Lecturers: F—il, XI=8, S0

Nanjing University

Q Linear Programming and Rounding

© Exact Algorithms Using LP: Integral Polytopes
@ Bipartite Matching Polytope
@ s-t Flow Polytope
@ Weighted Interval Scheduling Problem

© Approximation Algorithms Using LP: LP Rounding
@ 2-Approximation Algorithm for Weighted Vertex Cover
@ 2-Approximation Algorithm for Unrelated Machine
Scheduling

2/59

relax

@ Opti. Problem X <= Integer Program (IP) == LP

3/59

relax

@ Opti. Problem X <= Integer Program (IP) == LP

@ Integer programming is NP-hard; linear programming is in P

3/59

Algorithm Design Based on Linear Programming
(LP)

relax

@ Opti. Problem X <= Integer Program (IP) = LP

@ Integer programming is NP-hard; linear programming is in P

@ For some problems LP = IP = exact algorithms

Algorithm Design Based on Linear Programming
(LP)

relax

@ Opti. Problem X <= Integer Program (IP) = LP

@ Integer programming is NP-hard; linear programming is in P
@ For some problems LP = IP = exact algorithms

@ For some problems, LP # IP

e solve LP to obtain a fractional solution,
e round it to an integral solution

—> approximation algorithms

min 7x; + 4z,
T1+ 22 2>5
T1+ 229 > 6
dxy + 19 > 8

x1,22 >0

e} w =~ t (=} ~I [oe} Nel o
)

—_

4/59

min 7x; + 4z,
Ty + T2 > 5
T1+ 229 > 6
dxy + 19 > 8

x1,22 >0

e} w =~ t (=} ~I [oe} ©’é
LTN

—_

4/59

min 7x; + 4z,
T1+ 22 2>5
T1+ 229 > 6
dxy + 19 > 8

x1,22 >0

]
o

e} w =~ t (=} ~I 0.7 ©

—_

X1

4/59

min 7x; + 4z,
Ty + T2 > 5
T1+ 229 > 6
dxy + 19 > 8

x1,22 >0

(%)

e} w =~ t D = o Nel

—_

min 7x; + 4z,
T1+ 22 2>5
T1+ 229 > 6
dxy + 19 > 8

x1,22 >0

(%)

Now e ot o 9 o ©

—_

min 7x; + 4z,
T1+ 22 2>5
T1+ 229 > 6
dxy + 19 > 8

x1,22 >0

(%)

@ optimum solution:
xr = 1,%2 =4

Now e ot o 9 o ©

@ optimum value =
Tx1+4x4=23

—_

min 7x; + 4z,
T1+ 22 2>5
T1+ 229 > 6
dxy + 19 > 8

x1,22 >0

(%)

@ optimum solution:
xr = 1,%2 =4

Now e ot o 9 o ©

@ optimum value =
Tx1+4x4=23

—_

@ general case: many variables
and constraints, but objective
and constraints are linear

Standard Form of Linear Programs

min cx; + Ty + -+ + ey,
a11%1 + @122 + - + a1 Ty > by

a21T1 + Q29%2 + - -+ + A2, Ty > by

Am, 171 + Am 222 + -+ QmnTn 2 bm

XL1,To, " ,Tnp ZO

@ n: number of variables m: number of constraints

Standard Form of Linear Programs

min cx; + Ty + -+ + ey,
a11%1 + @122 + - + a1 Ty > by

a2,1%1 + A29%2 + - + A2 n Ty > by

Am, 171 + Am 222 + -+ QmnTn 2 bm

XL1,To, " ,Tnp ZO

@ n: number of variables m: number of constraints

@ < constraints? equlities?

Standard Form of Linear Programs

min cx; + Ty + -+ + ey,
a11%1 + @122 + - + a1 Ty > by

a2,1%1 + A29%2 + - + A2 n Ty > by

Am, 171 + Am 222 + -+ QmnTn 2 bm

XL1,To, " ,Tnp ZO

@ n: number of variables m: number of constraints

@ < constraints? equlities?

@ variables can be negative? maximization problem?

Standard Form of Linear Programs

X1
) n

T = . € R", c
Tn
a1 Qi2 -+ Q1p
Q21 Q22 -+ Q2n

A= . . . _ e R™™ b=
Qm,1 Gm2 Am.n

min cxy + cay + -+ - + ¢ Xy,
a1121 + @122 + - + a1 Ty > by

A21T1 + Q29%2 + - -+ + Q2. Ty, > by

Am, 121 + Qm,222 SFoceTF Amndn 2 bm

T1,Lo, - XLy >0

@ >: coordinate-wise less than or equal to

Standard Form of
Linear Program

min c'z

Ax > b
x>0

History

@ [Fourier, 1827]: Fourier-Motzkin elimination method

e [Kantorovich, Koopmans 1939]: formulated the general linear
programming problem

History

e [Fourier, 1827]: Fourier-Motzkin elimination method

e [Kantorovich, Koopmans 1939]: formulated the general linear
programming problem

e [Dantzig 1946]: simplex method

e [Khachiyan 1979]: ellipsoid method, polynomial time, proved
linear programming is in P

e [Karmarkar, 1984]: interior-point method, polynomial time,
algorithm is pratical

e feasible region: the set of z's satisfying
Ax > b,z >0

9/59

e feasible region: the set of z's satisfying
Ax > b,z >0

@ feasible region is a polyhedron

Polyhedron

9/59

&

o feasible region: the set of z's satisfying
Ax > b,z >0

@ feasible region is a polyhedron

o if every coordinate has an upper and lower
bound in the polyhedron, then the
polyhedron is a polytope

- o ow e o @ . o ©

Polyhedron Polytope

9/59

@ z is a convex combination of (M 23 ... 2® if the following
condition holds: there exist A;, Ao, -+, \; € [0,1] such that

10/59

@ z is a convex combination of (M 23 ... 2® if the following
condition holds: there exist A;, Ao, -+, \; € [0,1] such that

.
RS

10/59

@ z is a convex combination of (M 23 ... 2® if the following
condition holds: there exist A;, Ao, -+, \; € [0,1] such that

W
8

—
+

Wl
8

10/59

Preliminaries

@ 1z is a convex combination of z(), z?) ...

condition holds: there exist Ay, Ao, -+, N\

MAX+-+ =1, Az 4 aal

, 2 if the following

€ [0,1] such that

2 4y aa® =g

Preliminaries

@ 1z is a convex combination of z(), z?) ...

condition holds: there exist Ay, Ao, -+, N\

MAX+-+ =1, Az 4 aal

0.3z' +0.622 +0.123

, 2 if the following

€ [0,1] such that

D4 aa® = g

Preliminaries

@ 1z is a convex combination of z(), z?) ...

, 2 if the following

condition holds: there exist A;, Ao, -+, \; € [0,1] such that

MAX+-+ =1 dzW+xe®@ 4. 4 \2® =2

@ the set of convex combinations of ("), 23 ... z® is called

the convex hull of these points

0.3z' +0.622 +0.123

Preliminaries

@ z is a convex combination of (M 23 ... 2® if the following
condition holds: there exist A;, Ao, -+, \; € [0,1] such that

MAX+-+ =1 dzW+xe®@ 4. 4 \2® =2

@ the set of convex combinations of ("), 23 ... z® is called
the convex hull of these points

T
x! z?
>
A
I A S
P \
convex-hull({z!, 22}) \

convex-hull({z!, 22, 23})

Preliminaries

@ z is a convex combination of (M 23 ... 2® if the following
condition holds: there exist A;, Ao, -+, \; € [0,1] such that

MAX+-+ =1 dzW+xe®@ 4. 4 \2® =2

@ the set of convex combinations of ("), 23 ... z® is called
the convex hull of these points

T
x! z? M *
> []
A °
: 2 Y 3 ° . °
T \
convex-hull({z!, 22}) \ .

convex-hull({z!, 22, 23})

Preliminaries

@ z is a convex combination of (M 23 ... 2® if the following
condition holds: there exist A;, Ao, -+, \; € [0,1] such that

MAX+-+ =1 dzW+xe®@ 4. 4 \2® =2

@ the set of convex combinations of ("), 23 ... z® is called
the convex hull of these points

x! x?
>0
A
. A S
\
(:()nvex—hulll({21, 2%}) \

convex-hull({z!, 22, 23})

Preliminaries

@ let P be polytope, z € P. If there are no other points
2’ 2" € P such that x is a convex combination of 2’ and z”,
then x is called a vertex/extreme point of P

Preliminaries

@ let P be polytope, z € P. If there are no other points
2’ 2" € P such that x is a convex combination of 2’ and z”,
then x is called a vertex/extreme point of P

Preliminaries

@ let P be polytope, z € P. If there are no other points
2’ 2" € P such that x is a convex combination of 2’ and z”,
then x is called a vertex/extreme point of P

Preliminaries

@ let P be polytope, z € P. If there are no other points
2’ 2" € P such that x is a convex combination of 2’ and z”,
then x is called a vertex/extreme point of P

not a, vertex

/

Preliminaries

@ let P be polytope, z € P. If there are no other points
2’ 2" € P such that x is a convex combination of 2’ and z”,
then x is called a vertex/extreme point of P

not a, vertex

/

Preliminaries

@ let P be polytope, z € P. If there are no other points
2’ 2" € P such that x is a convex combination of 2’ and z”,
then x is called a vertex/extreme point of P

not a, vertex

/

Preliminaries

@ let P be polytope, z € P. If there are no other points
2’ 2" € P such that x is a convex combination of 2’ and z”,
then x is called a vertex/extreme point of P

not a, vertex

/

w

N

N
not a vertex

Preliminaries

@ let P be polytope, z € P. If there are no other points
2’ 2" € P such that x is a convex combination of 2’ and z”,
then x is called a vertex/extreme point of P

vertices

N
e N
7 /v\ N
S N

Preliminaries

@ let P be polytope, z € P. If there are no other points
2’ 2" € P such that x is a convex combination of 2’ and z”,
then x is called a vertex/extreme point of P

Lemma A polytope has finite number of vertices, and it is the
convex hull of the vertices. J

vertices

N
ZN
v /v\ N
s XA N

Preliminaries

@ let P be polytope, z € P. If there are no other points
2’ 2" € P such that x is a convex combination of 2’ and z”,
then x is called a vertex/extreme point of P

Lemma A polytope has finite number of vertices, and it is the
convex hull of the vertices. J

3

P = convex-hull({z!, 22, 23, 2%, 2°})

Preliminaries

Lemma Let x € R” be an extreme
point in a n-dimensional polytope.
Then, there are n constraints in the
definition of the polytope, such that x
is the unique solution to the linear
system obtained from the n constraints
by replacing inequalities to equalities.

z] + 229 > 6

o
? r9 <9

\4z1+z2 >8

x>0

Preliminaries

Lemma Let x € R” be an extreme
point in a n-dimensional polytope.
Then, there are n constraints in the
definition of the polytope, such that x
is the unique solution to the linear
system obtained from the n constraints
by replacing inequalities to equalities.

z] + 229 > 6

x>0

Preliminaries

Lemma Let x € R” be an extreme
point in a n-dimensional polytope.
Then, there are n constraints in the
definition of the polytope, such that x
is the unique solution to the linear
system obtained from the n constraints
by replacing inequalities to equalities.

z] + 229 > 6

x>0

Preliminaries

Lemma Let x € R” be an extreme

point in a n-dimensional polytope. L2y + 23
Then, there are n constraints in the
definition of the polytope, such that x
is the unique solution to the linear
system obtained from the n constraints
by replacing inequalities to equalities. T +a=5

x + 2w > 6

Lemma |If the feasible region of a linear program is a polytope,
then the opimum value can be attained at some vertex of the

polytope.

Preliminaries

Lemma Let x € R™ be an extreme

point in a n-dimensional polytope. L2y + 23
Then, there are n constraints in the
definition of the polytope, such that x
is the unique solution to the linear
system obtained from the n constraints
by replacing inequalities to equalities. T +a=5

x + 2w > 6

Lemma |If the feasible region of a linear program is a polytope,
then the opimum value can be attained at some vertex of the

polytope.

Special cases (for minimization linear programs):
o if feasible region is empty, then its value is oo
o if the feasible region is unbounded, then its value can be —oo

Algorithms for Linear Programming

algorithm running time practice
Simplex Method exponential time fast
Ellipsoid Method polynomial time slow
Interior Point Method | polynomial time fast

Simplex Method

o [Dantzig, 1946]

@ move from one vertex to another, so
as to improve the objective

@ repeat until we reach an optimum
vertex

e [Dantzig, 1946]

@ move from one vertex to another, so
as to improve the objective

@ repeat until we reach an optimum
vertex

14/59

e [Dantzig, 1946]

@ move from one vertex to another, so
as to improve the objective

@ repeat until we reach an optimum
vertex

14/59

e [Dantzig, 1946]

@ move from one vertex to another, so
as to improve the objective

@ repeat until we reach an optimum
vertex

14/59

e [Dantzig, 1946]

@ move from one vertex to another, so
as to improve the objective

@ repeat until we reach an optimum
vertex

14/59

e [Dantzig, 1946]

@ move from one vertex to another, so
as to improve the objective

@ repeat until we reach an optimum
vertex

14/59

e [Dantzig, 1946]

@ move from one vertex to another, so
as to improve the objective

@ repeat until we reach an optimum
vertex

14/59

o [Dantzig, 1946]

@ move from one vertex to another, so
as to improve the objective

@ repeat until we reach an optimum
vertex

@ the number of iterations might be expoentially large; but
algorithm runs fast in practice

14/59

o [Dantzig, 1946]

@ move from one vertex to another, so
as to improve the objective

@ repeat until we reach an optimum
vertex

@ the number of iterations might be expoentially large; but
algorithm runs fast in practice

@ [Spielman-Teng,2002]: smoothed analysis

14/59

Interior Point Method

e [Karmarkar, 1984]

@ keep the solution inside the
polytope

@ design penalty function so
that the solution is not too
close to the boundary

@ the final solution will be
arbitrarily close to the
optimum solution

e [Karmarkar, 1984]

@ keep the solution inside the
polytope

@ design penalty function so
that the solution is not too
close to the boundary

@ the final solution will be
arbitrarily close to the
optimum solution

15/59

e [Karmarkar, 1984]

@ keep the solution inside the
polytope

@ design penalty function so
that the solution is not too
close to the boundary

@ the final solution will be
arbitrarily close to the
optimum solution

15/59

e [Karmarkar, 1984]

@ keep the solution inside the
polytope

@ design penalty function so
that the solution is not too
close to the boundary

@ the final solution will be
arbitrarily close to the
optimum solution

15/59

e [Karmarkar, 1984]

@ keep the solution inside the
polytope

@ design penalty function so
that the solution is not too
close to the boundary

@ the final solution will be
arbitrarily close to the
optimum solution

15/59

e [Karmarkar, 1984]

@ keep the solution inside the
polytope

@ design penalty function so
that the solution is not too
close to the boundary

@ the final solution will be
arbitrarily close to the
optimum solution

15/59

e [Karmarkar, 1984]

@ keep the solution inside the
polytope

@ design penalty function so
that the solution is not too
close to the boundary

@ the final solution will be
arbitrarily close to the
optimum solution

15/59

e [Karmarkar, 1984]

@ keep the solution inside the
polytope

@ design penalty function so
that the solution is not too
close to the boundary

@ the final solution will be
arbitrarily close to the
optimum solution

15/59

e [Karmarkar, 1984]

@ keep the solution inside the
polytope

@ design penalty function so
that the solution is not too
close to the boundary

@ the final solution will be
arbitrarily close to the
optimum solution

@ polynomial time

15/59

e [Khachiyan, 1979]

16/59

e [Khachiyan, 1979]
@ used to decide if the feasible region is empty or not

16/59

Ellipsoid Method

e [Khachiyan, 1979]
@ used to decide if the feasible region is empty or not

@ maintain an ellipsoid that contains
the feasible region

Ellipsoid Method

e [Khachiyan, 1979]

@ used to decide if the feasible region is empty or not

@ maintain an ellipsoid that contains
the feasible region

@ query a separation oracle if the
center of ellipsid is in the feasible
region:

e yes: then the feasible region is not
empty

e no: cut the elliposid in half, find
smaller ellipsoid to enclose the
half-ellipsoid, and repeat

Ellipsoid Method

e [Khachiyan, 1979]

@ used to decide if the feasible region is empty or not

@ maintain an ellipsoid that contains
the feasible region

@ query a separation oracle if the
center of ellipsid is in the feasible

region:
e yes: then the feasible region is not

empty)
e no: cut the elliposid in half, find P

smaller ellipsoid to enclose the
half-ellipsoid, and repeat

Ellipsoid Method

e [Khachiyan, 1979]

@ used to decide if the feasible region is empty or not

@ maintain an ellipsoid that contains
the feasible region

@ query a separation oracle if the
center of ellipsid is in the feasible

region:
e yes: then the feasible region is not

empty)
e no: cut the elliposid in half, find P

smaller ellipsoid to enclose the
half-ellipsoid, and repeat

Ellipsoid Method

e [Khachiyan, 1979]

@ used to decide if the feasible region is empty or not

@ maintain an ellipsoid that contains
the feasible region

@ query a separation oracle if the
center of ellipsid is in the feasible

region:
e yes: then the feasible region is not

empty)
e no: cut the elliposid in half, find P

smaller ellipsoid to enclose the
half-ellipsoid, and repeat

Ellipsoid Method

e [Khachiyan, 1979]

@ used to decide if the feasible region is empty or not

@ maintain an ellipsoid that contains
the feasible region

@ query a separation oracle if the
center of ellipsid is in the feasible
region:

e yes: then the feasible region is not
empty

e no: cut the elliposid in half, find
smaller ellipsoid to enclose the
half-ellipsoid, and repeat

Ellipsoid Method

e [Khachiyan, 1979]

@ used to decide if the feasible region is empty or not

@ maintain an ellipsoid that contains
the feasible region

@ query a separation oracle if the
center of ellipsid is in the feasible

region:
e yes: then the feasible region is not

empty)
e no: cut the elliposid in half, find P

smaller ellipsoid to enclose the
half-ellipsoid, and repeat

Ellipsoid Method

e [Khachiyan, 1979]

@ used to decide if the feasible region is empty or not

@ maintain an ellipsoid that contains
the feasible region

@ query a separation oracle if the
center of ellipsid is in the feasible

region:
e yes: then the feasible region is not

empty)
e no: cut the elliposid in half, find P

smaller ellipsoid to enclose the
half-ellipsoid, and repeat

Ellipsoid Method

e [Khachiyan, 1979]

@ used to decide if the feasible region is empty or not

@ maintain an ellipsoid that contains
the feasible region

@ query a separation oracle if the
center of ellipsid is in the feasible

region:
e yes: then the feasible region is not

empty)
e no: cut the elliposid in half, find P

smaller ellipsoid to enclose the
half-ellipsoid, and repeat

Ellipsoid Method

e [Khachiyan, 1979]

@ used to decide if the feasible region is empty or not

@ maintain an ellipsoid that contains
the feasible region

@ query a separation oracle if the
center of ellipsid is in the feasible
region:

e yes: then the feasible region is not
empty

e no: cut the elliposid in half, find
smaller ellipsoid to enclose the
half-ellipsoid, and repeat

Ellipsoid Method

e [Khachiyan, 1979]

@ used to decide if the feasible region is empty or not

@ maintain an ellipsoid that contains
the feasible region

@ query a separation oracle if the
center of ellipsid is in the feasible

region:
e yes: then the feasible region is not

empty)
e no: cut the elliposid in half, find P

smaller ellipsoid to enclose the
half-ellipsoid, and repeat

Ellipsoid Method

e [Khachiyan, 1979]

@ used to decide if the feasible region is empty or not

@ maintain an ellipsoid that contains
the feasible region

@ query a separation oracle if the
center of ellipsid is in the feasible

region:
e yes: then the feasible region is not

empty)
e no: cut the elliposid in half, find P

smaller ellipsoid to enclose the
half-ellipsoid, and repeat

Ellipsoid Method

e [Khachiyan, 1979]

@ used to decide if the feasible region is empty or not

@ maintain an ellipsoid that contains
the feasible region

@ query a separation oracle if the
center of ellipsid is in the feasible

region:
e yes: then the feasible region is not

empty)
e no: cut the elliposid in half, find P

smaller ellipsoid to enclose the
half-ellipsoid, and repeat

@ polynomial time, but impractical

Q: The exact running time of these algorithms? J

17/59

Q: The exact running time of these algorithms?

@ it depends on many parameters: #variables, #constraints,
#(non-zero coefficients), magnitude of integers

@ precision issue

Q: The exact running time of these algorithms?

@ it depends on many parameters: #variables, #constraints,
#(non-zero coefficients), magnitude of integers

@ precision issue

Open Problem

Can linear programming be solved in strongly polynomial time
algorithm?

Applications of Linear Programming

@ domain: computer science, mathematics, operations research,
economics

@ types of problems: transportation, scheduling, clustering,
network routing, resource allocation, facility location

Applications of Linear Programming

@ domain: computer science, mathematics, operations research,
economics

@ types of problems: transportation, scheduling, clustering,
network routing, resource allocation, facility location

Research Directions

@ polynomial time exact algorithm

@ polynomial time approximation algorithm

@ sub-routines for the branch-and-bound metheod for integer
programming

@ other algorithmic models: online algorithm, distributed
algorithms, dynamic algorithms, fast algorithms

Simple Example: Brewery Problem *

@ Small brewery produces ale and beer.

e Production limited by scarce resources: corn, hops, barley malt.
e Recipes for ale and beer require different proportions of resources.

http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/LinearProgrammingI.pdf
http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/LinearProgrammingI.pdf

Simple Example: Brewery Problem *

@ Small brewery produces ale and beer.

e Production limited by scarce resources: corn, hops, barley malt.
e Recipes for ale and beer require different proportions of resources.

Beverage Corn Hops Malt Profit
(pounds) | (pounds) | (pounds) | ($)
Ale (barrel) 5 4 35 13
Beer (barrel) 15 4 20 23
Constraint 480 160 1190

http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/LinearProgrammingI.pdf
http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/LinearProgrammingI.pdf

Simple Example: Brewery Problem *

@ Small brewery produces ale and beer.

e Production limited by scarce resources: corn, hops, barley malt.
e Recipes for ale and beer require different proportions of resources.

Beverage Corn Hops Malt Profit
(pounds) | (pounds) | (pounds) | ($)
Ale (barrel) 5 4 35 13
Beer (barrel) 15 4 20 23
Constraint 480 160 1190

@ How can brewer maximize profits?

* http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/

LinearProgrammingI.pdf

http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/LinearProgrammingI.pdf
http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/LinearProgrammingI.pdf

Brewery Problem *

Beverage Corn Hops Malt Profit
(pounds) | (pounds) | (pounds) | (9)
Ale (barrel) 5 4 35 13
Beer (barrel) 15 4 20 23
Constraint 480 160 1190

http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/LinearProgrammingI.pdf
http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/LinearProgrammingI.pdf

Brewery Problem *

Corn Hops Malt Profit
Beverage
(pounds) | (pounds) | (pounds) | (9)
Ale (barrel) 5 4 35 13
Beer (barrel) 15 4 20 23
Constraint 480 160 1190
max 13z + 23y Profit
or + 15y < 480 Corn
4x 4+ 4y < 160 Hops
3bx + 20y < 1190 Malt
z,y >0

* http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/

LinearProgrammingI.pdf

http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/LinearProgrammingI.pdf
http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/LinearProgrammingI.pdf

@ Linear Programming and Rounding

e Exact Algorithms Using LP: Integral Polytopes
@ Bipartite Matching Polytope
@ s-t Flow Polytope
@ Weighted Interval Scheduling Problem

© Approximation Algorithms Using LP: LP Rounding
@ 2-Approximation Algorithm for Weighted Vertex Cover
@ 2-Approximation Algorithm for Unrelated Machine
Scheduling

21/59

Def. A polytope P C R" is said to be integral, if all vertices of
P are in Z". J

22/59

Def. A polytope P C R" is said to be integral, if all vertices of
P are in Z". J

@ For some combinatorial optimization problems, a
polynomial-sized LP Az < b already defines an integral
polytope, whose vertices correspond to valid integral solutions.

Def. A polytope P C R" is said to be integral, if all vertices of
P are in Z™.

@ For some combinatorial optimization problems, a
polynomial-sized LP Az < b already defines an integral
polytope, whose vertices correspond to valid integral solutions.

@ Such a problem can be solved directly using the LP:

max / min cr Az <b.

@ Linear Programming and Rounding

e Exact Algorithms Using LP: Integral Polytopes
@ Bipartite Matching Polytope
@ s-t Flow Polytope
@ Weighted Interval Scheduling Problem

© Approximation Algorithms Using LP: LP Rounding
@ 2-Approximation Algorithm for Weighted Vertex Cover
@ 2-Approximation Algorithm for Unrelated Machine
Scheduling

23/59

Example: Bipartite Matching Polytope

Maximum Weight Bipartite Matching
Input: bipartite graph G = (LW R, F)
edge weights w € ZZ,

Output: a matching M C E so as to
maximize), We

Example: Bipartite Matching Polytope

Maximum Weight Bipartite Matching
Input: bipartite graph G = (LW R, F)
edge weights w € ZZ,

Output: a matching M C E so as to
maximize), We

LP Relaxation
max Zwease
c€E
> z.<1 WweLUR
e€s(v)
z. >0 VeeFE

Example: Bipartite Matching Polytope

Maximum Weight Bipartite Matching ;
Input: bipartite graph G = (LW R, F)
edge weights w € ZZ,
Output: a matching M C E so as to
maximize), We) 1
LP Relaxation o InlP:z.€{0,1}: e € M?
max Zwease
cEE
> z.<1 WweLUR
e€b(v)
z. >0 VeeFE

Example: Bipartite Matching Polytope

¢ Tij .
Maximum Weight Bipartite Matching J
Input: bipartite graph G = (LW R, F)
edge weights w € ZZ,
Output: a matching M C E so as to
maximize), We
V.
LP Relaxation o InlIP:z.€{0,1}: e M?
max > .z,
ecl
> z.<1 WweLUR
e€d(v)
z. >0 VeeFE

Example: Bipartite Matching Polytope

Maximum Weight Bipartite Matching
Input: bipartite graph G = (LW R, F)
edge weights w € ZZ,

Output: a matching M C E so as to
maximize), We

zjaﬁijﬁl Zixijgl

LP Relaxation o InlIP:z.€{0,1}: e M?
max > wr,
ecl

> z.<1 WweLUR
e€d(v)
z. >0 VeeFE

Example: Bipartite Matching Polytope

Maximum Weight Bipartite Matching |
Input: bipartite graph G = (LW R, F)
edge weights w € ZZ,

Output: a matching M C E so as to
maximize ZeeM We

ijz'jgl Zixijgl

LP Relaxation e InIP: Te € {0, 1} ee M?
max Zweﬂfe o M e{0,1}F: M =1iff
e eeM
Z ze<1 VveLUR Theorem The LP polytope is
e€d(v) integral: It is the convex hull of
ze>0 VYeeE {xM : M is a matching}.

777w C

Theorem The LP polytope is integral: It is the convex hull of
{xM : M is a matching}. J

Proof.

0 25/59

Theorem The LP polytope is integral: It is the convex hull of
{xM : M is a matching}. J

Proof.
@ take x in the polytope P

0 25/59

Theorem The LP polytope is integral: It is the convex hull of
{xM : M is a matching}.

Proof. |
@ take x in the polytope P

@ prove: x non integral => x non-vertex

Theorem The LP polytope is integral: It is the convex hull of
{xM : M is a matching}.

Proof. |
@ take x in the polytope P
@ prove: x non integral => x non-vertex

o find«/,2" € P: o' #£a" 2 = 3(a/ +2")

Theorem The LP polytope is integral: It is the convex hull of
{xM : M is a matching}.

Proof. |
@ take x in the polytope P

@ prove: x non integral = = non-vertex
o find«/,2" € P: o' #£a" 2 = 3(a/ +2")

@ case 1: fractional edges contain a cycle

0\1.

Theorem The LP polytope is integral: It is the convex hull of
{xM : M is a matching}.

Proof. |
@ take x in the polytope P

@ prove: x non integral = x non-vertex
o find«/,2" € P: o' #£a" 2 = 3(a/ +2")
@ case 1: fractional edges contain a cycle

0\1.

e color edges in cycle blue and red

Theorem The LP polytope is integral: It is the convex hull of
{xM : M is a matching}.

Proof. |
@ take x in the polytope P
@ prove: x non integral => x non-vertex

o find«/,2" € P: o' #£a" 2 = 3(a/ +2")

.\1.
@ case 1: fractional edges contain a cycle n
e color edges in cycle blue and red -
€

e z’: +e¢ for blue edges, —e¢ for red edges TFe
o z'": —e for blue edges, +¢ for red edges

0/1.

Theorem The LP polytope is integral: It is the convex hull of

{xM : M is a matching}.

Proof.

o take x in the polytope P

@ prove: x non integral = x non-vertex
o find«/,2" € P: o' #£a" 2 = 3(a/ +2")
@ case 1: fractional edges contain a cycle

e color edges in cycle blue and red
e z’: +e¢ for blue edges, —e¢ for red edges
o z'": —e for blue edges, +¢ for red edges

@ case 2: fractional edges form a forest

0\1.

0/1.

Theorem The LP polytope is integral: It is the convex hull of

{xM : M is a matching}.

Proof.
o take x in the polytope P
@ prove: x non integral => x non-vertex
o find«/,2" € P: o' #£a" 2 = 3(a/ +2")
@ case 1: fractional edges contain a cycle
e color edges in cycle blue and red
e z’: +e¢ for blue edges, —e¢ for red edges
o z'": —e for blue edges, +¢ for red edges
@ case 2: fractional edges form a forest

e color edges in a leaf-leaf path blue and
red

0\1.

0/1.

Theorem The LP polytope is integral: It is the convex hull of

{xM : M is a matching}.

Proof.

o take x in the polytope P

@ prove: x non integral = x non-vertex
o find«/,2" € P: o' #£a" 2 = 3(a/ +2")
@ case 1: fractional edges contain a cycle

e color edges in cycle blue and red
e z’: +e¢ for blue edges, —e¢ for red edges
o z'": —e for blue edges, +¢ for red edges

@ case 2: fractional edges form a forest
e color edges in a leaf-leaf path blue and

red
e z’: +e¢ for blue edges, —e¢ for red edges
o 2'": —e for blue edges, +¢ for red edges

D y

+e

Fe Fe

+e

@ Linear Programming and Rounding

e Exact Algorithms Using LP: Integral Polytopes
@ Bipartite Matching Polytope
@ s-t Flow Polytope
@ Weighted Interval Scheduling Problem

© Approximation Algorithms Using LP: LP Rounding
@ 2-Approximation Algorithm for Weighted Vertex Cover
@ 2-Approximation Algorithm for Unrelated Machine
Scheduling

26,59

e directed graph G = (V, E), source s € V, sink t € V, edge
capacities ¢, € Z~o,Ve € E
e s has no incoming edges, t has no outgoing edges

27/59

Def. A s-t flow is a vector f € Rgo satisfying the following
conditions:

oeVeec E,0< f. <ec (capacity constraints)
e Vv e V\{s,t}

Z Je= Z fe (flow conservation)
e€din(v) e€dout (v
The value of flow f is defined as:

val(f Z o= Z Je

e€dout(s) e€din(t)

Maximum Flow Problem
Input: flow network (G = (V, E), ¢, s,t)
Output: maximum value of a s-t flow f

Maximum Flow Problem
Input: flow network (G = (V, E), ¢, s,t)
Output: maximum value of a s-t flow f

Maximum Flow Problem
Input: flow network (G = (V, E), ¢, s,t)
Output: maximum value of a s-t flow f

@ Ford-Fulkerson method

Maximum Flow Problem
Input: flow network (G = (V, E), ¢, s,t)
Output: maximum value of a s-t flow f

@ Ford-Fulkerson method

@ Maximum-Flow Min-Cut
Theorem: value of the
maximum flow is equal to the
value of the minimum s-t cut

Maximum Flow Problem
Input: flow network (G = (V, E), ¢, s,t)
Output: maximum value of a s-t flow f

@ Ford-Fulkerson method

@ Maximum-Flow Min-Cut
Theorem: value of the
maximum flow is equal to the
value of the minimum s-t cut

@ [Chen-Kyng-Liu-Peng-
Gutenberg-Sachdeva, 2022]:
nearly linear-time algorithm

max E Toe

e€din(t)
Te < Ce Vee E

Z Te — Z Te=0 Yo e V\ {s,t}

e€dout(v) e€dn(v)

T >0 Vee B

30/59

LP for Maximum Flow

max E Te

e€din(t)
Te < Ce
¥ am ¥ amo
e€dout(v) e€din(v)
ze 2> 0

Vee E
Yo e V\ {s,t}

Vee B

Theorem The LP polytope is integral.

30/59

LP for Maximum Flow
w5 &
e€dn(t)
e < ce Vee E
Z Te — er—() Yo e V\ {s,t}
e€dout(v) e€din(v)

Te >0 Vee E

Theorem The LP polytope is integral.

Sketch of Proof.

@ Take any s-t flow x; consider fractional edges E’

@ Every v ¢ {s,t} must be incident to 0 or > 2 edges in £’

@ Ignoring the directions of £, it contains a cycle, or a s-t path

@ We can increase/decrease flow values along cyle/path [

~()

@ Linear Programming and Rounding

e Exact Algorithms Using LP: Integral Polytopes
@ Bipartite Matching Polytope
@ s-t Flow Polytope
@ Weighted Interval Scheduling Problem

© Approximation Algorithms Using LP: LP Rounding
@ 2-Approximation Algorithm for Weighted Vertex Cover
@ 2-Approximation Algorithm for Unrelated Machine
Scheduling

31/59

Weighted Interval Scheduling Problem
Input: n activities, activity ¢ starts at time s;, finishes at time
fi, and has weight w; > 0
i and j can be scheduled together iff [s;, f;) and
[s;, fj) are disjoint
Output: maximum weight subset of jobs that can be scheduled

[90] | 30 | |
I 30 | | 70]

@ optimum value= 220

Weighted Interval Scheduling Problem
Input: n activities, activity ¢ starts at time s;, finishes at time
fi, and has weight w; > 0
i and j can be scheduled together iff [s;, f;) and
[s;, fj) are disjoint
Output: maximum weight subset of jobs that can be scheduled

[90] | 30 | |
I 30 | | 70]

@ optimum value= 220

@ Classic Problem for Dynamic Programming

33/59

Weighted Interval Scheduling Problem

Linear Program

max E a:jwj
Jj€ln]

Y oz <1 vte(T)

JE]:tEls;, 1)

Theorem The LP polytope is
integral.

J

Weighted Interval Scheduling Problem

Linear Program

max E xjwj
Jj€ln]

Z l'jgl

JE]:tEls;, 1)

Vt e [T]

Theorem The LP polytope is
integral.

Def. A matrix A € R™*" is
said to be tototally unimodular
(TUM), if every sub-square of A
has determinant in {—1,0,1}.

Weighted Interval Scheduling Problem

Linear Program | Theorem The LP polytope is
max Z W, integral.
e Def. A ix A e R™~
ef. matrix A € R™*" is
i < . .
' Z CET said to be tototally unimodular
Jeinltelen fs) (TUM), if every sub-square of A

z; 20 Vj€[n] | has determinant in {—1,0,1}.

Theorem |If a polytope P is defined by Az > b,z > 0 with a
totally unimodular matrix A and integral b, then P is integral.

Weighted Interval Scheduling Problem

Linear Program | Theorem The LP polytope is
max Z W, integral.
e Def. A ix A e R™~
ef. matrix A € R™*" is
i < . .
' Z CET said to be tototally unimodular
Jeinltelen fs) (TUM), if every sub-square of A

z; =0 Vj€n] | has determinant in {—1,0,1}.

Theorem |If a polytope P is defined by Az > b,z > 0 with a
totally unimodular matrix A and integral b, then P is integral.

Lemma A matrix A € {0, 1} ™ where the 1's on every column
form an interval is TUM.

@ So, the matrix for the LP is TUM, and the polytope is integral.

Theorem |If a polytope P is defined by Ax > b,z > 0 with a
totally unimodular matrix A and integral b, then P is integral. J

Theorem |If a polytope P is defined by Ax > b,z > 0 with a
totally unimodular matrix A and integral b, then P is integral.

Proof. |
@ Every vertex x € P is the unique solution to the linear system

(after permuting coordinates): </(§ ?) 73— <[())> where

o A’ is a square submatrix of A with det(A’) = +1, V' is a
sub-vector of b,
e and the rows for b’ are the same as the rows for A’.

Theorem |If a polytope P is defined by Ax > b,z > 0 with a
totally unimodular matrix A and integral b, then P is integral.

Proof. |
@ Every vertex x € P is the unique solution to the linear system

(after permuting coordinates): </(§ ?) 73— <[())> where

o A’ is a square submatrix of A with det(A’) = +1, V' is a
sub-vector of b,
e and the rows for b’ are the same as the rows for A’.

1
o Let x = (;) so that A’z =¥ and 22 = 0.

Theorem |If a polytope P is defined by Ax > b,z > 0 with a
totally unimodular matrix A and integral b, then P is integral.

Proof. |
@ Every vertex x € P is the unique solution to the linear system

b
<0> , Where

o A’ is a square submatrix of A with det(A’) = +1, V' is a
sub-vector of b,
e and the rows for b’ are the same as the rows for A’.

1
o Let x = (;) so that A’z =¥ and 22 = 0.

(after permuting coordinates): </(§ ?) 73—

det(A/|b)
d t(A’

Al|b: the matrix of A’ with the i-th column replaced by b my

e Cramer's rule: z} = for every i = =} is integer

T
11 Ai12 A1z 414 Qip X2 by
(21 Q22 Q23 Q24 25 x3 | > | be
az1 G322 Ga33 (A34 435 Ty bs
Ts

L1, X2, X3, T4, L5 2 0

35,59

Example for the Proof

T
11 Ai12 A1z Aai4 Qaip X2 by
G2,1 Q22 QA3 a4 Q25 x3 | > | b2
az1 a3z AaA33 aA3z4 a35 Xy b3
Ts

T1,X2,T3,T4,Ts Z 0

The following equation system may give a vertex:

aj1 Air2 a3 Ar4 Qi1p £y by
a31 G322 A33 A3z4 dA35 X2
1 0 0 0 0 r3 | =
0 0 0 1 0 T4
0 0 0 0 1 T

S
w

o O O

Example for the Proof

11 Gi12 G13 A14 dis
a31 G322 Aa33 A34 435
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1

£y
Z2
Z3
Ty
L5

Example for the Proof

11 Gi12 G13 A14 dis
a31 G322 Aa33 A34 435
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1

Equivalently, the vertex satisfies

12 Aa13 0 0O
azg2 Aa3;3 0 00
0 0 1 00
0 0 010
0 0 001

Iy

Z2

I3 =

Ty

L5
o) by
T3 bs
T = 0
T4 0

Ty 0

Lemma Let A’ € {0,4+1}"*" such that every row of A’ contains
at most one 1 and one —1. Then det(A’) € {0,£1}.

v

Proof.

37/59

Lemma Let A’ € {0,4+1}"*" such that every row of A’ contains
at most one 1 and one —1. Then det(A4’) € {0,+1}.

Proof.
@ wlog assume every row of A’ contains one 1 and one —1

Lemma Let A’ € {0,4+1}"*" such that every row of A’ contains
at most one 1 and one —1. Then det(A4’) € {0,+1}.

Proof.

@ wlog assume every row of A’ contains one 1 and one —1
e otherwise, we can reduce the matrix

Lemma Let A’ € {0,4+1}"*" such that every row of A’ contains
at most one 1 and one —1. Then det(A’) € {0, +1}.

Proof.

@ wlog assume every row of A’ contains one 1 and one —1
e otherwise, we can reduce the matrix

@ treat A’ as a directed graph: columns = vertices, rows = arcs

Lemma Let A’ € {0,4+1}"*" such that every row of A’ contains
at most one 1 and one —1. Then det(A’) € {0, +1}.

Proof.

@ wlog assume every row of A’ contains one 1 and one —1
e otherwise, we can reduce the matrix

@ treat A’ as a directed graph: columns = vertices, rows = arcs

@ #edges = #vertices = underlying undirected graph
contains a cycle = det(A’) =0 O

Lemma Let A’ € {0,£1}"*" such that every row of A’ contains
at most one 1 and one —1. Then det(A’) € {0, +1}.

Proof.
@ wlog assume every row of A’ contains one 1 and one —1
e otherwise, we can reduce the matrix
@ treat A’ as a directed graph: columns = vertices, rows = arcs

@ #edges = #vertices = underlying undirected graph
contains a cycle = det(A’) =0 O

Lemma Let A € {0, £1}™*™ such that every row of A contains
at most one 1 and one —1. Then A is TUM.

Lemma Let A’ € {0,£1}"*" such that every row of A’ contains
at most one 1 and one —1. Then det(A’) € {0, +1}.

Proof.

@ wlog assume every row of A’ contains one 1 and one —1
e otherwise, we can reduce the matrix

@ treat A’ as a directed graph: columns = vertices, rows = arcs

@ #edges = #vertices = underlying undirected graph
contains a cycle = det(A’) =0 O

Lemma Let A € {0, £1}™*™ such that every row of A contains
at most one 1 and one —1. Then A is TUM.

Coro. The matrix for s-t flow polytope is TUM; thus, the
polytope is integral.

OOO\
0 0 00
1
-1 0 0

-1
0

/1—100000
0
0

1
0

-1 0 0

0

0 O
0
1

0
0

38,59

OOO\
0 0 00
1
-1 0 0

-1
0

/1—100000
0
0

1
0

-1 0 0

0

0 O
0
1

0
0

38,59

38,59

0 00
-1 0 0

10
-1 0 1
-1 0 0

1

1
0 0 0 O
0 0 0

1

1 -10 0 00
0 -1
0 O

0 0

38,59

0 00
-1 0 0

10
-1 0 1
-1 0 0

1

1
0 0 0 O
0 0 0

1

1 -10 0 00
0 -1
0 O

0 0

0
1
0

—

0 O
-1

1
1

o O

-1 0 0 O

-1

o O

1
0

O

|

38,59

S O O - O

e i
o

SO — = O O

—

— O [enl

Example for the Proof

S O O - O

e i
o

SO — = O O
—

__000

— o O O

Example for the Proof

Example for the Proof

Lemma A matrix A € {0, 1}™*"™ where the 1's on every row
form an interval is TUM.

Proof.

39/59

Lemma A matrix A € {0, 1}™*"™ where the 1's on every row
form an interval is TUM.

Proof.
@ take any square submatrix A’ of A,

39/59

Lemma A matrix A € {0, 1}™*"™ where the 1's on every row
form an interval is TUM.

Proof.
@ take any square submatrix A’ of A,

@ the 1's on every row of A’ form an interval.

Lemma A matrix A € {0, 1}™*"™ where the 1's on every row
form an interval is TUM.

Proof.
@ take any square submatrix A’ of A,
@ the 1's on every row of A’ form an interval.

e A'M is a matrix satisfying condition of first lemma, where
1 -1 0 --- 0
o 1 -1 - 0
M=1]: : : : t . det(M) =1.
-1
1

o O
© @ -
O =

Lemma A matrix A € {0, 1}™*"™ where the 1's on every row
form an interval is TUM.

Proof.
@ take any square submatrix A’ of A,
@ the 1's on every row of A’ form an interval.

e A'M is a matrix satisfying condition of first lemma, where

1 -1 0 --- 0
0o 1 -1 --- 0

M=1]: : ; ; to|. det(M) = 1.
o 0 -~ 1 -1
0 O 0 1

o det(A'M) € {0,£1} = det(A’) € {0,+1}.

40,59

|

011100
111100
001111
00 0O0T11
000110
011110

|

40,59

|

01 1 100
111100
001111
00 0O0T11
000110
01 1 110

|

SO A —~ -
— o~ o~
— - O
— O O
o —H O O O

40,59

oo o= O
_ O O =
— O~ =
= = s
_ = =0 O

@ (col 1,col 2 —col 1,col 3 —col 2,col 4 — col 3,col 5 — col 4)

40,59

Example for the Proof

01110 0100 -1
11110 1000 O
00111 =1]00120 0
000171 0001 O
01111 0100 O

@ (col 1,col 2 —col 1,col 3 —col 2,col 4 — col 3,col 5 — col 4)

Example for the Proof

01110 0100 -1
11110 1000 O
00111 =1]00120 0
000171 0001 O
01111 0100 O

@ (col 1,col 2 —col 1,col 3 —col 2,col 4 — col 3,col 5 — col 4)

@ every row has at most one 1, at most one —1

Lemma The edge-vertex incidence matrix A of a bipartite graph
is totally-unimodular.

-

[/59

Lemma The edge-vertex incidence matrix A of a bipartite graph
is totally-unimodular.

v

Proof.
o G = (LWR,E): the bipartite graph

Example

1/59

Lemma The edge-vertex incidence matrix A of a bipartite graph
is totally-unimodular.

Proof. |
e G = (LYR,E): the bipartite graph

e A’: obtained from A by negating columns correspondent to R

Example

Lemma The edge-vertex incidence matrix A of a bipartite graph
is totally-unimodular.

Proof. |
e G = (LYR,E): the bipartite graph
e A’: obtained from A by negating columns correspondent to R

@ each row of A’ has exactly one +1, and exactly one —1

Example

Lemma The edge-vertex incidence matrix A of a bipartite graph
is totally-unimodular.

Proof.

e G = (LYR,E): the bipartite graph

e A’: obtained from A by negating columns correspondent to R
@ each row of A’ has exactly one +1, and exactly one —1

o — AisTUM < Ais TUM O

Example

Lemma The edge-vertex incidence matrix A of a bipartite graph
is totally-unimodular.

Proof.
e G = (LYR,E): the bipartite graph
e A’: obtained from A by negating columns correspondent to R

@ each row of A’ has exactly one +1, and exactly one —1

o — A isTUM < Ais TUM O
Example

1 4

2)

Lemma The edge-vertex incidence matrix A of a bipartite graph
is totally-unimodular.

Proof.
e G = (LYR,E): the bipartite graph
e A’: obtained from A by negating columns correspondent to R

@ each row of A’ has exactly one +1, and exactly one —1

o — A'isTUM < A is TUM O
Example
1 4 1 001 00
1 00010
1 00001
2 > 100100
1 00001
3 6 1 00010

Lemma The edge-vertex incidence matrix A of a bipartite graph
is totally-unimodular.

Proof.
e G = (LYR,E): the bipartite graph
e A’: obtained from A by negating columns correspondent to R

@ each row of A’ has exactly one +1, and exactly one —1

o — A'isTUM < A is TUM O
Example
. A 100 -1 0 0
100 0 -1 0
1 0 0 O 0 -1
2 > 100 -1 0 0
1 0 0 O 0 -1
3 6 1 00 0 -1 0

e remark: bipartiteness is needed. The edge-vertex incidence
01 1
matrix [1 O of a triangle has determinent 2.
11

1
0

e remark: bipartiteness is needed. The edge-vertex incidence
01 1
matrix [1 0 1| of a triangle has determinent 2.
110

Coro. Bipartite matching polytope is integral.

@ Linear Programming and Rounding

© Exact Algorithms Using LP: Integral Polytopes
@ Bipartite Matching Polytope
@ s-t Flow Polytope
@ Weighted Interval Scheduling Problem

e Approximation Algorithms Using LP: LP Rounding
@ 2-Approximation Algorithm for Weighted Vertex Cover
@ 2-Approximation Algorithm for Unrelated Machine
Scheduling

43/59

Approximation Algorithm based on LP Rounding

relax

@ Opti. Problem X <= 0/1 Integer Program (IP) == LP

Approximation Algorithm based on LP Rounding

relax

@ Opti. Problem X <= 0/1 Integer Program (IP) == LP

0/1 Integer Program Linear Program Relaxation
min c'z
Az > b min ¢z
x €{0,1}" Az > b

z € [0,1]"

Approximation Algorithm based on LP Rounding

relax

@ Opti. Problem X <= 0/1 Integer Program (IP) == LP

0/1 Integer Program Linear Program Relaxation
min c'z
Az > b min ¢z
z € {0,1}" Az >0
z € [0,1]"

Approximation Algorithm based on LP Rounding

relax

@ Opti. Problem X <= 0/1 Integer Program (IP) == LP

0/1 Integer Program Linear Program Relaxation
min ¢’z
Az > b min ¢z
z € {0,1}" Az >b
z € [0,1]"
o LP IP

@ Integer programming is NP-hard, linear programming is in P

Approximation Algorithm based on LP Rounding

relax

@ Opti. Problem X <= 0/1 Integer Program (IP) == LP

0/1 Integer Program Linear Program Relaxation
min ¢’z
Az > b min ¢z
z € {0,1}" Az >b
z € [0,1]"
o LP IP

@ Integer programming is NP-hard, linear programming is in P
@ Solve LP to obtain a fractional = € [0, 1].

Approximation Algorithm based on LP Rounding

relax

@ Opti. Problem X <= 0/1 Integer Program (IP) == LP

0/1 Integer Program Linear Program Relaxation
min ¢’z
Az > b min ¢z
z € {0,1}" Az >b
z € [0, 1]"
o LP IP

@ Integer programming is NP-hard, linear programming is in P
@ Solve LP to obtain a fractional = € [0, 1].
@ Round it to an integral Z € {0, 1}" <= solution for X

Approximation Algorithm based on LP Rounding

relax

@ Opti. Problem X <= 0/1 Integer Program (IP) == LP

0/1 Integer Program Linear Program Relaxation
min c'x
Ar > b min ¢’z
x €{0,1}" Az >b
z € [0, 1]"
o LP <IP
@ Integer programming is NP-hard, linear programming is in P
@ Solve LP to obtain a fractional = € [0, 1].
@ Round it to an integral Z € {0, 1}" <= solution for X
@ Provec™? <a-c'z,thenct -2 <a-LP<a-IP =a-opt

Approximation Algorithm based on LP Rounding

relax

@ Opti. Problem X <= 0/1 Integer Program (IP) == LP

0/1 Integer Program Linear Program Relaxation
min c'x
Ar > b min ¢ x
x €{0,1}" Az >b
z € [0, 1]"
o LP <IP
@ Integer programming is NP-hard, linear programming is in P
@ Solve LP to obtain a fractional = € [0, 1].
@ Round it to an integral Z € {0, 1}" <= solution for X
@ Provec™? <a-c'z,thenct -2 <a-LP<a-IP =a-opt
@ — q-approximation

IP = opt
/

HI

/

min ¢ x LP, K

Az >b
z € {0,1}"

\j

HI

min cx
Az >0
z € [0,1]"

45/59

IP /
min ¢z S S
Ax >b
x €{0,1}"

LP Relaxation

min 'z
Az >b Def. The ratio between IP = opt and
z € [0,1]" LP is called the integrality gap of the

/ LP relaxation.

P integrality gap 1 5 OPt
min ¢z L
Ax >b
x €{0,1}"

LP Relaxation

min 'z
Az >b Def. The ratio between IP = opt and
z € [0,1]" LP is called the integrality gap of the

/ LP relaxation.

min ¢’z

Ax > b
xz € {0,1}"

LP Relaxation

min ¢z

Ax > b
z € [0,1]"

integrality gap 1P = opt

- - /
- ~ ,

LP & RNY <
e e >

Def. The ratio between IP = opt and
LP is called the integrality gap of the
LP relaxation.

@ The approximation ratio based on this analysis can not be
better than the worst integrality gap.

min ¢’z

Ax > b
xz € {0,1}"

LP Relaxation

min ¢z

Ax > b
z € [0,1]"

integrality gap 1P = opt
- - = — 7/

LP &~ A
—_—e——————————————————— ¢ ————— P
N P 4
~. _round__ -
- a > gap

Def. The ratio between IP = opt and
LP is called the integrality gap of the
LP relaxation.

@ The approximation ratio based on this analysis can not be
better than the worst integrality gap.

min ¢’z

Ax > b
xz € {0,1}"

LP Relaxation

min ¢z
Ax > b

z € [0,1]"

integrality gap 1P = opt
- - = — 7/

LP &~ S
—_———————————————————————— & P
~ v
S~_ _round_ _ -~
-7 a>gap
LP = 1P = opt

Def. The ratio between IP = opt and
LP is called the integrality gap of the
LP relaxation.

@ The approximation ratio based on this analysis can not be
better than the worst integrality gap.

min ¢’z

Ax > b
xz € {0,1}"

LP Relaxation

min ¢z
Ax > b

z € [0,1]"

integrality gap 1P = opt

— /

Def. The ratio between IP = opt and
LP is called the integrality gap of the
LP relaxation.

@ The approximation ratio based on this analysis can not be
better than the worst integrality gap.

@ Linear Programming and Rounding

© Exact Algorithms Using LP: Integral Polytopes
@ Bipartite Matching Polytope
@ s-t Flow Polytope
@ Weighted Interval Scheduling Problem

© Approximation Algorithms Using LP: LP Rounding
@ 2-Approximation Algorithm for Weighted Vertex Cover
@ 2-Approximation Algorithm for Unrelated Machine
Scheduling

46,59

Weighted Vertex Cover Problem
Input: graph G = (V, E), vertex weights w € ZY
Output: vertex cover S of G, to minimize) . w,

47/59

e 1z, € {0,1},Vv € V: indicate if we include v in the vertex

cover

Integer Program

Ty +2, > 1
x, € {0,1}

LP Relaxation

min

Ty + 2, > 1

E Wy Ty

veV

V(u,v) € £

z, €10,1] YveV

e 1z, € {0,1},Vv € V: indicate if we include v in the vertex

cover

Integer Program

min E Wy Ly

veV
l'u_'_xvzl V(U,U)GE
z, €{0,1} YveV

LP Relaxation

min

Ty + 2, > 1

E Woy Ty

veV

V(u,v) € £

z, €10,1] YveV

@ |IP := value of integer program, LP := value of linear program

e LP < IP =opt

Rounding Algorithm

1: Solve LP to obtain solution {z}.cv
>So, LP =3 o wuay <IP

49/59

Rounding Algorithm

1: Solve LP to obtain solution {z} },cv
>So, LP =3 o wuay <IP
2: return S:={ueV:x,>1/2}

49/59

Rounding Algorithm

1. Solve LP to obtain solution {z }.cv
>So, LP =3 ., wyz) < IP
2. return S :={u eV :2,>1/2}

Lemma S is a vertex cover of G.)

49/59

Rounding Algorithm

1: Solve LP to obtain solution {z} },cv
>So, LP =3 o wuay <IP
2: return S:={ueV:x,>1/2}

Lemma S is a vertex cover of G.)

Proof.
e Consider any (u,v) € E: we have z} + x5 > 1

49/59

Rounding Algorithm

1: Solve LP to obtain solution {z} },cv
>So, LP =3 o wuay <IP
2: return S:={ueV:x,>1/2}

Lemma S is a vertex cover of G. J

Proof.
e Consider any (u,v) € E: we have z} + x5 > 1
@ So, i >1/2o0rx;>1/2 — ueSorvelsS. O

49/59

Rounding Algorithm

1: Solve LP to obtain solution {z}.cv
>So, LP =3 . wua <IP
2: retun S:={ueV:x,>1/2}

Lemma S is a vertex cover of G.)

50/59

Rounding Algorithm

1: Solve LP to obtain solution {z}.cv
>So, LP =3 . wua <IP
2: retun S:={ueV:x,>1/2}

Lemma S is a vertex cover of G. J

Lemma cost(S) :=) cqw, <2-LP.]

50/59

Rounding Algorithm

1: Solve LP to obtain solution {z }.cv

>So, LP =5 ., wyzy <IP
2: return S :={ueV:x,>1/2}
Lemma S is a vertex cover of G. J
Lemma cost(S) :=) cqw, < 2-LP. J
Proof.
cost(S) = Zwu < Zwu 2z = QZwu-x,’;
ues ues ucsS
§2Zwu-x’;:2-LP. O
ueV

50/59

Rounding Algorithm

1: Solve LP to obtain solution {z}.cv
>So, LP =3 oy wua},
2: return S :={ueV:x,>1/2}

<P

Lemma S is a vertex cover of G.

Lemma cost(S) :=) cqw, <2-LP.

Theorem The algorithm is a 2-approximation algorithm for
weighted vertex cover.

50/59

Rounding Algorithm

1: Solve LP to obtain solution {z} },cv
>So, LP =3 ., wyry < IP
2: return S:={ueV:x,>1/2}

Lemma S is a vertex cover of GG. J
Lemma cost(S) :=) cqw, <2-LP. |
Theorem The algorithm is a 2-approximation algorithm for

weighted vertex cover. J

Proof.
cost(S) <2-LP <2.IP =2 (optimum value) DJ

@ Linear Programming and Rounding

© Exact Algorithms Using LP: Integral Polytopes
@ Bipartite Matching Polytope
@ s-t Flow Polytope
@ Weighted Interval Scheduling Problem

© Approximation Algorithms Using LP: LP Rounding
@ 2-Approximation Algorithm for Weighted Vertex Cover
@ 2-Approximation Algorithm for Unrelated Machine
Scheduling

51,59

Unrelated Machine Scheduling

=
=2

Input: J, |J| = n: jobs

M, |M| = m: machines

k)
&

pi;: processing time of
job 7 on machine ¢

=
=

Output: assignment o : J — M:,
so as to minimize
makespan:

=

=
=

e
<&
]

Unrelated Machine Scheduling

=
=

Input: J, |J| = n: jobs
M, |M
pi;: processing time of
job 7 on machine ¢

= m: machines

k)
&

=
=

Output: assignment o : J — M:,
so as to minimize
makespan:

=
=2

=
=

e
<&
]

Unrelated Machine Scheduling

=
=

Input: J, |J| = n: jobs
M, |M
pi;: processing time of
job 7 on machine ¢

load=14

= m: machines

=
=2

=
=

load=8

Output: assignment o : J — M:,
so as to minimize
makespan:

=
=2

=
=

load=13

w2 P

jEa—1(1

Unrelated Machine Scheduling

=
=

Input: J, |J| = n: jobs load=14

M, |M| = m: machines

=
=2

pi;: processing time of

job 7 on machine ¢ job

) — load=8
Output: assignment o : J — M:, —
so as to minimize o
makespan: -
job

load=13

w2 P

je€o—1(i maximum load=14

@ Assumption: we are given a target makespan 7’, and
Dij € [O,T] U {OO} J

53/59

@ Assumption: we are given a target makespan 7’, and
Dij € [0, T] U {OO} J

@ x;;: fraction of j assigned to i

ZIZ’]‘ =1 \V/] eJ
J

53/59

@ Assumption: we are given a target makespan 7’, and
Dij € [0, T] U {OO} J

@ x;;: fraction of j assigned to i

ZIZ’]‘ =1 \V/] eJ
J

53/59

54/59

g =1,

54/59

Soipijriy <T

54/59

J1
J2

Js {

Ja
Js

Pijy = Pijy = 2 Pijs

54/59

J1
J2
Js

Ja

Js

Pijy 2 Pije 2 2 Pij
2 Pijs

54/59

J1
J2
Js

Ja

Js

Pijy = Pijy = 2 Pij
- 175

54/59

J1
J2
Js

Ja

Js

Pijy = Pijy = 2 Pijs

_Tijy

Tijo

Tijg

Tijg
Lijs

segment of length 1
/

54/59

J1
J2
Js

Ja

Js

Pijy = Pijy = 2 Pijs

Zij,
Tijo

Tijg

segment of length 1
/

J il
J2 i2
73 i3
Ja i4
Js

54/59

J1
J2
Js

Ja

Js

Pijy 2 Pije 2 2 Pij
— P15

J1
' il
J2 2
i
73 i3
Ja 4
Js

54/59

J1
J2
Js

Ja

Js

Pijy = Pijy = 2 Pijs

Tijo

Tijg

Tijg
Lijs

sub-machines for ¢

54/59

2-Approximate Rounding Algorithm of
Shmoys-Tardos

sub-machines

2-Approximate Rounding Algorithm of
Shmoys-Tardos

sub-machines

2-Approximate Rounding Algorithm of
Shmoys-Tardos

sub-machines

Obs. x between J and sub-machines is a point in the
bipartite-matching polytope, where all jobs in J are matched.

@ Recall bipartite matching polytope is integral.

@ Recall bipartite matching polytope is integral.

@ x is a convex combination of matchings.

@ Recall bipartite matching polytope is integral.
@ x is a convex combination of matchings.

@ Any matching in the combination covers all jobs J.

@ Recall bipartite matching polytope is integral.
@ x is a convex combination of matchings.

@ Any matching in the combination covers all jobs J.

Lemma Any matching in the combination gives an schedule of
makespan < 27 J

Lemma Any matching in the combination gives an schedule of
makespan < 27" J

J1
J2 Tin I a1
. Tijo & _ _ _
J3 Tijg 2
. Tijy T
_ i3
Ja Tijs | -~ -
4

Js

Pij1 = Pija 2 " 2 Pijs
sub-machines for 4

Proof.

Lemma Any matching in the combination gives an schedule of
makespan < 27" J

J1
J2 Tin I a1
. Tijo & _ _ _
J3 Tijg 2
. Tijy T
_ i3
Ja Tijs | -~ -
4

Js

Pij1 = Pija 2 " 2 Pijs
sub-machines for 4

Proof.

Lemma Any matching in the combination gives an schedule of
makespan < 27" J

J1
J2 T T
. Tijo & _ _ _
J3 Tijy 72
. w'”'4 Taa
-z i3
Ja Tijs | -~ -
4

Js

Piji = Pijy = 2 Pijs

sub-machines for 4

Proof.
e focus on machine 7, let i1, 149, - - , 7, be the sub-machines for ¢

Lemma Any matching in the combination gives an schedule of
makespan < 27'. J

J1
J2 T T
. Tijo & _ _ _
J3 Tijy 72
. w'”'4 Taa
-z i3
Ja Tijs | -~ -
4

Js

Piji = Pijy = 2 Pijs

sub-machines for 4

Proof.
e focus on machine 7, let i1, 149, - - , 7, be the sub-machines for ¢

@ assume job k; is assigned to sub-machine i;.

Lemma Any matching in the combination gives an schedule of

makespan < 27'.

a1

J2 T I g1

. Tijp L

J3 Tij i2

i _Zuaa)3

Ja Tijy | - — —
i4

Js

Piji = Pijy = 2 Pijs

sub-machines for 7

Proof.

e focus on machine 7, let i1, 149, - - , 7, be the sub-machines for ¢

@ assume job k; is assigned to sub-machine i;.

a a
(load on i) = Zpikt < Pik, + Z
t=1 =2

< Pik, + injpij <T+T=2T.

J

E Liy_1j = Pij

J

o fix i, use p; for p;;

@ P Z>py > 2>y
@ worst case:

o fix i, use p; for p;;

@ P Z>py > 2>y
@ worst case:

o fix i, use p; for p;;

@ P Z>py > 2>y
@ worst case:

o fix i, use p; for p;;

@ P Z>py > 2>y
@ worst case:

1 0.7

2e il

o fix i, use p; for p;;

@ P Z>py > 2>y
@ worst case:

o fix i, use p; for p;;

@ P Z>py > 2>y
@ worst case:

o fix i, use p; for p;;

@ P Z>py > 2>y
@ worst case:

o fix i, use p; for p;;

@ P Z>py > 2>y
@ worst case:

o fix i, use p; for p;;

@ P Z>py > 2>y
@ worst case:

o fix i, use p; for p;;

@ P Z>py > 2>y
@ worst case:

o fix i, use p; for p;;

@ P Z>py > 2>y
@ worst case:

o fix i, use p; for p;;

@ P Z>py > 2>y
@ worst case:

o fix i, use p; for p;;

@ P Z>py > 2>y
@ worst case:

o fix i, use p; for p;;
@ p1>pr=>- 2Py
@ worst case:

o 1—il,2—i2

o 4 —13,7T—14

o fix i, use p; for p;;
@ p1>pr=>- 2Py
@ worst case:

o 1—il,2—i2

o 4 —13,7T—14

o fix i, use p; for p;;

@ P >pr > 2 D7
@ worst case:

o 1 —141,2—12

o 4 —13,7T—14

m <T

p2 < 0.7p1 + 0.3py

ps < 0.3p2 + 0.5p3 + 0.2py

pr < 0.1pg + 0.5p5 + 0.2pg + 0.2p7

o fix i, use p; for p;;

@ P >pr > 2 D7
@ worst case:

o 1 —141,2—12

o 4 —13,7T—14

m <T

p2 < 0.7p1 + 0.3py

ps < 0.3p2 + 0.5p3 + 0.2py

pr < 0.1pg + 0.5p5 + 0.2pg + 0.2p7

p1+p2+ps+pr < T+ (0.7p; 4+ 0.3p2) + (0.3p2 + 0.5p3 + 0.2py)
+ (0.1p4 + 0.5p5 + 0.2pg + 0.2p7)
< T+ (0.7p; 4+ 0.6p2 + 0.5p3 + 0.3p4 + 0.5p5 + 0.2pg + 0.4p7)
<T+T=2T

Summary

@ linear programming, simplex method, interior point method,
ellipsoid method

@ integral LP polytopes: bipartite matching polytope, s-t flow
polytope, weighted interval scheduling polytope

Summary

@ linear programming, simplex method, interior point method,
ellipsoid method

@ integral LP polytopes: bipartite matching polytope, s-t flow
polytope, weighted interval scheduling polytope
@ approximation algorithm using LP rounding

e 2-approximation algorithm for weighted vertex cover
e 2-approximation for unrelated machine scheduling

English-Chinese Translation

Linear Program : Z&M:#0%

Integer Program : #EEHLL

Feasible Region : fi#1E
Polyhedron : [WZ[HI{A

Polytope : HFRMZEZMHIE
Vertex/Extreme Point : T,

Convex Combination : [HZH4&
Convex Hull : &
Dual : X&

Totally Unimodular : 584 AR

	Linear Programming and Rounding
	Exact Algorithms Using LP: Integral Polytopes
	Bipartite Matching Polytope
	s-t Flow Polytope
	Weighted Interval Scheduling Problem

	Approximation Algorithms Using LP: LP Rounding
	2-Approximation Algorithm for Weighted Vertex Cover
	2-Approximation Algorithm for Unrelated Machine Scheduling

