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min 7x1 + 4x2

x1 + x2 ≥ 5

x1 + 2x2 ≥ 6

4x1 + x2 ≥ 8

x1, x2 ≥ 0
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x1 + x2 ≥ 5

4x1 + x2 ≥ 8

x1 + 2x2 ≥ 6

Q: How can we prove a lower bound for the value?

7x1 + 4x2 ≥ 2(x1 + x2) + (x1 + 2x2) ≥ 2× 5 + 6 = 16

7x1+4x2 ≥ (x1+x2)+(x1+2x2)+(4x1+x2) ≥ 5+6+8 = 19

7x1 + 4x2 ≥ 4(x1 + x2) ≥ 4× 5 = 20

7x1 + 4x2 ≥ 3(x1 + x2) + (4x1 + x2) ≥ 3× 5 + 8 = 23
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Primal LP

min 7x1 + 4x2

x1 + x2 ≥ 5

x1 + 2x2 ≥ 6

4x1 + x2 ≥ 8

x1, x2 ≥ 0

Dual LP

max 5y1 + 6y2 + 8y3

y1 + y2 + 4y3 ≤ 7

y1 + 2y2 + y3 ≤ 4

y1, y2, y3 ≥ 0

A way to prove lower bound on the value of primal LP

7x1 + 4x2 (if 7 ≥ y1 + y2 + 4y3 and 4 ≥ y1 + 2y2 + y3)

≥ y1(x1 + x2) + y2(x1 + 2x2) + y3(4x1 + x2) (if y1, y2, y3 ≥ 0)

≥ 5y1 + 6y2 + 8y3.

Goal: need to maximize 5y1 + 6y2 + 8y3
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Primal LP

min 7x1 + 4x2

x1 + x2 ≥ 5

x1 + 2x2 ≥ 6

4x1 + x2 ≥ 8

x1, x2 ≥ 0

Dual LP

max 5y1 + 6y2 + 8y3

y1 + y2 + 4y3 ≤ 7

y1 + 2y2 + y3 ≤ 4

y1, y2, y3 ≥ 0

A =

 1 1
1 2
4 1

 b =

 5
6
8

 c =

(
7
4

)

min cTx s.t.

Ax ≥ b

x ≥ 0

max bTy s.t.

ATy ≤ c

y ≥ 0



7/28

Primal LP

min cTx s.t.

Ax ≥ b

x ≥ 0

Dual LP

max bTy s.t.

ATy ≤ c

y ≥ 0

P = value of primal LP

D = value of dual LP

Theorem (weak duality theorem) D ≤ P .

Theorem (strong duality theorem) D = P .

Can always prove the optimality of the primal solution, by
adding up primal constraints.



7/28

Primal LP

min cTx s.t.

Ax ≥ b

x ≥ 0

Dual LP

max bTy s.t.

ATy ≤ c

y ≥ 0

P = value of primal LP

D = value of dual LP

Theorem (weak duality theorem) D ≤ P .

Proof.

x∗: optimal primal solution

y∗: optimal dual solution

D = bTy∗ ≤ (Ax∗)Ty∗ = (x∗)TATy∗ ≤ (x∗)Tc = cTx∗ = P.
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Fact If a point x does not belong to a polytope P , then there is
a hyperplane separating x and P .

Lemma (Farkas Lemma) Ax = b, x ≥ 0 is infeasible, if and only
if yTA ≥ 0, yTb < 0 is feasible.

Proof.

b does not belong to {Ax : x ≥ 0}, so ∃ some hyperplane
separating b and {Ax : x ≥ 0}.
yTb < g and yTAx > g for every x ≥ 0

g < 0 and yTA ≥ 0

yTb < g < 0
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Lemma (Farkas Lemma) Ax = b, x ≥ 0 is infeasible, if and only
if yTA ≥ 0, yTb < 0 is feasible.

Lemma (Variant of Farkas Lemma) Ax ≤ b, x ≥ 0 is infeasible, if
and only if yTA ≥ 0, yTb < 0, y ≥ 0 is feasible.

Proof.

system equivalent to Ax+ x′ = b, x, x′ ≥ 0

(A, I)

(
x
x′

)
= b,

(
x
x′

)
≥ 0

By Farkas Lemma, ∃y such that yT(A, I) ≥ 0, yTb < 0

⇐⇒ yTA ≥ 0, yT ≥ 0, yTb < 0
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Primal LP

min cTx s.t.

Ax ≥ b

x ≥ 0

Dual LP

max bTy s.t.

ATy ≤ c

y ≥ 0

Lemma (Variant of Farkas Lemma) Ax ≤ b, x ≥ 0 is infeasible, if
and only if yTA ≥ 0, yTb < 0, y ≥ 0 is feasible.

Proof of Strong Duality Theorem

∀ϵ > 0,

(
−A
cT

)
x ≤

(
−b

P − ϵ

)
, x ≥ 0 is infeasible

There exists y ∈ Rm
≥0, α ≥ 0, such that (yT, α)

(
−A
cT

)
≥ 0,

(yT, α)

(
−b

P − ϵ

)
< 0

we can prove α > 0, since the primal LP is feasible.
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Proof of Strong Duality Theorem

There exists y ∈ Rm
≥0, α ≥ 0, such that (yT, α)

(
−A
cT

)
≥ 0,

(yT, α)

(
−b

P − ϵ

)
< 0

assume α = 1

−yTA+ cT ≥ 0,−yTb+P − ϵ < 0 ⇐⇒ ATy ≤ c, bTy > P − ϵ

∀ϵ > 0, D > P − ϵ =⇒ D = P (since D ≤ P )
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Primal LP

min cTx

Ax ≥ b

x ≥ 0

Dual LP

max bTy

ATy ≤ c

y ≥ 0

Relationships

Primal LP dual LP

variables constraints

constraints variables

obj. coefficients RHS constants

RHS constants obj. coefficients

More Relationships

Primal LP Dual LP

variable in R equlities

equlities variable in R
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duality is mutual: the dual of the dual of an LP is the LP itself.

Primal LP

max bTy

ATy ≤ c

y ≥ 0

Dual LP

min cTx

Ax ≥ b

x ≥ 0

Duality theorem holds when one LP is infeasible:

Minimization LP is infeasible =⇒ value = ∞
⇐⇒ dual LP value = ∞ =⇒ feasible region of
dual LP is unbounded
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Complementary Slackness

Primal LP

min cTx

Ax ≥ b

x ≥ 0

Dual LP

max bTy

ATy ≤ c

y ≥ 0

x∗ and y∗: optimum primal and dual solutions

D = bTy∗ ≤ (Ax∗)Ty∗ = (x∗)TATy∗ ≤ (x∗)Tc = cTx∗ = P .

P = D: all the inequlaities hold with equalities.

Complementary Slackness

y∗i > 0 =⇒
∑

j aijx
∗
j = bi.

x∗
j > 0 =⇒

∑
i aijy

∗
i = cj.
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Maximum Flow Problem

Input: flow network
(G = (V,E), c, s, t)

Output: maximum value of a
s-t flow f

s t

a

b d

c
12/12

11/14

0/
90/
4

7/
7

12
/1
6

11/13

19/20

4/
4

LP for Maximum Flow

max
∑

e∈δin(t)

xe

xe ≤ ce ∀e ∈ E∑
e∈δout(v)

xe −
∑

e∈δin(v)

xe = 0 ∀v ∈ V \ {s, t}

xe ≥ 0 ∀e ∈ E
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An Equivalent Packing LP

s t

a

b d

c
12/12

11/14

0/
90/
4

7/
7

12
/1
6

11/13

19/20

4/
4

P : the set of all simple paths
from s to t

fP , P ∈ P : the flow on P

max
∑
P∈P

fP∑
P∈P:e∈P

fP ≤ ce ∀e ∈ E

fP ≥ 0 ∀P ∈ P

min
∑
e∈E

ceye∑
e∈P

ye ≥ 1 ∀P ∈ P

ye ≥ 0 ∀e ∈ E

dual constraints: the shortest s-t path w.r.t weights y has
length ≥ 1
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Dual LP

min
∑
e∈E

ceye∑
e∈P

ye ≥ 1 ∀P ∈ P

ye ≥ 0 ∀e ∈ E

Theorem The optimum value can
be attained at an integral point y.

Maximum Flow Minimum Cut
Theorem The value of the
maximum flow equals the value of
the minimum cut.

Proof of Theorem.

Given any optimum y, let dv be the length of shortest path
from s to v, for every v ∈ V . ds = 0, dt = 1

Randomly choose θ ∈ (0, 1), and output cut
(S := {v : dv ≤ θ}, T := {v : dv > θ})
Lemma: E[cut value of(S, T )] ≤

∑
e∈E ceye

Any cut (S, T ) in the support is optimum
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Maximum Flow Minimum Cut
Theorem The value of the
maximum flow equals the value of
the minimum cut.

Proof of Theorem.

Given any optimum y, let dv be the length of shortest path
from s to v, for every v ∈ V . ds = 0, dt = 1
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max
∑
P∈P

fP∑
P∈P:e∈P

fP ≤ ce ∀e ∈ E

fP ≥ 0 ∀P ∈ P

min
∑
e∈E

ceye∑
e∈P

ye ≥ 1 ∀P ∈ P

ye ≥ 0 ∀e ∈ E

pros of new LP: it is a packing LP, dual is a covering LP, easier
to understand and analyze

cons of new LP: exponential size, can not be solved directly

when we only need to do non-algorithmic analysis
ellipsoid method with separation oracle can solve some
exponential size LP
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0-Sum Game

Input: a payoff matrix M ∈ Rm×n,m, n ≥ 1,

two players: row player R, column player C

Output: R plays a row i ∈ [m], C plays a column j ∈ [n]

payoff of game is Mij

R wants to minimize Mij, C wants to maximize Mij

Rock-Scissor-Paper Game

payoff R S P
R 0 -1 1
S 1 0 - 1
P -1 1 0

game depends on who plays first

By allowing mixed strategies, each
player has a best strategy, regardless
of who plays first
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row player R column player C

pure strategy row i ∈ [m] column j ∈ [n]

mixed strategy
distribution x over [m] distribution y over [n]

x ∈ [0, 1]m,
∑m

i=1 xi = 1 y ∈ [0, 1]n,
∑n

j=1 yj = 1

M(x, y) :=
m∑
i=1

n∑
j=1

xiyjMij

M(x, j) :=
m∑
i=1

xiMij, M(i, y) :=
n∑

j=1

yjMij

If R plays a mixed strategy y first, then it is the best for C to
play a pure strategy j. Value of game is infxmaxj∈[n] M(x, j).

If C plays a mixed strategy x first, then it is the best for R to
play a pure strategy i. Value of game is supy mini∈[m] M(i, y).
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Theorem (Von Neumann (1928), Nash’s Equilibrium)

inf
x
max
j∈[n]

M(x, j) = sup
y

min
i∈[m]

M(i, y).

Coro. inf
x
sup
y

M(x, y) = sup
y

inf
x
M(x, y).

Coro. There are mixed strategies x∗ and y∗ satisfying
M(x, y∗) ≥ M(x∗, y∗),∀x and M(x∗, y) ≤ M(x∗, y∗),∀y.

Proof.

V := infx supy M(x, y) = supy infx M(x, y)

x∗: the strategy x that minimizes supy M(x, y)

y∗: the strategy y that maximizes infx M(x, y)

M(x∗, y∗) ≤ V,M(x∗, y∗) ≥ V =⇒ M(x∗, y∗) = V

M(x∗, y) ≤ V, ∀y and M(x, y∗) ≥ V, ∀x.
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As long as the first player can play a mixed strategy, then he
will not be at a disadvantage.

If both players can play mixed strategies, then they do not
need to know the strategy of the other player.

Def. infx supy M(x, y) = supy infx M(x, y) is called the value of
the game. The two strategies x∗ and y∗ in the corollary are called
the optimum strategies for R and C respectively.

Theorem (Von Neumann (1928), Nash’s Equilibrium)

inf
x
max
j∈[n]

M(x, j) = sup
y

min
i∈[m]

M(i, y).

Can be proved by LP duality.
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LP for Row Player

min R∑m
i=1 xi = 1

R−
∑m

i=1 Mijxi ≥ 0 ∀j ∈ [n]

xi ≥ 0 ∀i ∈ [m]

LP for Column Player

max C∑n
j=1 yj = 1

C −
∑n

j=1 Mijyj ≤ 0 ∀i ∈ [m]

yj ≥ 0 ∀j ∈ [n]

The two LPs are dual to each
other.

−M

1, 1, 1, · · · , 1
1
1

1

··
··

··

0

1 0, 0, 0, · · · , 0
1
0
0

0

··
··

··
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LP for Row Player

min R∑m
i=1 xi = 1

R−
∑m

i=1 Mijxi ≥ 0 ∀j ∈ [n]

xi ≥ 0 ∀i ∈ [m]

LP for Column Player

max C∑n
j=1 yj = 1

C −
∑n

j=1Mijyj ≤ 0 ∀i ∈ [m]

yj ≥ 0 ∀j ∈ [n]

The two LPs are dual to each other.

xi, i ∈ [m] primal variable (∈ R≥0) dual constraint (≤)

yj, j ∈ [n] dual variable (∈ R≥0) primal constraint (≥)

R primal variable (∈ R) dual constraint (=)

C dual variable (∈ R) primal constraint (=)
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Let V be the value of the game, x∗ and y∗ be the two
optimum strategies. Complementrary slackness implies:

If x∗i > 0, then M(i, y∗) = V .
If y∗j > 0, then M(x∗, j) = V .

The game is called 0-sum game as the payoff for R is the
negative of the payoff for C.
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