
Advanced Algorithms (Fall 2023)

Linear Programming Rounding

Lecturers: 尹一通，刘景铖，栗师

Nanjing University



2/59
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Algorithm Design Based on Linear Programming

(LP)

Opti. Problem X ⇐⇒ Integer Program (IP)
relax
===⇒ LP

Integer programming is NP-hard; linear programming is in P

For some problems LP ≡ IP =⇒ exact algorithms

For some problems, LP ̸≡ IP

solve LP to obtain a fractional solution,
round it to an integral solution

=⇒ approximation algorithms
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Linear Programming (LP), Linear Program (LP)

min 7x1 + 4x2

x1 + x2 ≥ 5

x1 + 2x2 ≥ 6

4x1 + x2 ≥ 8

x1, x2 ≥ 0

optimum solution:
x1 = 1, x2 = 4

optimum value =
7× 1 + 4× 4 = 23

general case: many variables
and constraints, but objective
and constraints are linear
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Standard Form of Linear Programs

min c1x1 + c2x2 + · · ·+ cnxn

a1,1x1 + a1,2x2 + · · ·+ a1,nxn ≥ b1

a2,1x1 + a2,2x2 + · · ·+ a2,nxn ≥ b2
...

...
...

...

am,1x1 + am,2x2 + · · ·+ am,nxn ≥ bm

x1, x2, · · · , xn ≥ 0

n: number of variables m: number of constraints

≤ constraints? equlities?

variables can be negative? maximization problem?
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Standard Form of Linear Programs

x :=


x1

x2
...
xn

 ∈ Rn, c :=


c1
c2
...
cn

 ∈ Rn,

A :=


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n
...

...
...

...
am,1 am,2 · · · am,n

 ∈ Rn×m, b :=


b1
b2
...
bm

 ∈ Rm.
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min c1x1 + c2x2 + · · ·+ cnxn

a1,1x1 + a1,2x2 + · · ·+ a1,nxn ≥ b1

a2,1x1 + a2,2x2 + · · ·+ a2,nxn ≥ b2
...

...
...

...

am,1x1 + am,2x2 + · · ·+ am,nxn ≥ bm

x1, x2, · · · , xn ≥ 0

Standard Form of
Linear Program

min cTx

Ax ≥ b

x ≥ 0

≥: coordinate-wise less than or equal to
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History

[Fourier, 1827]: Fourier-Motzkin elimination method

[Kantorovich, Koopmans 1939]: formulated the general linear
programming problem

[Dantzig 1946]: simplex method

[Khachiyan 1979]: ellipsoid method, polynomial time, proved
linear programming is in P

[Karmarkar, 1984]: interior-point method, polynomial time,
algorithm is pratical
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Preliminaries

feasible region: the set of x’s satisfying
Ax ≥ b, x ≥ 0

feasible region is a polyhedron

if every coordinate has an upper and lower
bound in the polyhedron, then the
polyhedron is a polytope
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Preliminaries

x is a convex combination of x(1), x(2), · · · , x(t) if the following
condition holds: there exist λ1, λ2, · · · , λt ∈ [0, 1] such that

λ1 + λ2 + · · ·+ λt = 1, λ1x
(1) + λ2x

(2) + · · ·+ λtx
(t) = x

the set of convex combinations of x(1), x(2), · · · , x(t) is called
the convex hull of these points

x1 x2
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Preliminaries

let P be polytope, x ∈ P . If there are no other points
x′, x′′ ∈ P such that x is a convex combination of x′ and x′′,
then x is called a vertex/extreme point of P

Lemma A polytope has finite number of vertices, and it is the
convex hull of the vertices.

P
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Preliminaries

Lemma Let x ∈ Rn be an extreme
point in a n-dimensional polytope.
Then, there are n constraints in the
definition of the polytope, such that x
is the unique solution to the linear
system obtained from the n constraints
by replacing inequalities to equalities.

x1

x2

Feasible Region
x1 + x2 ≥ 5

4x1 + x2 ≥ 8

x1 + 2x2 ≥ 6

x2 ≤ 9

x1 ≤ 7

x1 ≥ 0

x2 ≥ 0

Lemma If the feasible region of a linear program is a polytope,
then the opimum value can be attained at some vertex of the
polytope.

Special cases (for minimization linear programs):

if feasible region is empty, then its value is ∞
if the feasible region is unbounded, then its value can be −∞
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Algorithms for Linear Programming

algorithm running time practice

Simplex Method exponential time fast

Ellipsoid Method polynomial time slow

Interior Point Method polynomial time fast
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Simplex Method

[Dantzig, 1946]

move from one vertex to another, so
as to improve the objective

repeat until we reach an optimum
vertex

the number of iterations might be expoentially large; but
algorithm runs fast in practice

[Spielman-Teng,2002]: smoothed analysis
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Interior Point Method

[Karmarkar, 1984]

keep the solution inside the
polytope

design penalty function so
that the solution is not too
close to the boundary

the final solution will be
arbitrarily close to the
optimum solution

polynomial time
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Ellipsoid Method

[Khachiyan, 1979]

used to decide if the feasible region is empty or not

maintain an ellipsoid that contains
the feasible region

query a separation oracle if the
center of ellipsid is in the feasible
region:

yes: then the feasible region is not
empty
no: cut the elliposid in half, find
smaller ellipsoid to enclose the
half-ellipsoid, and repeat

P

polynomial time, but impractical
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Q: The exact running time of these algorithms?

it depends on many parameters: #variables, #constraints,
#(non-zero coefficients), magnitude of integers

precision issue

Open Problem

Can linear programming be solved in strongly polynomial time
algorithm?
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Applications of Linear Programming

domain: computer science, mathematics, operations research,
economics

types of problems: transportation, scheduling, clustering,
network routing, resource allocation, facility location

Research Directions

polynomial time exact algorithm

polynomial time approximation algorithm

sub-routines for the branch-and-bound metheod for integer
programming

other algorithmic models: online algorithm, distributed
algorithms, dynamic algorithms, fast algorithms
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Simple Example: Brewery Problem ∗

Small brewery produces ale and beer.

Production limited by scarce resources: corn, hops, barley malt.
Recipes for ale and beer require different proportions of resources.

Beverage
Corn Hops Malt Profit

(pounds) (pounds) (pounds) ($)
Ale (barrel) 5 4 35 13

Beer (barrel) 15 4 20 23

Constraint 480 160 1190

How can brewer maximize profits?

∗ http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/

LinearProgrammingI.pdf

http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/LinearProgrammingI.pdf
http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/LinearProgrammingI.pdf
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Brewery Problem ∗

Beverage
Corn Hops Malt Profit

(pounds) (pounds) (pounds) ($)
Ale (barrel) 5 4 35 13

Beer (barrel) 15 4 20 23

Constraint 480 160 1190

max 13x+ 23y Profit

5x+ 15y ≤ 480 Corn

4x+ 4y ≤ 160 Hops

35x+ 20y ≤ 1190 Malt

x, y ≥ 0
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Outline

1 Linear Programming and Rounding

2 Exact Algorithms Using LP: Integral Polytopes
Bipartite Matching Polytope
s-t Flow Polytope
Weighted Interval Scheduling Problem

3 Approximation Algorithms Using LP: LP Rounding
2-Approximation Algorithm for Weighted Vertex Cover
2-Approximation Algorithm for Unrelated Machine
Scheduling
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Def. A polytope P ⊆ Rn is said to be integral, if all vertices of
P are in Zn.

For some combinatorial optimization problems, a
polynomial-sized LP Ax ≤ b already defines an integral
polytope, whose vertices correspond to valid integral solutions.

Such a problem can be solved directly using the LP:

max /min cTx Ax ≤ b.
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Example: Bipartite Matching Polytope

Maximum Weight Bipartite Matching

Input: bipartite graph G = (L ⊎R,E)

edge weights w ∈ ZE
>0

Output: a matching M ⊆ E so as to
maximize

∑
e∈M we

5
3

4

LP Relaxation

max
∑
e∈E

wexe∑
e∈δ(v)

xe ≤ 1 ∀v ∈ L ∪R

xe ≥ 0 ∀e ∈ E

In IP: xe ∈ {0, 1}: e ∈ M?

χM ∈ {0, 1}E: χM
e = 1 iff

e ∈ M

Theorem The LP polytope is
integral: It is the convex hull of
{χM : M is a matching}.
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Theorem The LP polytope is integral: It is the convex hull of
{χM : M is a matching}.

Proof.

take x in the polytope P

prove: x non integral =⇒ x non-vertex

find x′, x′′ ∈ P : x′ ̸= x′′, x = 1
2
(x′+x′′)

case 1: fractional edges contain a cycle

color edges in cycle blue and red
x′: +ϵ for blue edges, −ϵ for red edges
x′′: −ϵ for blue edges, +ϵ for red edges

case 2: fractional edges form a forest

color edges in a leaf-leaf path blue and
red
x′: +ϵ for blue edges, −ϵ for red edges
x′′: −ϵ for blue edges, +ϵ for red edges

1

1
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Outline

1 Linear Programming and Rounding

2 Exact Algorithms Using LP: Integral Polytopes
Bipartite Matching Polytope
s-t Flow Polytope
Weighted Interval Scheduling Problem

3 Approximation Algorithms Using LP: LP Rounding
2-Approximation Algorithm for Weighted Vertex Cover
2-Approximation Algorithm for Unrelated Machine
Scheduling
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Example: s-t Flow Polytope

Flow Network

directed graph G = (V,E), source s ∈ V , sink t ∈ V , edge
capacities ce ∈ Z>0,∀e ∈ E

s has no incoming edges, t has no outgoing edges

s t

a

b d

c12

14

9

4 7

16

13

20

4
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Def. A s-t flow is a vector f ∈ RE
≥0 satisfying the following

conditions:

∀e ∈ E, 0 ≤ fe ≤ ce (capacity constraints)

∀v ∈ V \ {s, t},∑
e∈δin(v)

fe =
∑

e∈δout(v)

fe (flow conservation)

The value of flow f is defined as:

val(f) :=
∑

e∈δout(s)

fe =
∑

e∈δin(t)

fe
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Maximum Flow Problem

Input: flow network (G = (V,E), c, s, t)

Output: maximum value of a s-t flow f

s t

a

b d

c12

14

9

4 7

16

13

20

4

Ford-Fulkerson method

Maximum-Flow Min-Cut
Theorem: value of the
maximum flow is equal to the
value of the minimum s-t cut

[Chen-Kyng-Liu-Peng-
Gutenberg-Sachdeva, 2022]:
nearly linear-time algorithm
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LP for Maximum Flow

max
∑

e∈δin(t)

xe

xe ≤ ce ∀e ∈ E∑
e∈δout(v)

xe −
∑

e∈δin(v)

xe = 0 ∀v ∈ V \ {s, t}

xe ≥ 0 ∀e ∈ E

Theorem The LP polytope is integral.

Sketch of Proof.

Take any s-t flow x; consider fractional edges E ′

Every v /∈ {s, t} must be incident to 0 or ≥ 2 edges in E ′

Ignoring the directions of E ′, it contains a cycle, or a s-t path

We can increase/decrease flow values along cyle/path
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Weighted Interval Scheduling Problem

Input: n activities, activity i starts at time si, finishes at time
fi, and has weight wi > 0

i and j can be scheduled together iff [si, fi) and
[sj, fj) are disjoint

Output: maximum weight subset of jobs that can be scheduled
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optimum value= 220

Classic Problem for Dynamic Programming
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Weighted Interval Scheduling Problem

Linear Program

max
∑
j∈[n]

xjwj∑
j∈[n]:t∈[sj ,fj)

xj ≤ 1 ∀t ∈ [T ]

xj ≥ 0 ∀j ∈ [n]

Theorem The LP polytope is
integral.

Def. A matrix A ∈ Rm×n is
said to be tototally unimodular
(TUM), if every sub-square of A
has determinant in {−1, 0, 1}.

Theorem If a polytope P is defined by Ax ≥ b, x ≥ 0 with a
totally unimodular matrix A and integral b, then P is integral.

Lemma A matrix A ∈ {0, 1}m×n where the 1’s on every column
form an interval is TUM.

So, the matrix for the LP is TUM, and the polytope is integral.
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Theorem If a polytope P is defined by Ax ≥ b, x ≥ 0 with a
totally unimodular matrix A and integral b, then P is integral.

Proof.

Every vertex x ∈ P is the unique solution to the linear system

(after permuting coordinates):

(
A′ 0
0 I

)
x =

(
b′

0

)
, where

A′ is a square submatrix of A with det(A′) = ±1, b′ is a
sub-vector of b,
and the rows for b′ are the same as the rows for A′.

Let x =

(
x1

x2

)
, so that A′x1 = b′ and x2 = 0.

Cramer’s rule: x1
i =

det(A′
i|b)

det(A′)
for every i =⇒ x1

i is integer

A′
i|b: the matrix of A′ with the i-th column replaced by b
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Example for the Proof

a1,1 a1,2 a1,3 a1,4 a1,5
a2,1 a2,2 a2,3 a2,4 a2,5
a3,1 a3,2 a3,3 a3,4 a3,5



x1

x2

x3

x4

x5

 ≥

b1
b2
b3


x1, x2, x3, x4, x5 ≥ 0

The following equation system may give a vertex:
a1,1 a1,2 a1,3 a1,4 a1,5
a3,1 a3,2 a3,3 a3,4 a3,5
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1



x1

x2

x3

x4

x5

 =


b1
b3
0
0
0


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Lemma Let A′ ∈ {0,±1}n×n such that every row of A′ contains
at most one 1 and one −1. Then det(A′) ∈ {0,±1}.

Proof.

wlog assume every row of A′ contains one 1 and one −1

otherwise, we can reduce the matrix

treat A′ as a directed graph: columns ≡ vertices, rows ≡ arcs

#edges = #vertices =⇒ underlying undirected graph
contains a cycle =⇒ det(A′) = 0

Lemma Let A ∈ {0,±1}m×n such that every row of A contains
at most one 1 and one −1. Then A is TUM.

Coro. The matrix for s-t flow polytope is TUM; thus, the
polytope is integral.
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Example for the Proof

1 −1 0 0 0 0 0
0 −1 0 1 0 0 0
0 0 1 0 0 0 0
0 0 0 1 −1 0 0
0 0 −1 0 0 1 0
0 0 0 0 −1 0 1
1 0 0 0 −1 0 0



1

2

3
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− (0 −1 1 0 0)
+ (0 0 1 −1 0)
− (1 0 0 −1 0)

= (0 0 0 0 0)
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Lemma A matrix A ∈ {0, 1}m×n where the 1’s on every row
form an interval is TUM.

Proof.

take any square submatrix A′ of A,

the 1’s on every row of A′ form an interval.

A′M is a matrix satisfying condition of first lemma, where

M =


1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
...

...
...

0 0 · · · 1 −1
0 0 · · · 0 1

. det(M) = 1.

det(A′M) ∈ {0,±1} =⇒ det(A′) ∈ {0,±1}.
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Example for the Proof


0 1 1 1 0 0
1 1 1 1 0 0
0 0 1 1 1 1
0 0 0 0 1 1
0 0 0 1 1 0
0 1 1 1 1 0



=⇒


0 1 0 0 −1
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0



(col 1, col 2− col 1, col 3− col 2, col 4− col 3, col 5− col 4)

every row has at most one 1, at most one −1
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Lemma The edge-vertex incidence matrix A of a bipartite graph
is totally-unimodular.

Proof.

G = (L ⊎R,E): the bipartite graph

A′: obtained from A by negating columns correspondent to R

each row of A′ has exactly one +1, and exactly one −1

=⇒ A′ is TUM ⇐⇒ A is TUM

Example

1

2

3

4

5

6


1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1
1 0 0 1 0 0
1 0 0 0 0 1
1 0 0 0 1 0


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remark: bipartiteness is needed. The edge-vertex incidence

matrix

0 1 1
1 0 1
1 1 0

 of a triangle has determinent 2.

Coro. Bipartite matching polytope is integral.
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Outline

1 Linear Programming and Rounding

2 Exact Algorithms Using LP: Integral Polytopes
Bipartite Matching Polytope
s-t Flow Polytope
Weighted Interval Scheduling Problem

3 Approximation Algorithms Using LP: LP Rounding
2-Approximation Algorithm for Weighted Vertex Cover
2-Approximation Algorithm for Unrelated Machine
Scheduling
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Approximation Algorithm based on LP Rounding

Opti. Problem X ⇐⇒ 0/1 Integer Program (IP)
relax
===⇒ LP

0/1 Integer Program

min cTx

Ax ≥ b

x ∈ {0, 1}n

Linear Program Relaxation

min cTx

Ax ≥ b

x ∈ [0, 1]n

LP ≤ IP

Integer programming is NP-hard, linear programming is in P

Solve LP to obtain a fractional x ∈ [0, 1]n.

Round it to an integral x̃ ∈ {0, 1}n ⇐⇒ solution for X

Prove cTx̃ ≤ α · cTx, then cT · x̃ ≤ α · LP ≤ α · IP = α · opt
=⇒ α-approximation



44/59

Approximation Algorithm based on LP Rounding

Opti. Problem X ⇐⇒ 0/1 Integer Program (IP)
relax
===⇒ LP

0/1 Integer Program

min cTx

Ax ≥ b

x ∈ {0, 1}n

Linear Program Relaxation

min cTx

Ax ≥ b

x ∈ [0, 1]n

LP ≤ IP

Integer programming is NP-hard, linear programming is in P

Solve LP to obtain a fractional x ∈ [0, 1]n.

Round it to an integral x̃ ∈ {0, 1}n ⇐⇒ solution for X

Prove cTx̃ ≤ α · cTx, then cT · x̃ ≤ α · LP ≤ α · IP = α · opt
=⇒ α-approximation



44/59

Approximation Algorithm based on LP Rounding

Opti. Problem X ⇐⇒ 0/1 Integer Program (IP)
relax
===⇒ LP

0/1 Integer Program

min cTx

Ax ≥ b

x ∈ {0, 1}n

Linear Program Relaxation

min cTx

Ax ≥ b

x ∈ [0, 1]n

LP ≤ IP

Integer programming is NP-hard, linear programming is in P

Solve LP to obtain a fractional x ∈ [0, 1]n.

Round it to an integral x̃ ∈ {0, 1}n ⇐⇒ solution for X

Prove cTx̃ ≤ α · cTx, then cT · x̃ ≤ α · LP ≤ α · IP = α · opt
=⇒ α-approximation



44/59

Approximation Algorithm based on LP Rounding

Opti. Problem X ⇐⇒ 0/1 Integer Program (IP)
relax
===⇒ LP

0/1 Integer Program

min cTx

Ax ≥ b

x ∈ {0, 1}n

Linear Program Relaxation

min cTx

Ax ≥ b

x ∈ [0, 1]n

LP ≤ IP

Integer programming is NP-hard, linear programming is in P

Solve LP to obtain a fractional x ∈ [0, 1]n.

Round it to an integral x̃ ∈ {0, 1}n ⇐⇒ solution for X

Prove cTx̃ ≤ α · cTx, then cT · x̃ ≤ α · LP ≤ α · IP = α · opt
=⇒ α-approximation



44/59

Approximation Algorithm based on LP Rounding

Opti. Problem X ⇐⇒ 0/1 Integer Program (IP)
relax
===⇒ LP

0/1 Integer Program

min cTx

Ax ≥ b

x ∈ {0, 1}n

Linear Program Relaxation

min cTx

Ax ≥ b

x ∈ [0, 1]n

LP ≤ IP

Integer programming is NP-hard, linear programming is in P

Solve LP to obtain a fractional x ∈ [0, 1]n.

Round it to an integral x̃ ∈ {0, 1}n ⇐⇒ solution for X

Prove cTx̃ ≤ α · cTx, then cT · x̃ ≤ α · LP ≤ α · IP = α · opt
=⇒ α-approximation



44/59

Approximation Algorithm based on LP Rounding

Opti. Problem X ⇐⇒ 0/1 Integer Program (IP)
relax
===⇒ LP

0/1 Integer Program

min cTx

Ax ≥ b

x ∈ {0, 1}n

Linear Program Relaxation

min cTx

Ax ≥ b

x ∈ [0, 1]n

LP ≤ IP

Integer programming is NP-hard, linear programming is in P

Solve LP to obtain a fractional x ∈ [0, 1]n.

Round it to an integral x̃ ∈ {0, 1}n ⇐⇒ solution for X

Prove cTx̃ ≤ α · cTx, then cT · x̃ ≤ α · LP ≤ α · IP = α · opt
=⇒ α-approximation



44/59

Approximation Algorithm based on LP Rounding

Opti. Problem X ⇐⇒ 0/1 Integer Program (IP)
relax
===⇒ LP

0/1 Integer Program

min cTx

Ax ≥ b

x ∈ {0, 1}n

Linear Program Relaxation

min cTx

Ax ≥ b

x ∈ [0, 1]n

LP ≤ IP

Integer programming is NP-hard, linear programming is in P

Solve LP to obtain a fractional x ∈ [0, 1]n.

Round it to an integral x̃ ∈ {0, 1}n ⇐⇒ solution for X

Prove cTx̃ ≤ α · cTx, then cT · x̃ ≤ α · LP ≤ α · IP = α · opt

=⇒ α-approximation



44/59

Approximation Algorithm based on LP Rounding

Opti. Problem X ⇐⇒ 0/1 Integer Program (IP)
relax
===⇒ LP

0/1 Integer Program

min cTx

Ax ≥ b

x ∈ {0, 1}n

Linear Program Relaxation

min cTx

Ax ≥ b

x ∈ [0, 1]n

LP ≤ IP

Integer programming is NP-hard, linear programming is in P

Solve LP to obtain a fractional x ∈ [0, 1]n.

Round it to an integral x̃ ∈ {0, 1}n ⇐⇒ solution for X

Prove cTx̃ ≤ α · cTx, then cT · x̃ ≤ α · LP ≤ α · IP = α · opt
=⇒ α-approximation



45/59

IP

min cTx

Ax ≥ b

x ∈ {0, 1}n

LP Relaxation

min cTx

Ax ≥ b

x ∈ [0, 1]n

IP = opt

LP

Def. The ratio between IP = opt and
LP is called the integrality gap of the
LP relaxation.

The approximation ratio based on this analysis can not be
better than the worst integrality gap.
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Outline

1 Linear Programming and Rounding

2 Exact Algorithms Using LP: Integral Polytopes
Bipartite Matching Polytope
s-t Flow Polytope
Weighted Interval Scheduling Problem

3 Approximation Algorithms Using LP: LP Rounding
2-Approximation Algorithm for Weighted Vertex Cover
2-Approximation Algorithm for Unrelated Machine
Scheduling
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Weighted Vertex Cover Problem

Input: graph G = (V,E), vertex weights w ∈ ZV
>0

Output: vertex cover S of G, to minimize
∑

v∈S wv



48/59

xv ∈ {0, 1},∀v ∈ V : indicate if we include v in the vertex
cover

Integer Program

min
∑
v∈V

wvxv

xu + xv ≥ 1 ∀(u, v) ∈ E

xv ∈ {0, 1} ∀v ∈ V

LP Relaxation

min
∑
v∈V

wvxv

xu + xv ≥ 1 ∀(u, v) ∈ E

xv ∈ [0, 1] ∀v ∈ V

IP := value of integer program, LP := value of linear program

LP ≤ IP = opt
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Rounding Algorithm

1: Solve LP to obtain solution {x∗
u}u∈V
▷ So, LP =

∑
u∈V wux

∗
u ≤ IP

2: return S := {u ∈ V : xu ≥ 1/2}

Lemma S is a vertex cover of G.

Proof.

Consider any (u, v) ∈ E: we have x∗
u + x∗

v ≥ 1

So, x∗
u ≥ 1/2 or x∗

v ≥ 1/2 =⇒ u ∈ S or v ∈ S.
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Rounding Algorithm

1: Solve LP to obtain solution {x∗
u}u∈V
▷ So, LP =

∑
u∈V wux

∗
u ≤ IP

2: return S := {u ∈ V : xu ≥ 1/2}

Lemma S is a vertex cover of G.

Lemma cost(S) :=
∑

u∈S wu ≤ 2 · LP.

Theorem The algorithm is a 2-approximation algorithm for
weighted vertex cover.

Proof.

cost(S) ≤ 2 · LP ≤ 2 · IP = 2 · (optimum value)
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Outline

1 Linear Programming and Rounding

2 Exact Algorithms Using LP: Integral Polytopes
Bipartite Matching Polytope
s-t Flow Polytope
Weighted Interval Scheduling Problem
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Unrelated Machine Scheduling

Input: J, |J | = n: jobs

M, |M | = m: machines

pij: processing time of
job j on machine i

Output: assignment σ : J 7→ M :,
so as to minimize
makespan:

max
i∈M

∑
j∈σ−1(i)

pij

job

job

job

job

job

96

10
5

5

13
10

11
3

8
12
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Assumption: we are given a target makespan T , and
pij ∈ [0, T ] ∪ {∞}

xij: fraction of j assigned to i

∑
i

xij = 1 ∀j ∈ J∑
j

pijxij ≤ T ∀i ∈ M

xij ≥ 0 ∀ij
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2-Approximate Rounding Algorithm of

Shmoys-Tardos

xij

J M

Obs. x between J and sub-machines is a point in the
bipartite-matching polytope, where all jobs in J are matched.
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2-Approximate Rounding Algorithm of

Shmoys-Tardos

j1
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j5

j4

pij1 ≥ pij2 ≥ · · · ≥ pij5

i
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Recall bipartite matching polytope is integral.

x is a convex combination of matchings.

Any matching in the combination covers all jobs J .

Lemma Any matching in the combination gives an schedule of
makespan ≤ 2T .
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Lemma Any matching in the combination gives an schedule of
makespan ≤ 2T .

xij1

xij2

xij3

xij5

xij4

j1

j2

j3

j5

j4

pij1 ≥ pij2 ≥ · · · ≥ pij5

xij1
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xij3

xij4

xij5

i1

i2

i3

i4

j1

j2

j3

j4

j5

i1

i2

i3

i4

sub-machines for i

i

Proof.

focus on machine i, let i1, i2, · · · , ia be the sub-machines for i

assume job kt is assigned to sub-machine it.

(load on i) =
a∑

t=1

pikt ≤ pik1 +
a∑

t=2

∑
j

xit−1j · pij

≤ pik1 +
∑
j

xijpij ≤ T + T = 2T.
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fix i, use pj for pij

p1 ≥ p2 ≥ · · · ≥ p7
worst case:

1 → i1, 2 → i2
4 → i3, 7 → i4

p1 ≤ T

p2 ≤ 0.7p1 + 0.3p2

p4 ≤ 0.3p2 + 0.5p3 + 0.2p4

p7 ≤ 0.1p4 + 0.5p5 + 0.2p6 + 0.2p7

i

1

7

6

5

4

3

2

p1 + p2 + p4 + p7 ≤ T + (0.7p1 + 0.3p2) + (0.3p2 + 0.5p3 + 0.2p4)

+ (0.1p4 + 0.5p5 + 0.2p6 + 0.2p7)

≤ T + (0.7p1 + 0.6p2 + 0.5p3 + 0.3p4 + 0.5p5 + 0.2p6 + 0.4p7)

≤ T + T = 2T
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Summary

linear programming, simplex method, interior point method,
ellipsoid method

integral LP polytopes: bipartite matching polytope, s-t flow
polytope, weighted interval scheduling polytope

approximation algorithm using LP rounding

2-approximation algorithm for weighted vertex cover
2-approximation for unrelated machine scheduling
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English-Chinese Translation

Linear Program : 线性规划

Integer Program : 整数规划

Feasible Region : 解域

Polyhedron : 凸多面体

Polytope : 有界凸多面体

Vertex/Extreme Point : 顶点

Convex Combination : 凸组合

Convex Hull : 凸包

Dual : 对偶

Totally Unimodular : 完全单位模的
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