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Motivation

Typical Combinatorial Optimization Problem
Input: [n]: ground set
S: feasible sets: a family of subsets of U, often
implicitly given
w;, 1 € [n]: values/costs of elements

Output: the set S € S with the minimum/maximum
w(S> = Zies wi




Motivation

Typical Combinatorial Optimization Problem
Input: [n]: ground set
S: feasible sets: a family of subsets of U, often
implicitly given
w;, 1 € [n]: values/costs of elements

Output: the set S € S with the minimum/maximum
w(S> = Zies wi

P = conv({x® : S € S}): convex hull of all valid solutions




LP to Solve Problem Exactly

n
min / max E w;T; S.t. reP
=1

@ inequality constraints needed to describe x € P (or P in short)
is facets(P) := the number of facets of P
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LP to Solve Problem Exactly

n
min / max E w;T; S.t. reP
=1

@ inequality constraints needed to describe x € P (or P in short)
is facets(P) := the number of facets of P

Q: Can we do better?

A: Yes in some cases, by introducing new variables that we call
auxiliary variables.

Def. An extension of a polytope P € R" is a polyhedron
Q C R™T" for some r > 0, such that P is the projection of Q to
R™:

P={zecR":Iy el (z,y) € Q}

M



n
min / max ZCﬂ?i s.t. (z,y) € Q,
Al

where Q is an extension of P.
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LP to Solve Problem Exactly with Auxiliary Variables
min / max Zcixi s.t. (z,y) € Q,
i=1

where Q is an extension of P.

e To require (z,y) € Q, the number of inequalities we need is
facets(Q)

@ It may be possible that facets(Q) < facets(P)



LP to Solve Problem Exactly with Auxiliary Variables
min / max Zcixi s.t. (xz,y) € Q,
i=1

where Q is an extension of P.

e To require (z,y) € Q, the number of inequalities we need is
facets(Q)

@ It may be possible that facets(Q) < facets(P)

Def. The extension complexity of a polytope P C R", denoted
as xc(P), is defined as follows:

xc(P) := min{facets(Q) : Q is an extension of P}.




Def. An extended formulation of a polytope P C R" is a set of

linear constraints:
T
EF =
( )<y) g

y=>0

where £ € RV " € RV*" g € RY are given, and z € R" is
the vector of main variables, y € R" is the vector of auxiliary
variables.




Def. An extended formulation of a polytope P C R" is a set of

linear constraints:
xr
EF =
( )<y) g

y=>0
where I/ ¢ RV [ ¢ RV*" g ¢ RY are given, and z € R" is

the vector of main variables, y € R" is the vector of auxiliary
variables. The following property needs to be satisfied:

P:{mER":EIyZO,(E,F) (”;) =g}-

The complexity of the extended formulation is defined as 7.




Def. An extended formulation of a polytope P C R" is a set of

linear constraints:
T
EF =
( )(y) g

y=>0
where £ € RV*" [ e RV*" g € RY are given, and z € R" is

the vector of main variables, y € R" is the vector of auxiliary
variables. The following property needs to be satisfied:

P:{xeR”:ayzo,(E,F) (g) :g},
The complexity of the extended formulation is defined as r.
Def. (An alternative definition) The extension complexity of a

polytope P C R", denoted as xc(P), is defined as the minimum
complexity of an extended formulation of P.



The Equivalence Between the Two Definitions

@ xc1(P),xce(P): xc(P) according to the first/second definition
xca(P) < xcq(P) |

@ Given an extension Q of P, we can use facets(Q) inequalities
(and some equalities, if the dimension of Q is smaller than the
dimension of its host space) to describe Q, one for each facet.

@ For the i-th inequality a;xz > b;, we introduce a variable y;, and
replace the inequality by y; = a;x — b;, y; > 0.

@ This gives an extended formulation of P with facets(Q)
y-variables.

@ Remark: there might be some auxiliary variables with no
non-negativity constraints; but they can be removed.

xc1(P) < xca(P) |

@ An extended formulation with m y-variables defines a
polyhedron with at most m facets.
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o S:={z € [n]":zis a permutation of [n]}
e P := conv(S)
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e Ti= "3 I valid.
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o S:={x € [n":zis a permutation of [n]}
e P := conv(S)
1(n+1)

e note: P has dimension n — 1, as } . z; = =5 is valid.

Lemma Forany S C [n],S#0, >, gz > % is a facet
of P.

e so, facets(P) = 2%

Proof Sketch.
@ The constraint ). _

@ To show it's a facet, need to prove its dimension is n — 2

T; > w gives a face




Example: Permutation Polytope

o S:={x € [n":zis a permutation of [n]}
e P := conv(S)
n(n+1)

@ note: P has dimension n — 1, as },  a; = =5 is valid.

Lemma Forany S C [n],S#0, >, gz > w is a facet
of P.

@ so, facets(P) = 2%(n)

Proof Sketch.

@ The constraint ). _

@ To show it's a facet, need to prove its dimension is n — 2

@ We can find 2%, 21, --- ,2"~2 on the face such that

ot — 20 2% — 20, ... 2”2 — 20 are linearly independent. [

T; > w gives a face




Representation using Permutation Matrices

@ Represent a permutation = € [n]l" by the permutation matrix
M € {0,1}™*" so that M;; = 1 iff z; = j.
0 01
Example : (3,1,2)<= (1 0 0
010
@ Crucial property: x is a linear function of entries in M
@ P’ :=conv({M : M is a permutation matrix})

Lemma P = {y S [O, 1]n><n 5 Zz Yij = 1,VJ, Zj Yij = 1,VZ} J

Proof.

@ permutation <= perfect matching in complete bipartite graph
over 2n vertices

@ permutation matrix polytope <= perfect matching
polytope H




Zyi,j =1

i€[n]
D b=
J€n]
Yij > 0
n
Ti = Zj " Yij
j=1

Vi € [n]
Vi € [n]

Vi, j € [n]

Vi € [n]
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Extended Formulation of P

Z yij=1 Vi € [n]

iel)
Z yij =1 Vi € [n]
j€ln]

yij = 0 Vi, j € [n]

xz':Zj'yz'j Vi € [n]
=1

O(n?).

Lemma The permutation polytope P has extension complexity J
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Recall:

@ Given a connected graph G = (V, E)
@ Pgr := conv ({XT :T'C FE is a spanning tree of G})
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Spanning Tree Polytope

Recall:

Spanning Tree Polytope

@ Given a connected graph G = (V, E)

o Pyr:=conv ({x* : T C E is a spanning tree of G'})

Theorem (Spanning Tree Polytope Theorem) Pgr is the set
of vectors z € R” satisfying the following inequalities:

er:n—l

eckE
d oz <81 VSCV,2<|9|<n—1 (%
e€E[S]

T, > 0 Veec E



@ Choose a root r € V' arbitrarily.

@ For any spanning tree, we direct the edges from r to leaves:
the tree becomes an out-arborescence rooted at r
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@ Choose a root r € V' arbitrarily.

@ For any spanning tree, we direct the edges from r to leaves:
the tree becomes an out-arborescence rooted at r

® Yy, Whether (u,v) is a directed edge in the arborenscence.

Z Uy = 1L

(u,v)€E
Yosr =0
Vhmn = U
T{uw} = Yuosv T Yoou
y supports 1 unit flow from r to v

Vo e V\{r}

Y(v,r) € E

Vu, v with (u,

V(u,v) € E
Yo e V\{r}

v) € E

()

@ (t) for every v can be captured using a maximum-flow LP,

with O(|E/|) variables and constraints.




Theorem The formulation is an extended formulation of Pgr. J
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Theorem The formulation is an extended formulation of Pgr.

Proof.
@ For any ST T of G, x* (with extension) is a valid solution

@ Remaining goal: prove that every valid (z,y) satisfies:

er:n—l (1)

eeE

> z <81 VSCV,2<|S|<n—1 (2
e€E|[S]

@ every v € V' \ {r} has 1 fractional incoming edge
e — total fractional number of edgesisn —1 — (1)
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@ Remaining goal: prove that every valid (x,y) satisfies:

d oz <81 VSCV,2<|S|<n—1 (2
e€E[S]

@ Focus on S 3 r: |S| — 1 fractional edges with head in S
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@ When G is complete graph, Pst has O(n?) extension
complexity



Theorem The formulation is an extended formulation of Pgr.

»

Proof. |

@ Remaining goal: prove that every valid (x,y) satisfies:

d oz <81 VSCV,2<|S|<n—1 (2
e€E[S]

@ Focus on S 3 r: |S| — 1 fractional edges with head in S
@ Focuson S Zr,|S| > 2. Let v € S be arbitrary.
° y supports 1 unit r — v flow

—> > 1 fractional edge from V' \ S to S
—> at most |S| — 1 fractional edges inside S O

@ When G is complete graph, Pst has O(n?) extension
complexity

@ The lower bound is Q(n?)

@ Big open problem to close the gap.
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Def. The non-negative rank of a matrix M € RT;™ is the
minimum 7 > 0 such that there are matrices L G_RZLOX" and

R € RZS™ such that M = LR. We use rank, (M) to denote the
non-negative rank of M.




Def. The non-negative rank of a matrix M € RT;™ is the
minimum 7 > 0 such that there are matrices L G_RZ‘O” and

R € RZ{" such that M = LR. We use rank, (M) to denote the
non-negative rank of M.




Def. The non-negative rank of a matrix M € RT ™ is the
minimum 7 > 0 such that there are matrices L € R’;OX’” and
R € RTY" such that M = LR. We use rank, (1) to denote the

non-negative rank of M.

o if we allow L € R™*" and R € R"*", then the non-negative
rank becomes the rank



mXxXn

Def. The non-negative rank of a matrix M € RT " is the
minimum 7 > 0 such that there are matrices L € R”" and

R € RZ{" such that M = LR. We use rank, (M) to denote the
non-negative rank of M.

o if we allow L € R™*" and R € R"*", then the non-negative
rank becomes the rank

@ the rank of a matrix can be computed efficiently

@ it is NP-hard to compute the non-negative rank of a matrix
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Def. Let P C R" be defined as
P={xeR": Ax < b; Ex = f},

with A € R™" b e R™, E € R™*", f € R™. Assume the
equations Ex = f are linearly independent, and there is a 1-1
correspondence between inequalities in Az < b and facets of P.
Let 2!, 22, --- , 2" be all the vertices of P. The slack matrix

SM?” of P w.r.t this description is a matrix in RT" such that

SMZ?J- = b, — a;x’, where q; is the i-th row vector of A.




Def. Let P C R" be defined as
P={xeR": Ax < b; Ex = f},

with A € R™" b e R™, E € R™*", f € R™. Assume the
equations Ex = f are linearly independent, and there is a 1-1
correspondence between inequalities in Az < b and facets of P.
Let 2!, 22, --- , 2" be all the vertices of P. The slack matrix

SM?” of P w.r.t this description is a matrix in RT" such that

SMZ?J- = b, — a;x’, where q; is the i-th row vector of A.

vertex j

SM J
|
I
I

T
|
|
|
|
EY
|
|
|




Theorem [Yannakakis 91] For any polytope P, we have
xc(P) = rank, (SM”).
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Slack Matrix Theorem

Theorem [Yannakakis 91] For any polytope P, we have
xc(P) = rank, (SM”).

Notes

o Considering non-vertex points in P for the columns of SM”
does not increase is non-negative rank

o Considering non-facet faces of P for rows of SM” does not
increase its non-negative rank




Theorem [Yannakakis 91| For any polytope P, we have
xc(P) = rank, (SM”). J
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e Given non-negative decomposition SM” = FV with
F e RTS" and V € RTYY

@ we show the following is an extended formulation of P with
complexity r:

Ar+Fy=0b,y>0 P ={x:3y >0, Az + Fy = b}

o if 3y > 0 with Az + Fy = b, then Az <b P CP




Theorem [Yannakakis 91] For any polytope P, we have
xc(P) = rank, (SM”).

Proof of xc(P) < rank, (SM”).

e Given non-negative decomposition SM” = FV with
F e RZF" and V € RTY

@ we show the following is an extended formulation of P with
complexity r:

Ar+Fy=0b,y>0 P ={x:3y >0, Az + Fy = b}

e if 3y > 0 with Ax + Fy =, then Az <b P CP
o fix vertex z7: b — Az’ is the j-th column of SM”




Theorem [Yannakakis 91] For any polytope P, we have
xc(P) = rank, (SM”).

Proof of xc(P) < rank, (SM”).

Given non-negative decomposition SM” = FV with
F e RZF" and V € RTY

we show the following is an extended formulation of P with
complexity r:

Ar+Fy=0b,y>0 P ={x:3y >0, Az + Fy = b}

if 3y > 0 with Az + Fy = b, then Az <b P CP
fix vertex z/: b — Az7 is the j-th column of SM”
it is a non-negative combination of columns of F'
so, Jy > 0 with b — Aa/ = Fy P CP O]




Theorem [Yannakakis 91] For any polytope P, we have
xc(P) = rank, (SM”).
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Slack Matrix Theorem
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EeR™" FeR™" and g € R™:
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@ For every 7, a;x < b; is implied by Fx + Fy =g,y > 0, and it
is tight for some point in P:
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Slack Matrix Theorem

Theorem [Yannakakis 91] For any polytope P, we have
xc(P) = rank, (SM”).

Proof of xc(P) > rank, (SM”).

@ Assume P = {x: Ex + Fy = g,y > 0},
EeR™™ FeR™" and g € R™:

@ For every 7, a;x < b; is implied by Fx + Fy =g,y > 0, and it
is tight for some point in P:

3 row vector ' € R™ : y'(E, g) = (a;, b;),v" == u'F > 0.

@ Then, b; — a;27 = p'g — p'Ead = p'Fy? = viy.




Slack Matrix Theorem

Theorem [Yannakakis 91] For any polytope P, we have
xc(P) = rank, (SM”).

Proof of xc(P) > rank, (SM”).
@ b — ax? = vy
@ Then,

SMP: . (ylayQa"' 7yv)




Slack Matrix Theorem

Theorem [Yannakakis 91] For any polytope P, we have
xc(P) = rank, (SM”).

Proof of xc(P) > rank, (SM”).
@ b — ax? = vy
@ Then,

SM” = | | (v 9%, y)

Vm

@ This is a decomposition with rank r.




@ Motivation and Definition
@ Example: Permutation Polytope
@ Extension Complexity of Spanning Tree Polytope

© Connection Between Extension Complexity and Non-Negative
Rank

e Polytopes with Exponential Extension Complexity

25/27



Travelling Salesman Problem (TSP) Polytope

@ Given the complete graph G = (V, (‘2/))

o Prsp := conv({x*, S C () is a TSP tour of V})
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@ Given the complete graph G = (V, (‘2/))

o Prsp := conv({x*, S C () is a TSP tour of V})

Cut Polytope
e G = (V,E): a connected graph
® Pyt := conv ({xFEVN) . S CV, S +£0})
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® Poorr = conv ({007 : b € {0,1}"}).




Travelling Salesman Problem (TSP) Polytope

@ Given the complete graph G = (V, (Z))

o Prsp := conv({x*, S C () is a TSP tour of V})

Cut Polytope
e G = (V,E): a connected graph
® Pyt := conv ({xFEVN) . S CV, S +£0})

Correlation Polytope
® Poorr = conv ({007 : b € {0,1}"}).

@ [Samuel Fiorini, Serge Massar, Sebastian Pokutta, Hans Raj
Tiwary and Ronald de Wolf]: “Exponential Lower Bounds for
Polytopes in Combinatorial Optimization”: All the above
polytopes have exponential extension complexity.

@ 2023 Godel Prize Winner Paper




e Given a graph G = (V, E)
® Pam = conv ({x™ : M C E is a matching in G})
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General Matching Polytope
e Given a graph G = (V, E)
® Pam = conv ({x™ : M C E is a matching in G})

Theorem (General Matching Polytope Theorem) Pgy; is the
set of vectors € R¥ satisfying the following inequalities:

Z Te <1 YveV
e€d(v)
—1
Y oz < |S|2 VS CV,|S|isodd  (3)
ecE(S)

Te >0 Vee B



General Matching Polytope
e Given a graph G = (V, E)
® Pam = conv ({x™ : M C E is a matching in G})

Theorem (General Matching Polytope Theorem) Pgy; is the
set of vectors € R¥ satisfying the following inequalities:

Z Te <1 YveV
e€d(v)
—1
Y oz < |S|2 VS CV,|S|isodd  (3)
ecE(S)
Te >0 Vee B

@ [Rothvoss 2017]: “The Matching Polytope has Exponential
Extension Complexity.” 2023 Godel Prize Winner Paper
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