):

retrieve hash function 7;

check whether TTA(x)] = x;

FKS Perfect Hashing

(Fredman, Komlos, Szemeredi, 1984)
Data: a set $ of nitems x, x,, ...,x, € U = [N]
Query: anitemx € U

Determine whether x & §.

m=30, p=31, n=6, §=1{2,4,5, 15,18, 30|

0123 4 5 6
2 7 10{16]22
k

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
11114 211 [|5}12 213 18 | 30 1 {1115
W k! | .1k’ |W5|k | Wel k7

R e——— e - o m——

« Space cost: O(n) words (each of O(log N) bits)

« Time cost: O(1) for each query in the worst case

FKS Perfect Hashing

primary hashing | j | [N| — |n]

perfect hashing for B, perfect hashing for B,

FKS Perfect Hashing

Set § C |[N] of size n
Query(x):
h [N] N [n] retrieve primary hash #;
goto bucket i = h(x);
By Byeeoeooooono B, retrieve secondary hash /;
L e oooowoeoes check whether T[h(x)] = x;
/r ‘\\ R
nl ... T T 790
R/_/ H/_/
perfect hashing for B perfect hashing for B,
using space | B, |2 using space | B, |2

e 4 hy,..., 1, from 2-universal family s.t. /; is perfect for B; for all i

Collision Number

n balls are thrown into m bins by 2-universal hashing

e Location of n bins: X, X,, ...,X € [m]
Collision #: ¥ = Z I1X; = X]]

i<j
* Linearity of expectation:

(Y] =) PrlX; = X]] < (’;)%

i<j 2-universal
« Size of the i-th bin: | B; |

o (IBl) 1 & _ nin—1)
Y—l;(, >—5§|B,-|<|B,-|—1>=> E| Y 1B =

| =1

FKS Perfect Hashing

Set § C |[N] of size n

Query(x):
h [N] N [n] retrieve primary hash #;
goto bucket i = h(x);
By Byeeoeooooono B, retrieve secondary hash /;
b e eeococsos check whether T[h(x)] = x;
/ | .\\ .\
hl h2 hn
perfect hashing for B perfect hashing for B,
using space | B, |2 using space | B, |2

« Jh from a 2-universal family s.t. the total space cost is O(n)

FKS Perfect Hashing

(Fredman, Komlos, Szemeredi, 1984)
Data: a set $ of nitems x, x,, ...,x, € U = [N]
Query: anitemx € U

Determine whether x & §.

m=30, p=31, n=6, §=1{2,4,5, 15,18, 30|

0123 4 5 6
2 7 10{16]22

/kl/ \'\,
g8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
7 _

1|1 2111512 213 18130 11 fts
W k7 | Wil k7 | Ws| k' A Wel k7
BT SR e e ————

« O(nlog N) space, O(1) time in the worst case

* Dynamic version: [Dietzfelbinger, Karlin, Mehlhorn, Meyer
auf der Heide, Rohnert, Tarjan, 1984]

Optimal Dynamic Perfect Hashing
(Upper Bound, STOC 2022)

On the Optimal Time/Space Tradeoff for Hash Tables

Michael A. Bender Martin Farach-Colton John Kuszmaul
Stony Brook University Rutgers University Yale University
William Kuszmaul Mingmou Liu
MIT NTU
Abstract

For nearly six decades, the central open question in the study of hash tables has been to determine
the optimal achievable tradeoff curve between time and space. State-of-the-art hash tables offer the
following guarantee: If keys/values are ®(logn) bits each, then it is possible to achieve constant-time
insertions/deletions/queries while wasting only O(loglogn) bits of space per key when compared to
the information-theoretic optimum. Even prior to this bound being achieved, the target of O(loglogn)
wasted bits per key was known to be a natural end goal, and was proven to be optimal for a number of
closely related problems (e.g., stable hashing, dynamic retrieval, and dynamically-resized filters).

This paper shows that O(loglogn) wasted bits per key is not the end of the line for hashing. In fact,
for any k € [log* n, it is possible to achieve O(k)-time insertions/deletions, O(1)-time queries, and

O(log® n) = O | loglog---logn
&

wasted bits per key (all with high probability in n). This means that, each time we increase inser-
tion/deletion time by an additive constant, we reduce the wasted bits per key exponentially. We further
show that this tradeoff curve is the best achievable by any of a large class of hash tables, including any
hash table designed using the current framework for making constant-time hash tables succinct.

Optimal Dynamic Perfect Hashing
(Lower Bound, FOCS 2023)

Tight Cell-Probe Lower Bounds for Dynamic Succinct Dictionaries

Tianxiao Li * Jingxun Liang T Huacheng Yu * Renfei Zhou 3

Abstract

A dictionary data structure maintains a set of at most n keys from the universe [U] under
key insertions and deletions, such that given a query z € [U], it returns if z is in the set. Some
variants also store values associated to the keys such that given a query x, the value associated
to x is returned when z is in the set.

This fundamental data structure problem has been studied for six decades since the intro-
duction of hash tables in 1953. A hash table occupies O(nlogU) bits of space with constant
time per operation in expectation. There has been a vast literature on improving its time and
space usage. The state-of-the-art dictionary by Bender, Farach-Colton, Kuszmaul, Kuszmaul
and Liu [BFCK*22| has space consumption close to the information-theoretic optimum, using
a total of

log (Z) + O(nlog®™ n)

bits, while supporting all operations in O(k) time, for any parameter k¥ < log™n. The term
O(log™ n) = O(log - - - log n) is referred to as the wasted bits per key.
N———

k
In this paper, we prove a matching cell-probe lower bound: For U = n!t®(1) any dictionary
with O(log(k) n) wasted bits per key must have expected operational time Q(k), in the cell-probe
model with word-size w = ©(log U). Furthermore, if a dictionary stores values of ©(log U) bits,
we show that regardless of the query time, it must have Q(k) expected update time. It is worth
noting that this is the first cell-probe lower bound on the trade-off between space and update
time for general data structures.

Data Structure for Set

Data: a set $ of nitems x, x,, ...,x, € U = [N]
Query: anitemx € U

Determine whether x € §.

* Space cost: size of data structure (in bits)
N

. entropy of a set: log (
n

) = O(nlog N) bits (when N > n)

« Sketch: lossy representation of $ using < entropy space

Approximate Set

Data: a set $ of nitems x, x,, ...,x, € U = [N]
Query: anitemx € U

Answer whether x € S with bounded error.

e uniform hash function i : U — [m] (m to be fixed)

Data Structure: bit array A € {0,1}"™

A is initialized to all 0’s:
for each x; € S: set Al[h(x;)] = 1;
Query x: answer “yes” iff A[h(x)] = 1

e X € S: always correct
+ x & S: false positive Pr |[A[h(x)] = 1] =1 - (1 = I/m)" = 1 — ™™

Bloom Filters Bioom 1970

Data: a set $ of nitems x, x,, ...,x, € U = [N]
Query: anitemx € U

Answer whether x € S with bounded error.

e uniform & independent hash function hy, ..., h, : U = [m]
(k and m to be fixed)

Data Structure: bit array A € {0,1}"

A is initialized to all 0’s;
for each x; € S: set A[h(x;))] = 1 forall 1 < j < k;

Query x: “yes” iff A[hj(x)] =1lforalll <j<k

Bloom Filters Bioom 1970

e uniform & independent hash function hy, ..., h, : U = [m]

Data Structure: bit array A € {0,1}"

A is initialized to all 0’s;
for each x; € §: setA[hj(xl-)] =1foralll <j<Kk

Query x: “yes” iff A[hj(x)] =]1foralll <j<k

hl hQ hg y T <

S

Of1(O0f1(L]JLT]O0O]10JOfO|Of1T(Of1T(O]JO0f1]O

S —

M U false positivel

Data:set S C Uofsizen Query:x e U

» uniform & independent hash function Ay, ..., b, : U = [m]

Data Structure: bit array A € {0,1}"

A is initialized to all 0’s;
foreach x; € S:set Alh(x;)] = 1 forall 1 < j <k

Query x: “yes” iff A[h(x)] = 1 forall 1 < j <k

¢ x € §S: always correct

e x & §: false positive

Pr|V1<)<k: Alh@]=1]

— (Pr [A[hj(x)] = 1])k = <1 — Pr [A[hj(X)] = O])k

< (1 _ (1 _ l/m)kn)k ~ (1 _ e—kn/m)k

v.xe U
oy U — [m]

False Positiv¢
=3 o o
Q Q
(4] [u)]

|

o .
f
T

alll <j <k
<Jj<k

e x & §: false positive
choosek =cIn?2

Pr|V1<)<k: Alh@]=1] o

— (Pr [A[hj(x)] = 1])k = (1 — Pr [A[hj(X)] = O])k

< (1= = Ummk » (1 —efnm) _o=cm2 < 6185y

Bloom Filters Bioom 1970

Data: a set $ of nitems x, x,, ...,x, € U = [N]
Query: anitemx € U

Answer whether x € S with bounded error.

« uniform & independent hash function hy, ..., 1, : U — [m]

Data Structure: bit array A € {0,1}"

A is initialized to all 0’s;
for each x; € S: set Alh(x;))] = 1;
Query x: answer “yes” iff A[h(x)] = 1

e choosek =cln2 andm = cn
e space cost: m = cn bits, timecost:k =clIn?2
» false positive < (0.6185)°

Distinct Elements
(Frequency Moments)

Count Distinct Elements

Input: a sequence x, X, ..., x, € U = [V}

Output: an estimation of 7 = {xl,xz, ...,xn}

 Data stream model: input data item comes one at a time

X11X2 Xip|e oo o o

A

SNV ITNEY)

_,an estimation of
fx.a0x) = ‘ {xl,xz, ...,xn}

* Naive algorithm: store all distinct data items using £2(z log N) bits

» Sketch: (lossy) representation of data using space < 7

* Lower bound (Alon-Matias-Szegedy): any deterministic (exact or
approx.) algorithm must use €2(N) bits of space in the worst case

Count Distinct Elements

Input: a sequence x, X, ..., x, € U = [V}

Output: an estimation of 7 = {xl,xz, ...,xn}

 Data stream model: input data item comes one at a time

X1 xz x,,r o oleo o o
A
et | —> /

* (e, 0)-estimator: randomized variable 4
Pr[(l—e)zs /Z\§(1+€)Z] >1—-90

Using only memory equivalent to 5 lines of printed text, you can estimate with a typical
accuracy of 5% and in a single pass the total vocabulary of Shakespeare.

Durand and Flajolet 2003

Input: a sequence xi, X, ..., x, € U = [IV]

Output: an estimation of 7z =

{xl,xz, ...,xn}

Simple Uniform Hash Assumption (SUHA):

A uniform function is available, whose preprocessing,
representation and evaluation are considered to be easy.

e (idealized) uniform hash function 4 : U — [0,1]

« X; = X; — the same hash value h(x;) = h(x;) €, [0,1]

J

o {h(xl), e h(xn)}: z X uniform and independent values in [0,1]

o partition [0,1] into z + 1 subintervals (with identically distributed lengths)

e estimator:

E

min h(x;)

1<i<n

7 =

= E[length of a subinterval] = (by symmetry)

z+ 1
1

. -1 ? Variance is too large!
min; /(x;)

Markov’s Inequality

Markov’s Inequality

For nonnegative random variable X, for any ¢ > 0,
E[X]

PriX > 1] <

Corollary

For random variable X and nonnegative-valued
function f, for any t > 0,

Prf(X) 2 1] <

E[/(X)]
{

ChebyshevVv’s Inequality

ChebyshevV’s Inequality

For random variable X, for any > 0,

Pr[|X - E[X]| 2 1] < —o]

e Variance:
Var[X] = E[(X - E[X])’] = E[X’] — (E[X])*

Apply Markov’s inequality to Y = (X — E[X])*:

- | Y] < Var|X]

Pr[|X—E[X]| > 1] =Pr[Y > ’] <

12 12

Input: a sequence x;, x5, ...,x, € U = [N]

Output: an estimation of 7 = {xl,x2, ...,xn}

¢ (idealized) uniform hash function & : U — [0,1]

Min Sketch: * By symmetry:
let Y = min A(x)); = [Y] =
1<i<n (l) n+1
~ 1 * Goal:
Y Pr{Z < (1— e)z‘or > (1 €)z) <0

assuming € < 1/2 ‘

€/2 1 e/2
‘Y_[E[Y]‘>Z+1 “ Y_z+1 >z+1

Input: a sequence x;, X, ..

Output: an estimation of 7z =

X, € U=[N]

{xl,xz, ...,xn}

¢ (idealized) uniform hash function & : U — [0,1]

. Uniform independent hash values:
Min Sketch: P
: H,,...H €]0,1]
let Y = min A(x)); ! ‘
1<i<n 0} 1
A 1

return Z = — — 1; V= min H.

Y) 1<i<z

geometry

orobability: PIIY > Y1 = (1 —y)* msp pdf: p(y) = z(1 — y)*!

1 1

F[Y?] = J

0 0

<

y2p(y)dy = J y2z(1 —yyldy =

2
(z+ D(z+2)
1

Var[Y] = E[Y?] - E[Y]* =

(z+ Dz +2) : (z+ 1)

Input: a sequence x;, x5, ...,x, € U = [N]

Output: an estimation of 7z =

{xl,x2, ...,xn}

¢ (idealized) uniform hash function & : U — [0,1]

Min Sketch: * By symmetry:
- [Y] =

let Y = min h(x));
1<i<n (l) z+1
1

return Z = — — 1;
Y

assuming € < 1/2 ‘

i (Chebyshev) _ "1 4
€

Var[Y] < Pr| |Y—-E[Y < —

ar[]_(z+1)2 qr‘ []‘>z+1__2

The Mean Trick (for Variance Reduction)

* Variance and covariance:
Var[X] = E[(X — E[X])}] = E[X?] — (E[X])?
Cov(X,Y) = E [(X — E[X])(Y — E[Y])
* Useful properties:
Var[X + a] = Var|[X]
Var[aX] = a*Var[X]

Var Z X | = Z Var[X] + Z Cov(X;, X))
_ i i#]

L1

« For pairwise independent identically distributed X’s:

I < 1
Var | — Z X | = B Z Var[X] = ;Var[Xl]

Input: a sequence xi, X, ..., x, € U = [IV]

Output: an estimation of 7z =

{xl,xz, ...,xn}

» uniform & independent hash functions Ay, ..., h, : U — [0,1]

Min Sketch:
foreach 1 < j <k, let Y; = min h;(x));
1<i<n
7-1_1 r-lyy
return —? — 1 where —;Z i
j=1
+ Foreveryl <j<k: linearity of
1 expectati —
[E[Yj] -— el [|7 =—

1 independence _ 1
Var[Y.] < 4 Var |Y| <
] (z+ 1)2] k(z + 1)2

Output: an estimation of 7z =

{xl,xz, ...,xn}

Input: a sequence xi, X, ..., x, € U = [IV]

» uniform & independent hash functions #;, ..

Min Sketch:
foreach 1 < j <k, let ¥; = min A;(x;);

1<i<n
~ 1 1 &
return Z = — — 1 where Y=—Z Y]
Y k 4
J=1
. Goal: Pr . <1
Pr } i =
}1 } ke?

T (P-\ebyshev)

Sh U — [0,1]

_ 1
E|Y| =
[] z+ 1
Var [Y| < EEETE
—
Set k= %

Input: a sequence xi, X, ..., x, € U = [IV]

Output: an estimation of 7 = {xl,xz, ...,xn}

» uniform & independent hash functions Ay, ..., h, : U — [0,1]

Min Sketch: set k = [4/(¢%)|

foreach 1 < j <k, let Y; = min h;(x));
1<i<n

return /Z\ —
Y

1 _ 1
—1whereY=;ZYj;
=1

Pr[(l—e)zS/Z\S(1+€)Z] >1—-0

1 .
. Space cost: k=0 (T5> real numbers in [0,]1]
€

* Storing k idealized hash functions.

Universal Hashing

Universal Hash Family (Carter and Wegman 1979):

A family #Z of hash functions in U — [m] is k-universal
if for any distinct x;, ..., x;, € U,

h};{ [h(x1) S h(xk)] < —

Moreover, # is strongly k-universal (k-wise independent)
if for any distinct x;, ...,x, € Uand any y, ..., ¥, € [m],

he# mk .

- -
1
| i=1 |

k-Universal Hash Family

hash functions h : U — [m]

* Linear congruential hashing:

« Represent U C Zp for sufficiently large prime p
e h,,(x) = ((ax + b) mod p) mod m

L H = {ha,b la€ Z\(0}.b e zp}

Theorem:
The linear congruential family #Z is 2-wise independent.

« Degree-k polynomial in finite field with random coefficients
- Hashing between binary fields: GF(2") — GF(2))
h, ,(x) = (a*x+b)>>(w-1)

Flajolet-Martin Algorithm

Input: a sequence x;, X,, ..., x, € [N] C [2"]

Output: an estimation of 7 = {xl,xz, ...,xn}

« 2-wise independent hash function & : [2"] — [2"]

. Fory € [2"], let zeros(y) = max{i : 2'|y} denote # of trailing 0’s

Flajolet-Martin Algorithm:

let R = max zeros(h(x;));
1<i<n

return Z = 2K:

Prl|Z<—orZ>C-z

IA
A w

Input: a sequence x, x,, ..., x, € [N] C [2"]

Output: an estimation of 7 =

{xl,xz, ...,xn}

« 2-wise independent hash function /1 : [2"] — [2"]

. Fory € [2"], let zeros(y) = max{i : 2'|y} denote # of trailing 0’s

Flajolet-Martin Algorithm: et

let R = max zeros(h(x,)); Yo=Y I [zeros (h(x)) > r]
1<i<n

return /Z\ — K.

XE{X],.. X, }

(linearity of expectation)

ElY,= Y, Pr|zeros (h() 2 r| =227

XE{X{ye-sX, }

(pairwise independence)
VarlY,] = 2 Var [I [zeros (h(x)) > r]] =722771 =2 <277

XE{X],....X,,}

Pairwise Independent Trials

Proposition:

If X is a sum of pairwise independent random variables taking
values in {0,1}, then Var[X] < E[X].

Var[X] = Y Var[X,] = ¥ (EX?]-EX]) = Y (EX]-EX])

= E[X] -) ELXJ" < E[X]

Corollary (Chebyshev’s Inequality):

If X is a sum of pairwise independent random variables taking
values in {0,1}, forany ¢t > 0,
E[X]

£2

Pr||X-EX]| 2] <

Input: a sequence x, x,, ..., x, € [N] C [2"]

Output: an estimation of 7 =

{xl,xz, ...,xn}

« 2-wise independent hash function /1 : [2"] — [2"]

. Fory € [2"], let zeros(y) = max{i : 2'|y} denote # of trailing 0’s

Flajolet-Martin Algorithm: et

let R = max zeros(h(x,)); Yo=Y I [zeros (h(x)) > r]
1<i<n

return /Z\ — K.

XE{X],.. X, }

(linearity of expectation)

E[Y,] = Z Pr [zeros (h(x)) > r] =z277

XE{X],.... X, }

(pairwise independence) Var[Y,] < E[Y,] <2277

Input: a sequence x;, X, ..

Output: an estimation of 7 =

LXx, € [N] C[27]

{xl,xz, ...,xn}

Flajolet-Martin Algorithm:

let R = max zeros(A(x;));
1<i<n

return /Z\ — K.

(observe R = max{r:Y,.> 0})

(denote r* = [log, Cz])

(Markov's inequality)

Pr

« 2-wise independent hash function /1 : [2"] — [2"]

. Fory € [2"], let zeros(y) = max{i : 2'|y} denote # of trailing 0’s

et
Y = Z I/ [zeros (h(x)) > r]

XE{X],.. X, }

E[Y.]=22"" Var[Y]<z27"

A CZ] < Pr[R > r¥]

< Pr[Y.« > 0] =Pr[Y.. > 1]

<E[Y.]=2z/2" <1/C

Input: a sequence x;, X, ..

Output: an estimation of 7 =

LXx, € [N] C[27]

{xl,xz, ...,xn}

« 2-wise independent hash function /1 : [2"] — [2"]

. Fory € [2"], let zeros(y) = max{i : 2'|y} denote # of trailing 0’s

Flajolet-Martin Algorithm:

let R = max zeros(A(x;));
1<i<n

return Z = IR,

Let
Y = Z I [zeros (h(x)) > r]

XE{X],.. X, }

E[Y.]=22"" Var[Y]<z27"

(denote r** = [log,(z/C)])

(observe R = max{r:Y,.> 0})

(Chebyshev's inequality)

Pr|Z < z/C] < Pr[R < r¥]

S Pr:Yr** — O]
< Var[Y .]/E[Y.]? < 27z

<2/C

Input: a sequence x, x,, ..., x, € [N] C [2"]

Output: an estimation of 7 =

{xl,xz, ...,xn}

« 2-wise independent hash function /1 : [2"] — [2"]

. Fory € [2"], let zeros(y) = max{i : 2'|y} denote # of trailing 0’s

Flajolet-Martin Algorithm:

let R = max zeros(A(x;));
1<i<n

return Z\ — K.

_/\ PaN | 3
Pr Z<iorZ>C-z < —
C C

 Space cost: O(loglog N) bits for maintaining R

« O(log N) bits for storing 2-wise independent hash function

BJKST Algorithm

Input: a sequence x;, x5, ..., x, € [V]

Output: an estimation of 7 = {xl,xz, ...,xn}

» 2-wise independent hash function i : [N] — [M] = {1,..., M}

BJKST Algorithm:
let Y;, ..., Y, be the k smallest hash values among
{ h(x), h(x,)..., h(x,) };
~ kM
return Z = —;
Yy

(Bar-Yossef, Jayram, Kumar, Sivakumar and Trevisan, 2002)

Input: a sequence x;, x5, ..., x, € [V]

Output: an estimation of 7 = {xl,xz, ...,xn}

» 2-wise independent hash function i : [N] — [M] = {1,..., M}

BJKST Algorithm:
let Yy, ..., Y} be the k smallest hash values among
{ h(x)), h(xy)..., h(x,) };
~ kM
return Z = —;
Yy

. Goal:

e uniform and 2-wise independent X, ..., X, € [N°]

« let Y}, ..., Y, be these elements in non-decreasing order
Z i € kM_ < € kM

- | _f)\ 2= W = Z'I X.<(1+=)—

Let v Z}I Xl§<1 2> l_< 2) Z]

< i=1
E[V] = (1 —%io(l))k E[W] = <1+§io(1)>k

Yk<<1—;> WD S ysk Yk><1+;> WD S w<k
< <

(Chebyshev's inequality for sum of pairwise independent trials)

S S
Pr|V > k] < — Pri|W < k] < —
[| ke? WS]_k€2
i) 16
* Goal: pr Yk—k—M >€°kM <6 Setk = | —
_ Z 2z _ €26

Input: a sequence x;, x5, ..., x, € [V]

Output: an estimation of 7 = {xl,xz, ...,xn}

. 2-wise independent hash function 4 : [N] = [N”]

BJKST Algorithm: Set k = [16/(¢%6)|
let Yy, ..., Y} be the k smallest hash values among
{ h(x)), h(xy)..., h(x,) };
~ kM

return Z = —;
Yy

Pr[(l—e)zS/Z\S(l+€)Z] >1—-0

- Space cost: O(klog N) = O(e¢~*log N) bits when & = Q(1)

Frequency Moments

 Data stream: x, x,,...,x, € U
e for each x € U, define frequency of xas f, = [{i : x, = x} |

k-th frequency moments: F;, = Z f;lf

xelU
« Space complexity for (€, 0)-estimation: constant €, o

 fork < 2: polylog(N) [Alon-Matias-Szegedy ’96]
. fork > 2: O(N'=%% [Indyk-Woodruff *05]

« Count distinct elements: F|,

. optimal algorithm [Kane-Nelson-Woodruff *10]: O(¢ 2 + log N) bits

Frequency Estimation

Frequency Estimation

Data: a sequence x, X, ..., x, € U = [V]
Query: anitemx € U

Estimate the frequency f. = | {i : x; = x} | of x.

* Data stream model: input data item comes one at a time

~ITN

X1|(X2 Xiple oo o o

Frequency Estimation

Data: a sequence x, X, ..., x, € U = [V]
Query: anitemx € U

Estimate the frequency f. = | {i : x; = x} | of x.

* Data stream model: input data item comes one at a time

X1 (X2

Xr?

A

)
() IT YY)
M f4)(;(3 |

query x

!

—> f,. : estimation of f
within additive error

Pr[\fx—];\ Zen] <o

 Heavy hitters: items that appears > en times

Count-Min Sketch

Data: a sequence x, X, ..., x, € U = [V]
Query: anitemx € U

Estimate the frequency f. = | {i : x; = x} | of x.

» k independent 2-universal hash functions A, ..., i, : [N] = [m]

Count-Min Sketch: CMS|[k][m] (initialized to all 0’s)
Upon each x;: CMS[/] [hj(xi)] + + foralll < j <k

Query Xx: return fx = min CMS|/] [hj(x)]
1<j<k

Observation: CMS]|j] [hj(x)] > f.foralll <j<k

fi<f<?

Data: sequence xy, ...,x, € [N] Query:x € [V]

frequency f, = |{i: x; =x}| ofx

e k independent 2-universal hash functions A, ..., h, : [N] — [m]

Count-Min Sketch: CMS|[k][m] (initialized to all 0’s)
Upon each x;: CMS[/] [hj(xi)] + + foralll < j <Kk

Query Xx: return fo = min CMS|[/] [hj(x)]
1<j<k

« foranyx € [N]andany 1 <j <k:

CMS[illh] =f+ Y. f,

Yy € {x1, .., xp \{x}
hi(y) = hi(x)

[CMSI@T | =f+ D fPHAO) =)

YE{X],- X, N {X]

Data: sequence xy, ...,x, € [N] Query:x € [V]

frequency f, = |{i: x; =x}| ofx

e k independent 2-universal hash functions A, ..., h, : [N] — [m]

Count-Min Sketch: CMS|[k][m] (initialized to all 0’s)
Upon each x;: CMS[j][h (x;)] ++forall < j <k

Query x: returnf = min CMS[]][h (x)]
1<j<k

« foranyx € [N]andany 1 <j <k:

[CMS[I@T | =4+ D fPHAO) =)
YE{Xp,.. X, P\ {x}
< fit— > o< fit— 2 f_f+_
Xp)

™ et N\) M et

Data: sequence x{, ..., x, € [NV]

frequency f, = | {1 :

 k independent 2-universal hash fun

x;=x}| of x

Query: x € [N]

ctions iy, ..., h, : [N] = [m]

Count-Min Sketch: CMS[k]
Upon each x;: CMS|[/] [hj(xi)] .

1<j<k

m] (initialized to all 0’s)

-+ foralll < j <k;

Query Xx: return fo = min CMS|[/] [hj(x)]

Vx, Vj: CMS[j1[hi(x)] > f,
n
£ | CMSLI0] | < f,+—

(Markov's inequality) Pr [CMS[O] = £, > en] <L

Pr|f,—fl 2 en| = Pr|V1 < j<k: CMS[IU0] - f, > en| < <

em

1

em

>k

Data: a sequence x, X, ...,x, € U = [V}
Query: anitemx € U

Estimate the frequency f. = | {i : x; = x} | of x.

e k independent 2-universal hash functions h,, ..., i, : [N] — [m]

Count-Min Sketch: CMS|[k][m] (initialized to all 0’s)
Upon each x;: CMS[j][h (x)]++foralll < j <Kk

Query x: return f = min CMS]|]][h (x)]
1<j<k

Pr[lfx—fxl zen] < (i)k <5

em

* choose m = [e/e] and k = [In(1/5)]
« Space cost: 0(log(1/86)1logn | bits

e O (log (1/0)log N) bits for hash functions
» time cost for query: O (log (1/6))

