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T2

min Tz + 4x9
1+ T9 > 5
T+ 215 > 6
4oy + 29 > 8

L1, T2 Z 0

— N W ke ot o ©

Q: How can we prove a lower bound for the value? )

) 7$1+4l’2 22(1‘1 +$2)+([E1+2£€2) >2x54+6=16
("] 7ZIJ1+4JJ2 > (IBl+£E2)+(371+2.Z‘2)+(4£L’1+372) > 5+6+8 =19
("] 7$1+4$2 Z4($1+.’L’2) Z4X5=20

.71}1+4l‘2Z3($1+.’L‘2)+(4£Bl+l‘2)23X5+8:23 /28




Primal LP
Dual LP

min 7z + 4z
' ’ max 9y + 6y + 8y3

I1+$225
Y1ty +4ys <7
$1+2$226
Y1+ 2y +ys < 4
4y + 29 > 8 >0
1,25 = 0 Y1,Y2,Ys =

v

A way to prove lower bound on the value of primal LP

Tx1 + 43, (if 7> y1 + y2 + 4ys and 4 > y1 + 2y, + y3)
> (@1 + x2) + yo(21 + 222) + y3(da1 + 22)  (if Y1, 92,93 > 0)
> 5y1 + 6y2 + 8ys.

@ Goal: need to maximize 5y; + 612 + 8y3




Primal LP

Dual LP
min Tz +4x
! 2 max Hy; + 6ys + 8y
$1+$225
Y1ty +4y3 <7
T+ 225 > 6
Y1+ 2y +y3 < 4
4z + 139 > 8 >0
T, To Z 0 Y1,Y2,Ys =
11 5 7
A= 1 2 b=1| 6 c:<4)
4 1 8
min ¢’z s.t max bly s.t
Az > b ATy <ec




Primal LP Dual LP

min ¢z s.t. max bly s.t.
Az > b ATy <e
x>0 y=>0

@ P = value of primal LP
e D = value of dual LP

Theorem (weak duality theorem) D < P.

Theorem (strong duality theorem) D = P.

@ Can always prove the optimality of the primal solution, by
adding up primal constraints.



Primal LP Dual LP

min ¢z s.t. max bly s.t.
Az >Db ATy <e
x>0 y >0

@ P = value of primal LP
e D = value of dual LP

Theorem (weak duality theorem) D < P.

Proof.
@ z*: optimal primal solution
@ y*: optimal dual solution
D = bTy* < (Az))Ty* = (2)TATy* < (2%)Tc = ¢Tz* = P.




Fact If a point = does not belong to a polytope P, then there is
a hyperplane separating x and P.

Lemma (Farkas Lemma) Az = b,z > 0 is infeasible, if and only
if yPA > 0,yTbh < 0 is feasible.

Proof.

@ b does not belong to { Az : x > 0}, so 3 some hyperplane
separating b and {Az : > 0}.

e yTh < gand yT Az > g for every x > 0

@ g<0OandytA>0

e yTh<g<O [l




Lemma (Farkas Lemma) Az = b,z > 0 is infeasible, if and only
if yTA>0,yTb < 0 is feasible.

Lemma (Variant of Farkas Lemma) Az < b,z > 0 is infeasible, if
and only if y*A > 0,45Th < 0,y > 0 is feasible.

Proof.
@ system equivalent to Ax + 2’ =b,z, 2’ > 0

() (2)e

@ By Farkas Lemma, Jy such that y*(A4,1) > 0,y"b < 0
° = yTA>0,y" >0,y <0 O



Primal LP | Dual LP

min ¢’z s.t. max by s.t.
Ax > b ATy <c
y=>0

Lemma (Variant of Farkas Lemma) Az < b,z > 0 is infeasible, if
and only if yTA > 0,y"™h < 0,y > 0 is feasible.

Proof of Strong Duality Theorem
%4) z < (P__b e) ,x > 0 is infeasible

@ There exists y € RZ,, & > 0, such that (y', a) _CT > > 0,

(s, 0) (P__b 6) <0

@ we can prove « > 0, since the primal LP is feasible. \

e

0V6>O,(

C



Proof of Strong Duality Theorem

@ There exists y € RZ,, @ > 0, such that (y", a) (;f) > 0,

(s7, 0) <P__b 6) <0

@ assume o =1
o —yTA+cT >0, yTb+P—-e< 0= ATy <c,bTy>P—¢
eVe>0,D>P—¢ = D=P (since D<P) O

v




Primal LP
T

min c zx

Ax > b

Dual LP
max by
ATy <e
y=>0

| Relationships

Primal LP

dual LP

variables

constraints

constraints

variables

obj. coefficients

RHS constants

RHS constants

obj. coefficients

More Relationships

Primal LP

Dual LP

variable in R

equlities

equlities

variable in R




@ duality is mutual: the dual of the dual of an LP is the LP itself.

Primal LP Dual LP
max by min ¢’z
ATy <ec Az >b
y=>0 r20

@ Duality theorem holds when one LP is infeasible:
@ Minimization LP is infeasible — value = oo

— dual LP value = oo — feasible region of
dual LP is unbounded



Complementary Slackness

Primal LP Dual LP
min ¢ 'z max b’y
Az > b ATy <ec
x>0 y=>0

@ x* and y*: optimum primal and dual solutions

o D — bTy* < (A:c*)Ty* — (:U*)TATy* < (x*)Tc — T = P
e P = D: all the inequlaities hold with equalities.
Complementary Slackness

oy >0 = > ayx; =10

o ;>0 = . a;yf = .
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Maximum Flow Problem
Input: flow network
(G =(V,E),c,s,t)
Output: maximum value of a
s-t flow f

LP for Maximum Flow
max Z Te
e€din(t)
e < e Vee E

Z Te — Z e =0 Yo e V\ {s,t}

e€dout(v) e€dn(v)

To > 0 Vee B




An Equivalent Packing LP

VP eP

fp=>0

@ P: the set of all simple paths
from s to t

e fp, P € P: the flow on P

Ye > 0 Veec B

@ dual constraints: the shortest s-t path w.r.t weights y has

length > 1



Dual LP | Theorem The optimum value can

min Zceye be attained at an integral point y.
eck
Zye > 1 VP e P | Maximum Flow Minimum Cut
ceP Theorem The value of the
Yo > 0 Ve € E maximum flow equals the value of

the minimum cut.

Proof of Theorem. |

@ Given any optimum v, let d, be the length of shortest path
from s to v, for every v € V. ds =0,d; =1

@ Randomly choose 6 € (0, 1), and output cut
(S:={v:d, <0}, T:={v:d, >0})
o Lemma: E[cut value of(S,T)] < > 5 ceve
@ Any cut (S,T) in the support is optimum O]




max Z fp

PeP
Z fr<c. VYee F

PeP:eeP
fp>0 VP cP

D

eeP

Ye = 1 VP e P

Ye >0 Veec &

@ pros of new LP: it is a packing LP, dual is a covering LP, easier

to understand and analyze

@ cons of new LP: exponential size, can not be solved directly

e when we only need to do non-algorithmic analysis
e ellipsoid method with separation oracle can solve some

exponential size LP
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0-Sum Game
Input: a payoff matrix M € R™*" m,n > 1,
two players: row player R, column player C
Output: R plays a row i € [m], C plays a column j € [n]
payoff of game is M;;

R wants to minimize M;;, C wants to maximize M;;

Rock-Scissor-Paper Game @ game depends on who plays first

payoff | R S P
R 0o -1 1
S 1 0 -1
P -1 1 0

By allowing mixed strategies, each
player has a best strategy, regardless
of who plays first




row player R column player C

pure strategy row i € [m] column j € [n]

distribution x over [m)] distribution y over [n]

mixed strategy . n n
zel0, " =1 ]yel01", 3 y=1

M(z,y) = Z Z x;y; M

i=1 j=1

M(x,5) ==Y a:iMy,  M(i,y) ==Y y; M
i=1 j=1

o If R plays a mixed strategy y first, then it is the best for C to
play a pure strategy j. Value of game is inf, max;c,,) M(z, j).

o If C plays a mixed strategy x first, then it is the best for R to
play a pure strategy 7. Value of game is sup, min;cp,, M (i, y).



Theorem (Von Neumann (1928), Nash's Equilibrium)

inf max M (x, j) = sup min M (i, y).
T j€[n] y i€m]

Coro. infsup M(z,y) = supinf M(x,y).

Coro. There are mixed strategies x* and y* satisfying
M(z,y*) > M(z*,y*), Ve and M (z*,y) < M(z*,y*),Vy.

Proof.

e V :=inf, sup, M(z,y) = sup, inf, M(z,y)

z*: the strategy = that minimizes sup, M (z,y)

y*: the strategy y that maximizes inf, M (x,y)

M(z*,y*) < V,M(z",y") 2V = M(z"y") =V

M(xz*,y) < V,¥Yy and M (z,y*) > V,Vz. O



@ As long as the first player can play a mixed strategy, then he
will not be at a disadvantage.

o If both players can play mixed strategies, then they do not
need to know the strategy of the other player.

Def. inf,sup, M(z,y) = sup, inf, M (z,y) is called the value of
the game. The two strategies z* and y* in the corollary are called
the optimum strategies for R and C respectively.

Theorem (Von Neumann (1928), Nash's Equilibrium)

inf max M (x, j) = sup min M (i, y).

T j€[n] y i€[m]

@ Can be proved by LP duality.



LP for Row Player @ The two LPs are dual to each

. other.
min R

Dy @i =1 jf
R — Z?ll MZJI‘Z >0 VJ € [TL]
z; >0 Viée[m] -

LP for Column Player

max C

2?21 yj=1
C - Z?:l Mijyj S 0 Vie [m]
y; >0 Vi€ n R




LP for Row Player LP for Column Player

min R max ('

Do mi=1 Z?:l y; =1
R—3% Myz; 20 Vj € [n] C =37 Mijy; <0 Vi€ [m]
;>0 Vi€ [m] y; >0 Ve [n

@ The two LPs are dual to each other.

z;,1 € [m] | primal variable (€ R>() | dual constraint (<)
yj,j € [n] | dual variable (€ R>() | primal constraint (>)
R primal variable (€ R) dual constraint (=)
C dual variable (€ R) primal constraint (=)




@ Let V be the value of the game, z* and y* be the two
optimum strategies. Complementrary slackness implies:
o If ¥ >0, then M(i,y*) = V.
o If y; >0, then M(z*,j) = V.

@ The game is called 0-sum game as the payoff for R is the
negative of the payoff for C.
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