Advanced Algorithms (Fall 2024) Extension Complexity of Polytopes

Lecturers: 尹一通,<mark>栗师</mark>,刘景铖 Nanjing University

Outline

- Motivation and Definition
 - Example: Permutation Polytope
 - Extension Complexity of Spanning Tree Polytope
- Connection Between Extension Complexity and Non-Negative Rank
- Polytopes with Exponential Extension Complexity

Motivation

Typical Combinatorial Optimization Problem

Input: [n]: ground set

 \mathcal{S} : feasible sets: a family of subsets of U, often

implicitly given

 $w_i, i \in [n]$: values/costs of elements

Output: the set $S \in \mathcal{S}$ with the minimum/maximum

 $w(S) := \sum_{i \in S} w_i$

Motivation

Typical Combinatorial Optimization Problem

Input: [n]: ground set

S: feasible sets: a family of subsets of U, often implicitly given

 $w_i, i \in [n]$: values/costs of elements

Output: the set $S \in \mathcal{S}$ with the minimum/maximum $w(S) := \sum_{i \in S} w_i$

 $\mathcal{P} := \operatorname{conv}(\{\chi^S : S \in \mathcal{S}\})$: convex hull of all valid solutions

$$\min / \max \sum_{i=1}^{n} w_i x_i$$
 s.t. $x \in \mathcal{P}$

• inequality constraints needed to describe $x \in \mathcal{P}$ (or \mathcal{P} in short) is facets(\mathcal{P}) := the number of facets of \mathcal{P}

$$\min / \max \sum_{i=1}^{n} w_i x_i$$
 s.t. $x \in \mathcal{P}$

• inequality constraints needed to describe $x \in \mathcal{P}$ (or \mathcal{P} in short) is facets(\mathcal{P}) := the number of facets of \mathcal{P}

Q: Can we do better?

$$\min / \max \sum_{i=1}^{n} w_i x_i$$
 s.t. $x \in \mathcal{P}$

• inequality constraints needed to describe $x \in \mathcal{P}$ (or \mathcal{P} in short) is facets(\mathcal{P}) := the number of facets of \mathcal{P}

Q: Can we do better?

A: Yes in some cases, by introducing new variables that we call auxiliary variables.

$$\min / \max \sum_{i=1}^{n} w_i x_i$$
 s.t. $x \in \mathcal{P}$

• inequality constraints needed to describe $x \in \mathcal{P}$ (or \mathcal{P} in short) is facets(\mathcal{P}) := the number of facets of \mathcal{P}

Q: Can we do better?

A: Yes in some cases, by introducing new variables that we call auxiliary variables.

Def. An extension of a polytope $\mathcal{P} \in \mathbb{R}^n$ is a polyhedron $\mathcal{Q} \subseteq \mathbb{R}^{n+r}$ for some $r \geq 0$, such that \mathcal{P} is the projection of \mathcal{Q} to \mathbb{R}^n .

$$\mathcal{P} = \left\{ x \in \mathbb{R}^n : \exists y \in \mathbb{R}^r, (x, y) \in \mathcal{Q} \right\}$$

LP to Solve Problem Exactly with Auxiliary Variables

$$\min / \max \sum_{i=1}^{n} c_i x_i$$
 s.t. $(x, y) \in \mathcal{Q}$,

where Q is an extension of P.

LP to Solve Problem Exactly with Auxiliary Variables

$$\min / \max \sum_{i=1}^{n} c_i x_i$$
 s.t. $(x, y) \in \mathcal{Q}$,

where Q is an extension of P.

- To require $(x, y) \in \mathcal{Q}$, the number of inequalities we need is $\mathsf{facets}(\mathcal{Q})$
- It may be possible that $facets(Q) \ll facets(P)$

LP to Solve Problem Exactly with Auxiliary Variables

$$\min / \max \sum_{i=1}^{n} c_i x_i$$
 s.t. $(x, y) \in \mathcal{Q}$,

where Q is an extension of P.

- To require $(x,y) \in \mathcal{Q}$, the number of inequalities we need is $\mathsf{facets}(\mathcal{Q})$
- It may be possible that $facets(Q) \ll facets(P)$

Def. The extension complexity of a polytope $\mathcal{P} \subseteq \mathbb{R}^n$, denoted as $\mathsf{xc}(\mathcal{P})$, is defined as follows:

$$xc(\mathcal{P}) := \min\{facets(\mathcal{Q}) : \mathcal{Q} \text{ is an extension of } \mathcal{P}\}.$$

Def. An extended formulation of a polytope $\mathcal{P} \subseteq \mathbb{R}^n$ is a set of linear constraints:

$$(E, F) \begin{pmatrix} x \\ y \end{pmatrix} = g$$
$$y \ge 0$$

where $E \in \mathbb{R}^{N \times n}, F \in \mathbb{R}^{N \times r}, g \in \mathbb{R}^N$ are given, and $x \in \mathbb{R}^n$ is the vector of main variables, $y \in \mathbb{R}^r$ is the vector of auxiliary variables.

Def. An extended formulation of a polytope $\mathcal{P} \subseteq \mathbb{R}^n$ is a set of linear constraints:

$$(E, F) \begin{pmatrix} x \\ y \end{pmatrix} = g$$
$$y \ge 0$$

where $E \in \mathbb{R}^{N \times n}, F \in \mathbb{R}^{N \times r}, g \in \mathbb{R}^N$ are given, and $x \in \mathbb{R}^n$ is the vector of main variables, $y \in \mathbb{R}^r$ is the vector of auxiliary variables. The following property needs to be satisfied:

$$\mathcal{P} = \left\{ x \in \mathbb{R}^n : \exists y \ge 0, (E, F) \begin{pmatrix} x \\ y \end{pmatrix} = g \right\}.$$

The complexity of the extended formulation is defined as r.

Def. An extended formulation of a polytope $\mathcal{P} \subseteq \mathbb{R}^n$ is a set of linear constraints:

$$(E, F) \begin{pmatrix} x \\ y \end{pmatrix} = g$$
$$y \ge 0$$

where $E \in \mathbb{R}^{N \times n}, F \in \mathbb{R}^{N \times r}, g \in \mathbb{R}^N$ are given, and $x \in \mathbb{R}^n$ is the vector of main variables, $y \in \mathbb{R}^r$ is the vector of auxiliary variables. The following property needs to be satisfied:

$$\mathcal{P} = \left\{ x \in \mathbb{R}^n : \exists y \ge 0, (E, F) \begin{pmatrix} x \\ y \end{pmatrix} = g \right\}.$$

The complexity of the extended formulation is defined as r.

Def. (An alternative definition) The extension complexity of a polytope $\mathcal{P} \subseteq \mathbb{R}^n$, denoted as $\mathsf{xc}(\mathcal{P})$, is defined as the minimum complexity of an extended formulation of \mathcal{P} .

The Equivalence Between the Two Definitions

• $xc_1(\mathcal{P}), xc_2(\mathcal{P})$: $xc(\mathcal{P})$ according to the first/second definition

$xc_2(\mathcal{P}) \leq xc_1(\mathcal{P})$

- Given an extension \mathcal{Q} of \mathcal{P} , we can use facets(\mathcal{Q}) inequalities (and some equalities, if the dimension of \mathcal{Q} is smaller than the dimension of its host space) to describe \mathcal{Q} , one for each facet.
- For the *i*-th inequality $a_i x \geq b_i$, we introduce a variable y_i , and replace the inequality by $y_i = a_i x b_i, y_i \geq 0$.
- \bullet This gives an extended formulation of ${\mathcal P}$ with facets(Q) y-variables.
- Remark: there might be some auxiliary variables with no non-negativity constraints; but they can be removed.

$xc_1(\mathcal{P}) \leq xc_2(\mathcal{P})$

• An extended formulation with m y-variables defines a polyhedron with at most m facets.

Outline

- Motivation and Definition
 - Example: Permutation Polytope
 - Extension Complexity of Spanning Tree Polytope
- Connection Between Extension Complexity and Non-Negative Rank
- Polytopes with Exponential Extension Complexity

- $S := \{x \in [n]^{[n]} : x \text{ is a permutation of } [n]\}$
- ullet $\mathcal{P}:=\mathsf{conv}(\mathcal{S})$

- $\bullet \ \mathcal{S} := \left\{ x \in [n]^{[n]} : x \text{ is a permutation of } [n] \right\}$
- $\mathcal{P} := \operatorname{conv}(\mathcal{S})$
- note: \mathcal{P} has dimension n-1, as $\sum_{i\in[n]}x_i=\frac{n(n+1)}{2}$ is valid.

- $S := \{x \in [n]^{[n]} : x \text{ is a permutation of } [n]\}$
- \bullet \mathcal{P} := conv(\mathcal{S})
- note: \mathcal{P} has dimension n-1, as $\sum_{i \in [n]} x_i = \frac{n(n+1)}{2}$ is valid.

Lemma For any $S \subsetneq [n], S \neq \emptyset$, $\sum_{i \in S} x_i \geq \frac{|S|(|S|+1)}{2}$ is a facet of \mathcal{P} .

ullet so, $\mathrm{facets}(\mathcal{P})=2^{\Omega(n)}$

- $S := \{x \in [n]^{[n]} : x \text{ is a permutation of } [n] \}$
- $\mathcal{P} := \operatorname{conv}(\mathcal{S})$
- note: \mathcal{P} has dimension n-1, as $\sum_{i\in[n]}x_i=\frac{n(n+1)}{2}$ is valid.

Lemma For any $S \subsetneq [n], S \neq \emptyset$, $\sum_{i \in S} x_i \geq \frac{|S|(|S|+1)}{2}$ is a facet of \mathcal{P} .

ullet so, $\mathrm{facets}(\mathcal{P})=2^{\Omega(n)}$

Proof Sketch.

- The constraint $\sum_{i \in S} x_i \ge \frac{|S|(|S|+1)}{2}$ gives a face
- ullet To show it's a facet, need to prove its dimension is n-2

- $S := \{x \in [n]^{[n]} : x \text{ is a permutation of } [n] \}$
- $\bullet \mathcal{P} := conv(\mathcal{S})$
- note: \mathcal{P} has dimension n-1, as $\sum_{i \in [n]} x_i = \frac{n(n+1)}{2}$ is valid.

Lemma For any $S \subsetneq [n], S \neq \emptyset$, $\sum_{i \in S} x_i \geq \frac{|S|(|S|+1)}{2}$ is a facet of \mathcal{P} .

• so, facets(\mathcal{P}) = $2^{\Omega(n)}$

Proof Sketch.

- The constraint $\sum_{i \in S} x_i \ge \frac{|S|(|S|+1)}{2}$ gives a face
- \bullet To show it's a facet, need to prove its dimension is n-2
- We can find $x^0, x^1, \cdots, x^{n-2}$ on the face such that $x^1-x^0, x^2-x^0, \cdots, x^{n-2}-x^0$ are linearly independent.

Representation using Permutation Matrices

• Represent a permutation $x \in [n]^{[n]}$ by the permutation matrix $M \in \{0,1\}^{n \times n}$ so that $M_{ij} = 1$ iff $x_i = j$.

Example:
$$(3,1,2) \Longleftrightarrow \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

- ullet Crucial property: x is a linear function of entries in M
- $\bullet \ {\cal P}' := {\sf conv} \big(\{ M : M \text{ is a permutation matrix} \} \big)$

Lemma
$$\mathcal{P}' = \left\{y \in [0,1]^{n \times n}: \sum_i y_{i,j} = 1, \forall j; \sum_j y_{i,j} = 1, \forall i \right\}.$$

Proof.

- \bullet permutation \Longleftrightarrow perfect matching in complete bipartite graph over 2n vertices
- permutation matrix polytope perfect matching polytope

Extended Formulation of ${\cal P}$

$$\sum_{i \in [n]} y_{i,j} = 1 \qquad \forall j \in [n]$$

$$\sum_{j \in [n]} y_{i,j} = 1 \qquad \forall i \in [n]$$

$$y_{i,j} \geq 0 \qquad \forall i, j \in [n]$$

$$x_i = \sum_{j=1}^n j \cdot y_{i,j} \qquad \forall i \in [n]$$

Extended Formulation of ${\cal P}$

$$\sum_{i \in [n]} y_{i,j} = 1 \qquad \forall j \in [n]$$

$$\sum_{j \in [n]} y_{i,j} = 1 \qquad \forall i \in [n]$$

$$y_{ij} \ge 0 \qquad \forall i, j \in [n]$$

$$x_i = \sum_{j=1}^n j \cdot y_{ij} \qquad \forall i \in [n]$$

Lemma The permutation polytope \mathcal{P} has extension complexity $O(n^2)$.

Outline

- Motivation and Definition
 - Example: Permutation Polytope
 - Extension Complexity of Spanning Tree Polytope
- Connection Between Extension Complexity and Non-Negative Rank
- Polytopes with Exponential Extension Complexity

Spanning Tree Polytope

Recall:

Spanning Tree Polytope

- Given a connected graph G = (V, E)
- $\mathcal{P}_{\mathrm{ST}} := \mathsf{conv}\left(\left\{\chi^T : T \subseteq E \text{ is a spanning tree of } G\right\}\right)$

Spanning Tree Polytope

 $x_e > 0$

Recall:

Spanning Tree Polytope

- ullet Given a connected graph G=(V,E)
- $\bullet \ \mathcal{P}_{\mathrm{ST}} := \mathsf{conv}\left(\left\{\chi^T : T \subseteq E \text{ is a spanning tree of } G\right\}\right)$

Theorem (Spanning Tree Polytope Theorem) \mathcal{P}_{ST} is the set of vectors $x \in \mathbb{R}^E$ satisfying the following inequalities:

$$\sum_{e \in E} x_e = n - 1$$

$$\sum_{e \in E[S]} x_e \le |S| - 1 \qquad \forall S \subseteq V, 2 \le |S| \le n - 1 \qquad (*)$$

 $\forall e \in E$

- Choose a root $r \in V$ arbitrarily.
- ullet For any spanning tree, we direct the edges from r to leaves: the tree becomes an out-arborescence rooted at r

- Choose a root $r \in V$ arbitrarily.
- ullet For any spanning tree, we direct the edges from r to leaves: the tree becomes an out-arborescence rooted at r
- $y_{u\to v}$: whether (u,v) is a directed edge in the arborenscence.

- Choose a root $r \in V$ arbitrarily.
- ullet For any spanning tree, we direct the edges from r to leaves: the tree becomes an out-arborescence rooted at r
- $y_{u\to v}$: whether (u,v) is a directed edge in the arborenscence.

$$\sum_{(u,v)\in E} y_{u\to v} = 1 \qquad \qquad \forall v \in V \setminus \{r\}$$

$$y_{v\to r} = 0 \qquad \qquad \forall (v,r) \in E$$

$$y_{u\to v} \geq 0 \qquad \qquad \forall u,v \text{ with } (u,v) \in E$$

$$x_{\{u,v\}} = y_{u\to v} + y_{v\to u} \qquad \qquad \forall (u,v) \in E$$

$$y \text{ supports 1 unit flow from } r \text{ to } v \qquad \forall v \in V \setminus \{r\} \qquad (\dagger)$$

• (†) for every v can be captured using a maximum-flow LP, with O(|E|) variables and constraints.

Theorem	The formulation is an extended formulation of $\mathcal{P}_{\mathrm{ST}}.$	
Proof.		
P1001.		٦
		ı
		ı
		ı
		ı
		ı
		ı
		ı
		ı
		J

Proof.

ullet For any ST T of G, χ^T (with extension) is a valid solution

Proof.

- For any ST T of G, χ^T (with extension) is a valid solution
- Remaining goal: prove that every valid (x, y) satisfies:

$$\sum x_e = n - 1 \tag{1}$$

$$\sum_{e \in E[S]} x_e \le |S| - 1 \qquad \forall S \subseteq V, 2 \le |S| \le n - 1 \qquad (2)$$

• every $v \in V \setminus \{r\}$ has 1 fractional incoming edge

Proof.

- For any ST T of G, χ^T (with extension) is a valid solution
- Remaining goal: prove that every valid (x, y) satisfies:

$$\sum x_e = n - 1 \tag{1}$$

$$\sum_{e \in E[S]} x_e \le |S| - 1 \qquad \forall S \subseteq V, 2 \le |S| \le n - 1 \qquad (2)$$

- every $v \in V \setminus \{r\}$ has 1 fractional incoming edge
- $\bullet \implies$ total fractional number of edges is $n-1 \implies (1)$

Proof.

• Remaining goal: prove that every valid (x, y) satisfies:

$$\sum_{e \in E[S]} x_e \le |S| - 1 \qquad \forall S \subseteq V, 2 \le |S| \le n - 1 \qquad (2)$$

Proof.

• Remaining goal: prove that every valid (x, y) satisfies:

$$\sum_{e \in E[S]} x_e \le |S| - 1 \qquad \forall S \subseteq V, 2 \le |S| \le n - 1 \qquad (2)$$

ullet Focus on S
ightarrow r: |S|-1 fractional edges with head in S

Theorem The formulation is an extended formulation of $\mathcal{P}_{\mathrm{ST}}.$

Proof.

• Remaining goal: prove that every valid (x, y) satisfies:

$$\sum_{e \in E[S]} x_e \le |S| - 1 \qquad \forall S \subseteq V, 2 \le |S| \le n - 1 \qquad (2)$$

- Focus on $S \ni r$: |S| 1 fractional edges with head in S
- Focus on $S \not\ni r, |S| \ge 2$. Let $v \in S$ be arbitrary.

Theorem The formulation is an extended formulation of $\mathcal{P}_{\mathrm{ST}}$.

Proof.

ullet Remaining goal: prove that every valid (x,y) satisfies:

$$\sum_{e \in E[S]} x_e \le |S| - 1 \qquad \forall S \subseteq V, 2 \le |S| \le n - 1 \qquad (2)$$

- Focus on $S \ni r$: |S| 1 fractional edges with head in S
- Focus on $S \not\ni r, |S| \ge 2$. Let $v \in S$ be arbitrary.
- ullet When G is complete graph, $\mathcal{P}_{\mathrm{ST}}$ has $O(n^3)$ extension complexity

Theorem The formulation is an extended formulation of $\mathcal{P}_{\mathrm{ST}}.$

Proof.

• Remaining goal: prove that every valid (x, y) satisfies:

$$\sum_{e \in E[S]} x_e \le |S| - 1 \qquad \forall S \subseteq V, 2 \le |S| \le n - 1 \qquad \textbf{(2)}$$

- ullet Focus on S
 ightarrow r: |S|-1 fractional edges with head in S
- Focus on $S \not\ni r, |S| \ge 2$. Let $v \in S$ be arbitrary.
- y supports 1 unit $r \to v$ flow $\implies \ge 1$ fractional edge from $V \setminus S$ to S \implies at most |S| 1 fractional edges inside S
- ullet When G is complete graph, $\mathcal{P}_{\mathrm{ST}}$ has $O(n^3)$ extension complexity
- ullet The lower bound is $\Omega(n^2)$
- Big open problem to close the gap.

Outline

- Motivation and Definition
 - Example: Permutation Polytope
 - Extension Complexity of Spanning Tree Polytope
- 2 Connection Between Extension Complexity and Non-Negative Rank
- Polytopes with Exponential Extension Complexity

• if we allow $L \in \mathbb{R}^{m \times r}$ and $R \in \mathbb{R}^{r \times n}$, then the non-negative rank becomes the rank

- if we allow $L \in \mathbb{R}^{m \times r}$ and $R \in \mathbb{R}^{r \times n}$, then the non-negative rank becomes the rank
- the rank of a matrix can be computed efficiently
- it is NP-hard to compute the non-negative rank of a matrix

Application of Non-Negative Rank

Def. Let $\mathcal{P} \subseteq \mathbb{R}^n$ be defined as

$$\mathcal{P} = \{ x \in \mathbb{R}^n : Ax \le b; Ex = f \},\$$

with $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $E \in \mathbb{R}^{m' \times n}$, $f \in \mathbb{R}^{m'}$. Assume the equations Ex = f are linearly independent, and there is a 1-1 correspondence between inequalities in $Ax \leq b$ and facets of \mathcal{P} . Let x^1, x^2, \cdots, x^v be all the vertices of \mathcal{P} . The slack matrix $\mathbf{SM}^{\mathcal{P}}$ of \mathcal{P} w.r.t this description is a matrix in $\mathbb{R}^{m \times v}_{\geq 0}$ such that

 $\mathbf{SM}_{i,j}^{\mathcal{P}} = b_i - a_i x^j$, where a_i is the *i*-th row vector of A.

Def. Let $\mathcal{P} \subseteq \mathbb{R}^n$ be defined as

$$\mathcal{P} = \{ x \in \mathbb{R}^n : Ax \le b; Ex = f \},$$

with $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $E \in \mathbb{R}^{m' \times n}$, $f \in \mathbb{R}^{m'}$. Assume the equations Ex = f are linearly independent, and there is a 1-1 correspondence between inequalities in $Ax \leq b$ and facets of \mathcal{P} . Let x^1, x^2, \cdots, x^v be all the vertices of \mathcal{P} . The slack matrix $\mathbf{SM}^{\mathcal{P}}$ of \mathcal{P} w.r.t this description is a matrix in $\mathbb{R}^{m \times v}_{\geq 0}$ such that

 $\mathbf{SM}_{i,j}^{\mathcal{P}} = b_i - a_i x^j$, where a_i is the *i*-th row vector of A.

Theorem [Yannakakis 91] For any polytope \mathcal{P} , we have $xc(\mathcal{P}) = rank_+(\mathbf{SM}^{\mathcal{P}})$.

Theorem [Yannakakis 91] For any polytope \mathcal{P} , we have $xc(\mathcal{P}) = rank_+(\mathbf{SM}^{\mathcal{P}})$.

Notes

- ullet Considering non-vertex points in $\mathcal P$ for the columns of $\mathbf {SM}^{\mathcal P}$ does not increase is non-negative rank
- ullet Considering non-facet faces of ${\mathcal P}$ for rows of ${\mathbf S}{\mathbf M}^{{\mathcal P}}$ does not increase its non-negative rank

Proof of $xc(\mathcal{P}) \leq rank_{+}(\mathbf{SM}^{\mathcal{P}}).$

• Given non-negative decomposition $\mathbf{SM}^{\mathcal{P}}=FV$ with $F\in\mathbb{R}^{m\times r}_{>0}$ and $V\in\mathbb{R}^{r\times v}_{>0}$

Proof of $xc(\mathcal{P}) \leq rank_{+}(\mathbf{SM}^{\mathcal{P}}).$

- Given non-negative decomposition $\mathbf{SM}^{\mathcal{P}}=FV$ with $F\in\mathbb{R}^{m\times r}_{>0}$ and $V\in\mathbb{R}^{r\times v}_{>0}$
- ullet we show the following is an extended formulation of ${\mathcal P}$ with complexity r:

$$Ax + Fy = b, y \ge 0$$
 $\mathcal{P}' = \{x : \exists y \ge 0, Ax + Fy = b\}$

Proof of $xc(\mathcal{P}) \leq rank_+(\mathbf{SM}^{\mathcal{P}})$.

- Given non-negative decomposition $\mathbf{SM}^{\mathcal{P}}=FV$ with $F\in\mathbb{R}^{m\times r}_{>0}$ and $V\in\mathbb{R}^{r\times v}_{>0}$
- ullet we show the following is an extended formulation of ${\mathcal P}$ with complexity r:

$$Ax + Fy = b, y \ge 0$$
 $\mathcal{P}' = \{x : \exists y \ge 0, Ax + Fy = b\}$

• if $\exists y \geq 0$ with Ax + Fy = b, then $Ax \leq b$ $\mathcal{P}' \subseteq \mathcal{P}$

Proof of $xc(\mathcal{P}) \leq rank_+(\mathbf{SM}^{\mathcal{P}})$.

- Given non-negative decomposition $\mathbf{SM}^{\mathcal{P}}=FV$ with $F\in\mathbb{R}^{m\times r}_{>0}$ and $V\in\mathbb{R}^{r\times v}_{>0}$
- ullet we show the following is an extended formulation of ${\mathcal P}$ with complexity r:

$$Ax + Fy = b, y \ge 0$$
 $\mathcal{P}' = \{x : \exists y \ge 0, Ax + Fy = b\}$

- if $\exists y \geq 0$ with Ax + Fy = b, then $Ax \leq b$ $\mathcal{P}' \subseteq \mathcal{P}$
- fix vertex x^j : $b Ax^j$ is the j-th column of $SM^{\mathcal{P}}$

Proof of $xc(\mathcal{P}) \leq rank_{+}(SM^{\mathcal{P}})$.

- Given non-negative decomposition $\mathbf{SM}^{\mathcal{P}}=FV$ with $F\in\mathbb{R}^{m\times r}_{>0}$ and $V\in\mathbb{R}^{r\times v}_{>0}$
- ullet we show the following is an extended formulation of ${\mathcal P}$ with complexity r:

$$Ax + Fy = b, y \ge 0$$
 $\mathcal{P}' = \{x : \exists y \ge 0, Ax + Fy = b\}$

• if $\exists y \geq 0$ with Ax + Fy = b, then $Ax \leq b$

- $\mathcal{P}'\subseteq\mathcal{P}$
- fix vertex x^j : $b Ax^j$ is the j-th column of $\mathbf{SM}^{\mathcal{P}}$
- ullet it is a non-negative combination of columns of F
- so, $\exists y \ge 0$ with $b Ax^j = Fy$

Theorem [Yannakakis 91] For any polytope \mathcal{P} , we have $xc(\mathcal{P}) = rank_+(\mathbf{SM}^{\mathcal{P}})$.

Theorem [Yannakakis 91] For any polytope \mathcal{P} , we have $xc(\mathcal{P}) = rank_+(\mathbf{SM}^{\mathcal{P}})$.

Proof of $xc(\mathcal{P}) \ge rank_+(\mathbf{SM}^{\mathcal{P}})$.

• Assume $\mathcal{P} = \{x: Ex + Fy = g, y \geq 0\}$, $E \in \mathbb{R}^{m \times n}, F \in \mathbb{R}^{m \times r} \text{ and } g \in \mathbb{R}^m$:

Theorem [Yannakakis 91] For any polytope \mathcal{P} , we have $xc(\mathcal{P}) = rank_+(\mathbf{SM}^{\mathcal{P}})$.

Proof of $xc(\mathcal{P}) \ge rank_+(\mathbf{SM}^{\mathcal{P}})$.

- Assume $\mathcal{P}=\{x:Ex+Fy=g,y\geq 0\}$, $E\in\mathbb{R}^{m\times n},F\in\mathbb{R}^{m\times r}$ and $g\in\mathbb{R}^m$:
- For every i, $a_i x \leq b_i$ is implied by $Ex + Fy = g, y \geq 0$, and it is tight for some point in \mathcal{P} :

 \exists row vector $\mu^i \in \mathbb{R}^m : \mu^i(E,g) = (a_i,b_i), \nu^i := \mu^i F \geq 0.$

Theorem [Yannakakis 91] For any polytope \mathcal{P} , we have $xc(\mathcal{P}) = rank_+(\mathbf{SM}^{\mathcal{P}})$.

Proof of $xc(\mathcal{P}) \ge rank_+(\mathbf{SM}^{\mathcal{P}})$.

- Assume $\mathcal{P} = \{x: Ex + Fy = g, y \geq 0\}$, $E \in \mathbb{R}^{m \times n}, F \in \mathbb{R}^{m \times r} \text{ and } g \in \mathbb{R}^m$:
- For every i, $a_i x \leq b_i$ is implied by $Ex + Fy = g, y \geq 0$, and it is tight for some point in \mathcal{P} :

$$\exists \text{ row vector } \mu^i \in \mathbb{R}^m : \mu^i(E,g) = (a_i,b_i), \nu^i := \mu^i F \geq 0.$$

• Then, $b_i - a_i x^j = \mu^i g - \mu^i E x^j = \mu^i F y^j = \nu^i y^j$.

Theorem [Yannakakis 91] For any polytope \mathcal{P} , we have $xc(\mathcal{P}) = rank_+(SM^{\mathcal{P}})$.

Proof of $xc(\mathcal{P}) \ge rank_+(\mathbf{SM}^{\mathcal{P}})$.

- $\bullet \ b_i a_i x^j = \nu^i y^j$
- Then,

$$\mathbf{SM}^{\mathcal{P}} = \begin{pmatrix}
u^1 \\
\nu^2 \\ \vdots \\
u^m \end{pmatrix} (y^1, y^2, \cdots, y^v)$$

Theorem [Yannakakis 91] For any polytope \mathcal{P} , we have $xc(\mathcal{P}) = rank_+(\mathbf{SM}^{\mathcal{P}})$.

Proof of $xc(\mathcal{P}) \ge rank_+(\mathbf{SM}^{\mathcal{P}})$.

- $\bullet \ b_i a_i x^j = \nu^i y^j$
- Then,

$$\mathbf{SM}^{\mathcal{P}} = \begin{pmatrix} \nu^1 \\ \nu^2 \\ \vdots \\ \nu^m \end{pmatrix} (y^1, y^2, \cdots, y^v)$$

ullet This is a decomposition with rank r.

Outline

- Motivation and Definition
 - Example: Permutation Polytope
 - Extension Complexity of Spanning Tree Polytope
- Connection Between Extension Complexity and Non-Negative Rank

3 Polytopes with Exponential Extension Complexity

- \bullet Given the complete graph $G=(V,{V\choose 2})$
- $\mathcal{P}_{\mathrm{TSP}} := \mathsf{conv}(\{\chi^S, S \subseteq {V \choose 2} \text{ is a TSP tour of V}\})$

- Given the complete graph $G = (V, \binom{V}{2})$
- $\bullet \ \mathcal{P}_{\mathrm{TSP}} := \mathsf{conv}(\{\chi^S, S \subseteq {V \choose 2} \text{ is a TSP tour of V}\})$

Cut Polytope

- G = (V, E): a connected graph
- $\bullet \ \mathcal{P}_{\mathrm{cut}} := \mathsf{conv}\left(\left\{\chi^{E(S,V\backslash S)}: S \subsetneq V, S \neq \emptyset\right\}\right)$

- Given the complete graph $G = (V, \binom{V}{2})$
- $\mathcal{P}_{TSP} := \operatorname{conv}(\{\chi^S, S \subseteq {V \choose 2} \text{ is a TSP tour of V})$

Cut Polytope

- G = (V, E): a connected graph
- $\bullet \ \mathcal{P}_{\mathrm{cut}} := \mathsf{conv}\left(\left\{\chi^{E(S,V\backslash S)}: S \subsetneq V, S \neq \emptyset\right\}\right)$

Correlation Polytope

 $\bullet \ \mathcal{P}_{\mathrm{corr}} = \mathsf{conv}\left(\{bb^{\mathrm{T}}: b \in \{0,1\}^n\}\right).$

- Given the complete graph $G = (V, \binom{V}{2})$
- $\mathcal{P}_{TSP} := \operatorname{conv}(\{\chi^S, S \subseteq {V \choose 2} \text{ is a TSP tour of V})$

Cut Polytope

- G = (V, E): a connected graph
- $\bullet \ \mathcal{P}_{\mathrm{cut}} := \mathsf{conv}\left(\left\{\chi^{E(S,V\backslash S)}: S \subsetneq V, S \neq \emptyset\right\}\right)$

Correlation Polytope

- $\bullet \ \mathcal{P}_{\mathrm{corr}} = \mathsf{conv}\left(\{bb^{\mathrm{T}}: b \in \{0,1\}^n\}\right).$
- [Samuel Fiorini, Serge Massar, Sebastian Pokutta, Hans Raj Tiwary and Ronald de Wolf]: "Exponential Lower Bounds for Polytopes in Combinatorial Optimization": All the above polytopes have exponential extension complexity.
- 2023 Godel Prize Winner Paper

General Matching Polytope

- Given a graph G = (V, E)
- $\bullet \ \mathcal{P}_{\mathrm{GM}} := \mathrm{conv} \left(\left\{ \chi^M : M \subseteq E \text{ is a matching in } G \right\} \right)$

General Matching Polytope

- Given a graph G = (V, E)
- ullet $\mathcal{P}_{\mathrm{GM}}:=\mathsf{conv}\left(\left\{\chi^M:M\subseteq E \text{ is a matching in }G\right\}\right)$

Theorem (General Matching Polytope Theorem) \mathcal{P}_{GM} is the set of vectors $x \in \mathbb{R}^E$ satisfying the following inequalities:

$$\sum_{e \in \delta(v)} x_e \le 1 \qquad \forall v \in V$$

$$\sum_{e \in E(S)} x_e \le \frac{|S| - 1}{2} \qquad \forall S \subseteq V, |S| \text{ is odd} \qquad (3)$$

$$x_e \ge 0 \qquad \forall e \in E$$

General Matching Polytope

- Given a graph G = (V, E)
- $\mathcal{P}_{\mathrm{GM}} := \mathsf{conv}\left(\left\{\chi^M : M \subseteq E \text{ is a matching in } G\right\}\right)$

Theorem (General Matching Polytope Theorem) \mathcal{P}_{GM} is the set of vectors $x \in \mathbb{R}^E$ satisfying the following inequalities:

$$\sum_{e \in \delta(v)} x_e \le 1 \qquad \forall v \in V$$

$$\sum_{e \in E(S)} x_e \le \frac{|S| - 1}{2} \qquad \forall S \subseteq V, |S| \text{ is odd} \qquad (3)$$

$$x_e \ge 0 \qquad \forall e \in E$$

 [Rothvoss 2017]: "The Matching Polytope has Exponential Extension Complexity."
 2023 Godel Prize Winner Paper