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Motivation

Typical Combinatorial Optimization Problem

Input: [n]: ground set

S: feasible sets: a family of subsets of U , often
implicitly given

wi, i ∈ [n]: values/costs of elements

Output: the set S ∈ S with the minimum/maximum
w(S) :=

∑
i∈S wi

P := conv({χS : S ∈ S}): convex hull of all valid solutions
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LP to Solve Problem Exactly

min /max
n∑

i=1

wixi s.t. x ∈ P

inequality constraints needed to describe x ∈ P (or P in short)
is facets(P) := the number of facets of P

Q: Can we do better?

A: Yes in some cases, by introducing new variables that we call
auxiliary variables.

Def. An extension of a polytope P ∈ Rn is a polyhedron
Q ⊆ Rn+r for some r ≥ 0, such that P is the projection of Q to
Rn:

P =
{
x ∈ Rn : ∃y ∈ Rr, (x, y) ∈ Q

}
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LP to Solve Problem Exactly with Auxiliary Variables

min /max
n∑

i=1

cixi s.t. (x, y) ∈ Q,

where Q is an extension of P .

To require (x, y) ∈ Q, the number of inequalities we need is
facets(Q)

It may be possible that facets(Q) ≪ facets(P)

Def. The extension complexity of a polytope P ⊆ Rn, denoted
as xc(P), is defined as follows:

xc(P) := min{facets(Q) : Q is an extension of P}.
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Def. An extended formulation of a polytope P ⊆ Rn is a set of
linear constraints:

(E,F )

(
x
y

)
= g

y ≥ 0

where E ∈ RN×n, F ∈ RN×r, g ∈ RN are given, and x ∈ Rn is
the vector of main variables, y ∈ Rr is the vector of auxiliary
variables.

The following property needs to be satisfied:

P =

{
x ∈ Rn : ∃y ≥ 0, (E,F )

(
x
y

)
= g

}
.

The complexity of the extended formulation is defined as r.

Def. (An alternative definition) The extension complexity of a
polytope P ⊆ Rn, denoted as xc(P), is defined as the minimum
complexity of an extended formulation of P .
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The Equivalence Between the Two Definitions

xc1(P), xc2(P): xc(P) according to the first/second definition

xc2(P) ≤ xc1(P)

Given an extension Q of P , we can use facets(Q) inequalities
(and some equalities, if the dimension of Q is smaller than the
dimension of its host space) to describe Q, one for each facet.

For the i-th inequality aix ≥ bi, we introduce a variable yi, and
replace the inequality by yi = aix− bi, yi ≥ 0.

This gives an extended formulation of P with facets(Q)
y-variables.

Remark: there might be some auxiliary variables with no
non-negativity constraints; but they can be removed.

xc1(P) ≤ xc2(P)

An extended formulation with m y-variables defines a
polyhedron with at most m facets.
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Example: Permutation Polytope

S :=
{
x ∈ [n][n] : x is a permutation of [n]

}
P := conv(S)

note: P has dimension n− 1, as
∑

i∈[n] xi =
n(n+1)

2
is valid.

Lemma For any S ⊊ [n], S ̸= ∅,
∑

i∈S xi ≥ |S|(|S|+1)
2

is a facet
of P .

so, facets(P) = 2Ω(n)

Proof Sketch.

The constraint
∑

i∈S xi ≥ |S|(|S|+1)
2

gives a face

To show it’s a facet, need to prove its dimension is n− 2

We can find x0, x1, · · · , xn−2 on the face such that
x1 − x0, x2 − x0, · · · , xn−2 − x0 are linearly independent.
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Representation using Permutation Matrices

Represent a permutation x ∈ [n][n] by the permutation matrix
M ∈ {0, 1}n×n so that Mij = 1 iff xi = j.

Example : (3, 1, 2) ⇐⇒

0 0 1
1 0 0
0 1 0


Crucial property: x is a linear function of entries in M

P ′ := conv
(
{M : M is a permutation matrix}

)
Lemma P ′ =

{
y ∈ [0, 1]n×n :

∑
i yi,j = 1,∀j;

∑
j yi,j = 1,∀i

}
.

Proof.

permutation ⇐⇒ perfect matching in complete bipartite graph
over 2n vertices

permutation matrix polytope ⇐⇒ perfect matching
polytope
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Extended Formulation of P

∑
i∈[n]

yi,j = 1 ∀j ∈ [n]

∑
j∈[n]

yi,j = 1 ∀i ∈ [n]

yij ≥ 0 ∀i, j ∈ [n]

xi =
n∑

j=1

j · yij ∀i ∈ [n]

Lemma The permutation polytope P has extension complexity
O(n2).
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Spanning Tree Polytope

Recall:

Spanning Tree Polytope

Given a connected graph G = (V,E)

PST := conv
({

χT : T ⊆ E is a spanning tree of G
})

Theorem (Spanning Tree Polytope Theorem) PST is the set
of vectors x ∈ RE satisfying the following inequalities:∑

e∈E

xe = n− 1∑
e∈E[S]

xe ≤ |S| − 1 ∀S ⊆ V, 2 ≤ |S| ≤ n− 1 (*)

xe ≥ 0 ∀e ∈ E
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Choose a root r ∈ V arbitrarily.

For any spanning tree, we direct the edges from r to leaves:
the tree becomes an out-arborescence rooted at r

yu→v: whether (u, v) is a directed edge in the arborenscence.

∑
(u,v)∈E

yu→v = 1 ∀v ∈ V \ {r}

yv→r = 0 ∀(v, r) ∈ E

yu→v ≥ 0 ∀u, v with (u, v) ∈ E

x{u,v} = yu→v + yv→u ∀(u, v) ∈ E

y supports 1 unit flow from r to v ∀v ∈ V \ {r} (†)

(†) for every v can be captured using a maximum-flow LP,
with O(|E|) variables and constraints.
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Theorem The formulation is an extended formulation of PST.

Proof.

For any ST T of G, χT (with extension) is a valid solution

Remaining goal: prove that every valid (x, y) satisfies:∑
e∈E

xe = n− 1 (1)∑
e∈E[S]

xe ≤ |S| − 1 ∀S ⊆ V, 2 ≤ |S| ≤ n− 1 (2)

every v ∈ V \ {r} has 1 fractional incoming edge

=⇒ total fractional number of edges is n− 1 =⇒ (1)
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Theorem The formulation is an extended formulation of PST.

Proof.

Remaining goal: prove that every valid (x, y) satisfies:∑
e∈E[S]

xe ≤ |S| − 1 ∀S ⊆ V, 2 ≤ |S| ≤ n− 1 (2)

Focus on S ∋ r: |S| − 1 fractional edges with head in S

Focus on S ̸∋ r, |S| ≥ 2. Let v ∈ S be arbitrary.

y supports 1 unit r → v flow
=⇒ ≥ 1 fractional edge from V \ S to S
=⇒ at most |S| − 1 fractional edges inside S

When G is complete graph, PST has O(n3) extension
complexity
The lower bound is Ω(n2)
Big open problem to close the gap.
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Def. The non-negative rank of a matrix M ∈ Rm×n
≥0 is the

minimum r ≥ 0 such that there are matrices L ∈ Rm×r
≥0 and

R ∈ Rr×n
≥0 such that M = LR. We use rank+(M) to denote the

non-negative rank of M .

if we allow L ∈ Rm×r and R ∈ Rr×n, then the non-negative
rank becomes the rank

the rank of a matrix can be computed efficiently

it is NP-hard to compute the non-negative rank of a matrix
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Application of Non-Negative Rank
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Def. Let P ⊆ Rn be defined as

P = {x ∈ Rn : Ax ≤ b;Ex = f},

with A ∈ Rm×n, b ∈ Rm, E ∈ Rm′×n, f ∈ Rm′
. Assume the

equations Ex = f are linearly independent, and there is a 1-1
correspondence between inequalities in Ax ≤ b and facets of P .
Let x1, x2, · · · , xv be all the vertices of P . The slack matrix
SMP of P w.r.t this description is a matrix in Rm×v

≥0 such that

SMP
i,j = bi − aix

j, where ai is the i-th row vector of A.

facet i

d = Aix
j − bi

SM

i

j

d

vertex j
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Slack Matrix Theorem

Theorem [Yannakakis 91] For any polytope P , we have
xc(P) = rank+(SM

P).

Notes

Considering non-vertex points in P for the columns of SMP

does not increase is non-negative rank

Considering non-facet faces of P for rows of SMP does not
increase its non-negative rank
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Theorem [Yannakakis 91] For any polytope P , we have
xc(P) = rank+(SM

P).

Proof of xc(P) ≤ rank+(SM
P).

Given non-negative decomposition SMP = FV with
F ∈ Rm×r

≥0 and V ∈ Rr×v
≥0

we show the following is an extended formulation of P with
complexity r:

Ax+ Fy = b, y ≥ 0 P ′ = {x : ∃y ≥ 0, Ax+ Fy = b}

if ∃y ≥ 0 with Ax+ Fy = b, then Ax ≤ b P ′ ⊆ P
fix vertex xj: b− Axj is the j-th column of SMP

it is a non-negative combination of columns of F

so, ∃y ≥ 0 with b− Axj = Fy P ⊆ P ′
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Slack Matrix Theorem

Theorem [Yannakakis 91] For any polytope P , we have
xc(P) = rank+(SM

P).

Proof of xc(P) ≥ rank+(SM
P).

Assume P = {x : Ex+ Fy = g, y ≥ 0},
E ∈ Rm×n, F ∈ Rm×r and g ∈ Rm:

For every i, aix ≤ bi is implied by Ex+ Fy = g, y ≥ 0, and it
is tight for some point in P :

∃ row vector µi ∈ Rm : µi(E, g) = (ai, bi), ν
i := µiF ≥ 0.

Then, bi − aix
j = µig − µiExj = µiFyj = νiyj.
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Slack Matrix Theorem

Theorem [Yannakakis 91] For any polytope P , we have
xc(P) = rank+(SM

P).

Proof of xc(P) ≥ rank+(SM
P).

bi − aix
j = νiyj

Then,

SMP =


ν1

ν2

...
νm

 (y1, y2, · · · , yv)

This is a decomposition with rank r.
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Travelling Salesman Problem (TSP) Polytope

Given the complete graph G = (V,
(
V
2

)
)

PTSP := conv({χS, S ⊆
(
V
2

)
is a TSP tour of V})

Cut Polytope

G = (V,E): a connected graph

Pcut := conv
({

χE(S,V \S) : S ⊊ V, S ̸= ∅
})

Correlation Polytope

Pcorr = conv
(
{bbT : b ∈ {0, 1}n}

)
.

[Samuel Fiorini, Serge Massar, Sebastian Pokutta, Hans Raj
Tiwary and Ronald de Wolf]: “Exponential Lower Bounds for
Polytopes in Combinatorial Optimization”: All the above
polytopes have exponential extension complexity.

2023 Godel Prize Winner Paper
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General Matching Polytope

Given a graph G = (V,E)

PGM := conv
({

χM : M ⊆ E is a matching in G
})

Theorem (General Matching Polytope Theorem) PGM is the
set of vectors x ∈ RE satisfying the following inequalities:∑

e∈δ(v)

xe ≤ 1 ∀v ∈ V

∑
e∈E(S)

xe ≤
|S| − 1

2
∀S ⊆ V, |S| is odd (3)

xe ≥ 0 ∀e ∈ E

[Rothvoss 2017]: “The Matching Polytope has Exponential
Extension Complexity.” 2023 Godel Prize Winner Paper



27/27

General Matching Polytope

Given a graph G = (V,E)

PGM := conv
({

χM : M ⊆ E is a matching in G
})

Theorem (General Matching Polytope Theorem) PGM is the
set of vectors x ∈ RE satisfying the following inequalities:∑

e∈δ(v)

xe ≤ 1 ∀v ∈ V

∑
e∈E(S)

xe ≤
|S| − 1

2
∀S ⊆ V, |S| is odd (3)

xe ≥ 0 ∀e ∈ E

[Rothvoss 2017]: “The Matching Polytope has Exponential
Extension Complexity.” 2023 Godel Prize Winner Paper



27/27

General Matching Polytope

Given a graph G = (V,E)

PGM := conv
({

χM : M ⊆ E is a matching in G
})

Theorem (General Matching Polytope Theorem) PGM is the
set of vectors x ∈ RE satisfying the following inequalities:∑

e∈δ(v)

xe ≤ 1 ∀v ∈ V

∑
e∈E(S)

xe ≤
|S| − 1

2
∀S ⊆ V, |S| is odd (3)

xe ≥ 0 ∀e ∈ E

[Rothvoss 2017]: “The Matching Polytope has Exponential
Extension Complexity.” 2023 Godel Prize Winner Paper


	Motivation and Definition
	Example: Permutation Polytope
	Extension Complexity of Spanning Tree Polytope

	Connection Between Extension Complexity and Non-Negative Rank
	Polytopes with Exponential Extension Complexity

