
尹⼀通 Nanjing University, 2024 Fall

Advanced Algorithms
Fingerprinting

• three matrices :n × n A, B, C

Checking Matrix Multiplication

A B C× =
?

Matrix Multiplication Algorithms

 matrix
Running time:
n × n

O(nω)
Year ω Authors
1969 2.8074 Strassen
1978 2.796 Pan
1979 2.780 Bini, Capovani, Romani
1981 2.522 Schönhage
1981 2.517 Romani
1981 2.496 Coppersmith, Winograd
1986 2.479 Strassen
1990 2.3755 Coppersmith, Winograd
2010 2.3737 Stothers
2013 2.3729 Williams
2014 2.3728639 Le Gall
2020 2.3728596 Alman, Williams
2022 2.371866 Duan, Wu, Zhou
2024 2.371552 Williams, Xu, Xu, Zhou

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 3

 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

om
eg

a

Year

 S
tra

ss
en

 P
an

 B
in

i,
Ca

po
va

ni
, R

om
an

i,
Lo

tti

 R
om

an
i

 C
op

pe
rsm

ith
, W

in
og

ra
d

 S
tra

ss
en

 C
op

pe
rsm

ith
, W

in
og

ra
d

 S
to

th
er

s
 W

ill
iam

s

 L
e G

all

 A
lm

an
, W

ill
iam

s
 D

ua
n,

W
u,

Zh
ou

 W
ill

iam
s,

Xu
, X

u,
Zh

ou

na
iv

e

Sc
hö

nh
ag

e

• three matrices :n × n A, B, C

Checking Matrix Multiplication

A B C× =
?

Freivald’s Algorithm:

pick a uniform random ;

check whether ;

r ∈ {0,1}n

A(Br) = Cr

if : always correctAB = Ctime: O(n2)
if :AB ≠ C

Freivald’s Algorithm:

pick a uniform random ;

check whether ;

r ∈ {0,1}n

A(Br) = Cr

if :AB ≠ C let D = AB − C ≠ 0n×n

D r
i

suppose Dij ≠ 0

Pr[ABr = Cr] = Pr[Dr = 0] ≤

(Dr)i =
n

∑
k=1

Dikrk = 0

rj = −
1

Dij ∑
k≠j

Dikrk

=
1
22n

2n−1

Freivald’s Algorithm:

pick a uniform random ;

check whether ;

r ∈ {0,1}n

A(Br) = Cr

Theorem (Feivald 1979).

For matrices , if , for uniform random ,
n × n A, B, C AB ≠ C r ∈ {0,1}n

Pr[ABr = Cr] ≤
1
2

if : always correctAB = C

repeat independently for timesO(log n)

Total running time:

Correct with high probability (w.h.p.).

O(n2 log n)

Polynomial Identity Testing (PIT)

Input: two polynomials of degree .

Output: ?

f, g ∈ 𝔽[x] d
f ≡ g

Input: a polynomial of degree .

Output: ?

f ∈ 𝔽[x] d
f ≡ 0

 of degree : where f ∈ 𝔽[x] d f(x) =
d

∑
i=0

aixi ai ∈ 𝔽

 is given as black-boxf

field

: polynomial ring in over field 𝔽[x] x 𝔽

Input: a polynomial of degree .

Output: ?

f ∈ 𝔽[x] d
f ≡ 0

• Deterministic algorithm (polynomial interpolation):

pick arbitrary distinct ;

check if for all ;

x0, x1, …, xd ∈ 𝔽
f(xi) = 0 0 ≤ i ≤ d

• Randomized algorithm (fingerprinting):

pick a uniform random ;

check if ;

r
f(r) = 0

∈ S let be arbitrary

(whose size to be fixed later)

S ⊆ 𝔽

Fundamental Theorem of Algebra.

Any non-zero -degree polynomial has at most roots.d f ∈ 𝔽[x] d

pick a uniform random ;

check if ;

r
f(r) = 0

∈ S let be arbitrary

(whose size to be fixed later)

S ⊆ 𝔽

if : always correctf ≡ 0

Input: a polynomial of degree .

Output: ?

f ∈ 𝔽[x] d
f ≡ 0

if : f ≢ 0

Pr[f(r) = 0] ≤
|S |

Fundamental Theorem of Algebra.

Any non-zero -degree polynomial has at most roots.d f ∈ 𝔽[x] d

d

|S | = 2d

=
1
2

Checking Identity

database 1

database 2

Are they
identical?

北京

南京

Communication Complexity

Li LeiHan Meimei
EQ : {0, 1}n × {0, 1}n → {0, 1}

of bits

communicated

a b

f(a, b)

EQ(a, b) =

{
1 a = b

0 a ̸= b

Communication Complexity

Li LeiHan Meimei
EQ : {0, 1}n × {0, 1}n → {0, 1}

of bits

communicated

a b

f(a, b)

Theorem (Yao 1979).

Every deterministic communication protocol solving

 communicates bits in the worst-case.EQ n

Communication Complexity

a b∈{0, 1}n ∈{0, 1}n

f =
n�1�

i=0

aix
i

∈[2n]

r, g(r)

f(r)=g(r) ?

one-sided error � 1

2

by PIT:

of bit communicated: too large!

g =
n�1X

i=0

bix
i

pick uniform
random r

Communication Complexity

a b∈{0, 1}n ∈{0, 1}n

f =
n�1�

i=0

aix
i

pick uniform
random r ∈[p]

r, g(r)

f(r)=g(r) ?
g =

n�1X

i=0

bix
i

O(log n) bits

• choose a prime

• let

• by PIT: one-sided error is

p ∈ [n2,2n2]

f, g ∈ ℤp[x]

n
p

= O (1
n) (correct w.h.p.)

Input: a polynomial of degree .

Output: ?

f ∈ 𝔽[x1, …, xn] d
f ≡ 0

Polynomial Identity Testing (PIT)

: ring of -variate polynomials in over field 𝔽[x1, …, xn] n x1, …, xn 𝔽

f ∈ 𝔽[x1, …, xn] :

f(x1, …, xn) = ∑
i1,…,in≥0

ai1,i2,…,inx
i1
1 xi2

2 ⋯xin
n

Degree of : maximum with f i1 + i2 + ⋯ + in ai1,i2,…,in ≠ 0

Input: a polynomial of degree .

Output: ?

f ∈ 𝔽[x1, …, xn] d
f ≡ 0

Polynomial Identity Testing (PIT)

f(x1, …, xn) = ∑
i1, …, in ≥ 0

i1 + ⋯ + in ≤ d

ai1,i2,…,inx
i1
1 xi2

2 ⋯xin
n

or as product form: e.g. Vandermonde determinant
 is given as black-box: given any , return f ⃗x ∈ 𝔽n f(⃗x)

M =

1 x1 x2
1 … xn−1

1

1 x2 x2
2 … xn−1

2
⋮ ⋮ ⋮ ⋱ ⋮
1 xn x2

n … xn−1
n

f(⃗x) = det(M) = ∏
j<i

(xi − xj)

Input: a polynomial of degree .

Output: ?

f ∈ 𝔽[x1, …, xn] d
f ≡ 0

Polynomial Identity Testing (PIT)

 is given as product formf

if ∃ a poly-time deterministic algorithm for PIT:

either: NEXP ≠ P/poly
or: #P ≠ FP

Input: a polynomial of degree .

Output: ?

f ∈ 𝔽[x1, …, xn] d
f ≡ 0

pick uniformly and independently at random;

check if ;

r1, …, rn ∈ S
f(r1, …, rn) = 0

Fix an arbitrary :S ⊆ 𝔽

 f ≡ 0 ⟹ f(r1, …, rn) = 0

Schwartz-Zippel Theorem.

f ≢ 0 ⟹ Pr [f(r1, …, rn) = 0] ≤
d

|S |

of roots for any in any cube is f ≢ 0 Sn ≤ d ⋅ |S |n−1

f(x1, x2, . . . , xn) =
dX

i=0

xi
nfi(x1, x2, . . . , xn�1)

= gx1,x2,...,xn�1(xn)

f can be treated as a single-variate polynomial of xn:

done?

Pr[f(r1, r2, . . . , rn) = 0] = Pr[gr1,r2,...,rn�1(rn) = 0]

gr1,r2,...,rn�1 6⌘ 0?

f(x1, x2, . . . , xn) =
X

i1,i2,...,in�0
i1+i2+···+ind

ai1,i2,...,inx
i1
1 xi2

2 · · ·xin
n

Schwartz-Zippel Theorem.

f ≢ 0 ⟹ Pr [f(r1, …, rn) = 0] ≤
d

|S |

induction on n :

basis: n=1 single-variate case, proved by
the fundamental Theorem of algebra

I.H.: Schwartz-Zippel Thm is true for all smaller n

Schwartz-Zippel Theorem.

f ≢ 0 ⟹ Pr [f(r1, …, rn) = 0] ≤
d

|S |

f(x1, x2, . . . , xn) =
kX

i=0

xi
nfi(x1, x2, . . . , xn�1)

k: highest power of xn in f fk 6⌘ 0
degree of fk  d� k

n

= xk
nfk(x1, x2, . . . , xn�1) + f̄(x1, x2, . . . , xn)

f̄(x1, x2, . . . , xn) =
k�1X

i=0

xi
nfi(x1, x2, . . . , xn�1)where

highest power of xn in f̄ < k

induction step:

Schwartz-Zippel Theorem.

f ≢ 0 ⟹ Pr [f(r1, …, rn) = 0] ≤
d

|S |

highest power of xn in f̄ < k
fk 6⌘ 0

degree of fk  d� k

= xk
nfk(x1, x2, . . . , xn�1) + f̄(x1, x2, . . . , xn)f(x1, x2, . . . , xn)

n

law of total probability:

Pr[f(r1, r2, . . . , rn) = 0]

=Pr[f(~r) = 0 | fk(r1, . . . , rn�1) = 0] · Pr[fk(r1, . . . , rn�1) = 0]

+ Pr[f(~r) = 0 | fk(r1, . . . , rn�1) 6= 0] · Pr[fk(r1, . . . , rn�1) 6= 0]

I.H.  d� k

|S|

 k

|S|
gx1,...,xn�1(xn) = f(x1, . . . , xn)where

= Pr[gr1,...,rn�1(rn) = 0 | fk(r1, . . . , rn�1) 6= 0]

Schwartz-Zippel Theorem.

f ≢ 0 ⟹ Pr [f(r1, …, rn) = 0] ≤
d

|S |

Pr[f(r1, r2, . . . , rn) = 0]  d� k

|S| +
k

|S| =
d

|S|

Schwartz-Zippel Theorem.

f ≢ 0 ⟹ Pr [f(r1, …, rn) = 0] ≤
d

|S |

Input: a polynomial of degree .

Output: ?

f ∈ 𝔽[x1, …, xn] d
f ≡ 0

pick uniformly and independently at random;

check if ;

r1, …, rn ∈ S
f(r1, …, rn) = 0

Fix an arbitrary :S ⊆ 𝔽

 f ≡ 0 ⟹ f(r1, …, rn) = 0

Schwartz-Zippel Theorem.

f ≢ 0 ⟹ Pr [f(r1, …, rn) = 0] ≤
d

|S |

of roots for any in any cube is f ≢ 0 Sn ≤ d ⋅ |S |n−1

• test whether a graph has perfect matching;

• test isomorphism of rooted trees;

• distance property of Reed-Muller codes;

• proof of hardness vs randomness tradeoff;

• algebraic construction of probabilistically
checkable proofs (PCP);

•

Applications of Schwartz-Zippel

• determine whether has a perfect matching:

• Hall’s theorem: enumerates all subset of

• Hungarian method:

• Hopcroft-Karp algorithm:

G
[n]

O(n3)
O(m n)

Bipartite Perfect Matching

4 Perfect matchings in bipartite graphs. Consider a bipartite graph with bi-
partition (N,N), where N = {1, . . . , n}, and edge set E ⊆ N × N . A perfect
matching is an edge subset M ⊆ E that includes every node as an endpoint
exactly once. See Fig. 3 for some interpretations.

Fig. 3. Row 1: A bipartite
graph and its three perfect
matchings. Row 2: In the
graph’s adjacency matrix
A, every perfect matching
corresponds to a permuta-
tion π for which Ai,π(i) = 1
for all i ∈ [n]. Row 3: In
the directed n-node graph
defined by A, every perfect
matching corresponds to
a directed cycle partition.
Bottom row: an equiva-
lent formulation in terms
of non-attacking rooks on
a chess board with forbid-
den positions.

1 1 1

1 1 0

0 1 1

1 1 1

1 1 0

0 1 1

1 1 1

1 1 0

0 1 1

1 1 1

1 1 0

0 1 1

1

23

1

23

1

23

1

23

VR
VR

VR

VR
VR

VR

VR
VR
VR

The Ryser formula for counting the perfect matchings in such a graph can
be given as

∑

π∈Sn

n
∏

i=1

[iπ(i) ∈ E] =
∑

S⊆N

(−1)|N\S|
n
∏

i=1

∑

j∈S

[ij ∈ E] , (4)

where Sn denotes the set of permutations from N to N . The left hand side
succinctly describes the problem as iterating over all permutations and checking
if the corresponding edges (namely, 1π(1), 2π(2), . . ., nπ(n)) are all in E. Direct
evaluation would require n! iterations. The right hand side provides an equivalent
expression that can be evaluated in time O(2nn2), see Fig. 4.

Proof of (4). For fixed i ∈ N , the value
∑

j∈S [ij ∈ E] counts the number of i’s
neighbours in S ⊆ N . Thus the expression

n
∏

i=1

∑

j∈S

[ij ∈ E] (5)

is the number of ways every node i ∈ N can choose a neighbour from S. (This
allows some nodes to select the same neighbour.) Consider such a choice as a
mapping g : N → N , not necessarily onto, with image R = g(N). The contribu-
tion of g to (5) is 1 for every S ⊇ R, and its total contribution to the right hand

4 Perfect matchings in bipartite graphs. Consider a bipartite graph with bi-
partition (N,N), where N = {1, . . . , n}, and edge set E ⊆ N × N . A perfect
matching is an edge subset M ⊆ E that includes every node as an endpoint
exactly once. See Fig. 3 for some interpretations.

Fig. 3. Row 1: A bipartite
graph and its three perfect
matchings. Row 2: In the
graph’s adjacency matrix
A, every perfect matching
corresponds to a permuta-
tion π for which Ai,π(i) = 1
for all i ∈ [n]. Row 3: In
the directed n-node graph
defined by A, every perfect
matching corresponds to
a directed cycle partition.
Bottom row: an equiva-
lent formulation in terms
of non-attacking rooks on
a chess board with forbid-
den positions.

1 1 1

1 1 0

0 1 1

1 1 1

1 1 0

0 1 1

1 1 1

1 1 0

0 1 1

1 1 1

1 1 0

0 1 1

1

23

1

23

1

23

1

23

VR
VR

VR

VR
VR

VR

VR
VR
VR

The Ryser formula for counting the perfect matchings in such a graph can
be given as

∑

π∈Sn

n
∏

i=1

[iπ(i) ∈ E] =
∑

S⊆N

(−1)|N\S|
n
∏

i=1

∑

j∈S

[ij ∈ E] , (4)

where Sn denotes the set of permutations from N to N . The left hand side
succinctly describes the problem as iterating over all permutations and checking
if the corresponding edges (namely, 1π(1), 2π(2), . . ., nπ(n)) are all in E. Direct
evaluation would require n! iterations. The right hand side provides an equivalent
expression that can be evaluated in time O(2nn2), see Fig. 4.

Proof of (4). For fixed i ∈ N , the value
∑

j∈S [ij ∈ E] counts the number of i’s
neighbours in S ⊆ N . Thus the expression

n
∏

i=1

∑

j∈S

[ij ∈ E] (5)

is the number of ways every node i ∈ N can choose a neighbour from S. (This
allows some nodes to select the same neighbour.) Consider such a choice as a
mapping g : N → N , not necessarily onto, with image R = g(N). The contribu-
tion of g to (5) is 1 for every S ⊇ R, and its total contribution to the right hand

4 Perfect matchings in bipartite graphs. Consider a bipartite graph with bi-
partition (N,N), where N = {1, . . . , n}, and edge set E ⊆ N × N . A perfect
matching is an edge subset M ⊆ E that includes every node as an endpoint
exactly once. See Fig. 3 for some interpretations.

Fig. 3. Row 1: A bipartite
graph and its three perfect
matchings. Row 2: In the
graph’s adjacency matrix
A, every perfect matching
corresponds to a permuta-
tion π for which Ai,π(i) = 1
for all i ∈ [n]. Row 3: In
the directed n-node graph
defined by A, every perfect
matching corresponds to
a directed cycle partition.
Bottom row: an equiva-
lent formulation in terms
of non-attacking rooks on
a chess board with forbid-
den positions.

1 1 1

1 1 0

0 1 1

1 1 1

1 1 0

0 1 1

1 1 1

1 1 0

0 1 1

1 1 1

1 1 0

0 1 1

1

23

1

23

1

23

1

23

VR
VR

VR

VR
VR

VR

VR
VR
VR

The Ryser formula for counting the perfect matchings in such a graph can
be given as

∑

π∈Sn

n
∏

i=1

[iπ(i) ∈ E] =
∑

S⊆N

(−1)|N\S|
n
∏

i=1

∑

j∈S

[ij ∈ E] , (4)

where Sn denotes the set of permutations from N to N . The left hand side
succinctly describes the problem as iterating over all permutations and checking
if the corresponding edges (namely, 1π(1), 2π(2), . . ., nπ(n)) are all in E. Direct
evaluation would require n! iterations. The right hand side provides an equivalent
expression that can be evaluated in time O(2nn2), see Fig. 4.

Proof of (4). For fixed i ∈ N , the value
∑

j∈S [ij ∈ E] counts the number of i’s
neighbours in S ⊆ N . Thus the expression

n
∏

i=1

∑

j∈S

[ij ∈ E] (5)

is the number of ways every node i ∈ N can choose a neighbour from S. (This
allows some nodes to select the same neighbour.) Consider such a choice as a
mapping g : N → N , not necessarily onto, with image R = g(N). The contribu-
tion of g to (5) is 1 for every S ⊇ R, and its total contribution to the right hand

4 Perfect matchings in bipartite graphs. Consider a bipartite graph with bi-
partition (N,N), where N = {1, . . . , n}, and edge set E ⊆ N × N . A perfect
matching is an edge subset M ⊆ E that includes every node as an endpoint
exactly once. See Fig. 3 for some interpretations.

Fig. 3. Row 1: A bipartite
graph and its three perfect
matchings. Row 2: In the
graph’s adjacency matrix
A, every perfect matching
corresponds to a permuta-
tion π for which Ai,π(i) = 1
for all i ∈ [n]. Row 3: In
the directed n-node graph
defined by A, every perfect
matching corresponds to
a directed cycle partition.
Bottom row: an equiva-
lent formulation in terms
of non-attacking rooks on
a chess board with forbid-
den positions.

1 1 1

1 1 0

0 1 1

1 1 1

1 1 0

0 1 1

1 1 1

1 1 0

0 1 1

1 1 1

1 1 0

0 1 1

1

23

1

23

1

23

1

23

VR
VR

VR

VR
VR

VR

VR
VR
VR

The Ryser formula for counting the perfect matchings in such a graph can
be given as

∑

π∈Sn

n
∏

i=1

[iπ(i) ∈ E] =
∑

S⊆N

(−1)|N\S|
n
∏

i=1

∑

j∈S

[ij ∈ E] , (4)

where Sn denotes the set of permutations from N to N . The left hand side
succinctly describes the problem as iterating over all permutations and checking
if the corresponding edges (namely, 1π(1), 2π(2), . . ., nπ(n)) are all in E. Direct
evaluation would require n! iterations. The right hand side provides an equivalent
expression that can be evaluated in time O(2nn2), see Fig. 4.

Proof of (4). For fixed i ∈ N , the value
∑

j∈S [ij ∈ E] counts the number of i’s
neighbours in S ⊆ N . Thus the expression

n
∏

i=1

∑

j∈S

[ij ∈ E] (5)

is the number of ways every node i ∈ N can choose a neighbour from S. (This
allows some nodes to select the same neighbour.) Consider such a choice as a
mapping g : N → N , not necessarily onto, with image R = g(N). The contribu-
tion of g to (5) is 1 for every S ⊇ R, and its total contribution to the right hand

bipartite graph

G([n],[n],E)

perfect matchings

4 Perfect matchings in bipartite graphs. Consider a bipartite graph with bi-
partition (N,N), where N = {1, . . . , n}, and edge set E ⊆ N × N . A perfect
matching is an edge subset M ⊆ E that includes every node as an endpoint
exactly once. See Fig. 3 for some interpretations.

Fig. 3. Row 1: A bipartite
graph and its three perfect
matchings. Row 2: In the
graph’s adjacency matrix
A, every perfect matching
corresponds to a permuta-
tion π for which Ai,π(i) = 1
for all i ∈ [n]. Row 3: In
the directed n-node graph
defined by A, every perfect
matching corresponds to
a directed cycle partition.
Bottom row: an equiva-
lent formulation in terms
of non-attacking rooks on
a chess board with forbid-
den positions.

1 1 1

1 1 0

0 1 1

1 1 1

1 1 0

0 1 1

1 1 1

1 1 0

0 1 1

1 1 1

1 1 0

0 1 1

1

23

1

23

1

23

1

23

VR
VR

VR

VR
VR

VR

VR
VR
VR

The Ryser formula for counting the perfect matchings in such a graph can
be given as

∑

π∈Sn

n
∏

i=1

[iπ(i) ∈ E] =
∑

S⊆N

(−1)|N\S|
n
∏

i=1

∑

j∈S

[ij ∈ E] , (4)

where Sn denotes the set of permutations from N to N . The left hand side
succinctly describes the problem as iterating over all permutations and checking
if the corresponding edges (namely, 1π(1), 2π(2), . . ., nπ(n)) are all in E. Direct
evaluation would require n! iterations. The right hand side provides an equivalent
expression that can be evaluated in time O(2nn2), see Fig. 4.

Proof of (4). For fixed i ∈ N , the value
∑

j∈S [ij ∈ E] counts the number of i’s
neighbours in S ⊆ N . Thus the expression

n
∏

i=1

∑

j∈S

[ij ∈ E] (5)

is the number of ways every node i ∈ N can choose a neighbour from S. (This
allows some nodes to select the same neighbour.) Consider such a choice as a
mapping g : N → N , not necessarily onto, with image R = g(N). The contribu-
tion of g to (5) is 1 for every S ⊇ R, and its total contribution to the right hand

G([n],[n],E)

1

2

3

1

2

3

4 Perfect matchings in bipartite graphs. Consider a bipartite graph with bi-
partition (N,N), where N = {1, . . . , n}, and edge set E ⊆ N × N . A perfect
matching is an edge subset M ⊆ E that includes every node as an endpoint
exactly once. See Fig. 3 for some interpretations.

Fig. 3. Row 1: A bipartite
graph and its three perfect
matchings. Row 2: In the
graph’s adjacency matrix
A, every perfect matching
corresponds to a permuta-
tion π for which Ai,π(i) = 1
for all i ∈ [n]. Row 3: In
the directed n-node graph
defined by A, every perfect
matching corresponds to
a directed cycle partition.
Bottom row: an equiva-
lent formulation in terms
of non-attacking rooks on
a chess board with forbid-
den positions.

1 1 1

1 1 0

0 1 1

1 1 1

1 1 0

0 1 1

1 1 1

1 1 0

0 1 1

1 1 1

1 1 0

0 1 1

1

23

1

23

1

23

1

23

VR
VR

VR

VR
VR

VR

VR
VR
VR

The Ryser formula for counting the perfect matchings in such a graph can
be given as

∑

π∈Sn

n
∏

i=1

[iπ(i) ∈ E] =
∑

S⊆N

(−1)|N\S|
n
∏

i=1

∑

j∈S

[ij ∈ E] , (4)

where Sn denotes the set of permutations from N to N . The left hand side
succinctly describes the problem as iterating over all permutations and checking
if the corresponding edges (namely, 1π(1), 2π(2), . . ., nπ(n)) are all in E. Direct
evaluation would require n! iterations. The right hand side provides an equivalent
expression that can be evaluated in time O(2nn2), see Fig. 4.

Proof of (4). For fixed i ∈ N , the value
∑

j∈S [ij ∈ E] counts the number of i’s
neighbours in S ⊆ N . Thus the expression

n
∏

i=1

∑

j∈S

[ij ∈ E] (5)

is the number of ways every node i ∈ N can choose a neighbour from S. (This
allows some nodes to select the same neighbour.) Consider such a choice as a
mapping g : N → N , not necessarily onto, with image R = g(N). The contribu-
tion of g to (5) is 1 for every S ⊇ R, and its total contribution to the right hand

4 Perfect matchings in bipartite graphs. Consider a bipartite graph with bi-
partition (N,N), where N = {1, . . . , n}, and edge set E ⊆ N × N . A perfect
matching is an edge subset M ⊆ E that includes every node as an endpoint
exactly once. See Fig. 3 for some interpretations.

Fig. 3. Row 1: A bipartite
graph and its three perfect
matchings. Row 2: In the
graph’s adjacency matrix
A, every perfect matching
corresponds to a permuta-
tion π for which Ai,π(i) = 1
for all i ∈ [n]. Row 3: In
the directed n-node graph
defined by A, every perfect
matching corresponds to
a directed cycle partition.
Bottom row: an equiva-
lent formulation in terms
of non-attacking rooks on
a chess board with forbid-
den positions.

1 1 1

1 1 0

0 1 1

1 1 1

1 1 0

0 1 1

1 1 1

1 1 0

0 1 1

1 1 1

1 1 0

0 1 1

1

23

1

23

1

23

1

23

VR
VR

VR

VR
VR

VR

VR
VR
VR

The Ryser formula for counting the perfect matchings in such a graph can
be given as

∑

π∈Sn

n
∏

i=1

[iπ(i) ∈ E] =
∑

S⊆N

(−1)|N\S|
n
∏

i=1

∑

j∈S

[ij ∈ E] , (4)

where Sn denotes the set of permutations from N to N . The left hand side
succinctly describes the problem as iterating over all permutations and checking
if the corresponding edges (namely, 1π(1), 2π(2), . . ., nπ(n)) are all in E. Direct
evaluation would require n! iterations. The right hand side provides an equivalent
expression that can be evaluated in time O(2nn2), see Fig. 4.

Proof of (4). For fixed i ∈ N , the value
∑

j∈S [ij ∈ E] counts the number of i’s
neighbours in S ⊆ N . Thus the expression

n
∏

i=1

∑

j∈S

[ij ∈ E] (5)

is the number of ways every node i ∈ N can choose a neighbour from S. (This
allows some nodes to select the same neighbour.) Consider such a choice as a
mapping g : N → N , not necessarily onto, with image R = g(N). The contribu-
tion of g to (5) is 1 for every S ⊇ R, and its total contribution to the right hand

4 Perfect matchings in bipartite graphs. Consider a bipartite graph with bi-
partition (N,N), where N = {1, . . . , n}, and edge set E ⊆ N × N . A perfect
matching is an edge subset M ⊆ E that includes every node as an endpoint
exactly once. See Fig. 3 for some interpretations.

Fig. 3. Row 1: A bipartite
graph and its three perfect
matchings. Row 2: In the
graph’s adjacency matrix
A, every perfect matching
corresponds to a permuta-
tion π for which Ai,π(i) = 1
for all i ∈ [n]. Row 3: In
the directed n-node graph
defined by A, every perfect
matching corresponds to
a directed cycle partition.
Bottom row: an equiva-
lent formulation in terms
of non-attacking rooks on
a chess board with forbid-
den positions.

1 1 1

1 1 0

0 1 1

1 1 1

1 1 0

0 1 1

1 1 1

1 1 0

0 1 1

1 1 1

1 1 0

0 1 1

1

23

1

23

1

23

1

23

VR
VR

VR

VR
VR

VR

VR
VR
VR

The Ryser formula for counting the perfect matchings in such a graph can
be given as

∑

π∈Sn

n
∏

i=1

[iπ(i) ∈ E] =
∑

S⊆N

(−1)|N\S|
n
∏

i=1

∑

j∈S

[ij ∈ E] , (4)

where Sn denotes the set of permutations from N to N . The left hand side
succinctly describes the problem as iterating over all permutations and checking
if the corresponding edges (namely, 1π(1), 2π(2), . . ., nπ(n)) are all in E. Direct
evaluation would require n! iterations. The right hand side provides an equivalent
expression that can be evaluated in time O(2nn2), see Fig. 4.

Proof of (4). For fixed i ∈ N , the value
∑

j∈S [ij ∈ E] counts the number of i’s
neighbours in S ⊆ N . Thus the expression

n
∏

i=1

∑

j∈S

[ij ∈ E] (5)

is the number of ways every node i ∈ N can choose a neighbour from S. (This
allows some nodes to select the same neighbour.) Consider such a choice as a
mapping g : N → N , not necessarily onto, with image R = g(N). The contribu-
tion of g to (5) is 1 for every S ⊇ R, and its total contribution to the right hand

Theorem: a perfect matching in det(A) ≢ 0 ⟺ ∃ G

Edmonds matrix: an matrix defined as
n × n A

∀i, j ∈ [n], A(i, j) = {xi,j if (i, j) ∈ E
0 if (i, j) ∉ E

det(A) = x11x22x33
+x13x21x32
−x12x21x33

A =
x11 x12 x13

x21 x22 0
0 x32 x33

det(A) = ∑
π∈Sn

sgn(π) ∏
i∈[n]

A(i, π(i)) = ∑
π∈Sn

sgn(π){∏i∈[n] xi,π(i) π is a P.M.

0 otherwise

4 Perfect matchings in bipartite graphs. Consider a bipartite graph with bi-
partition (N,N), where N = {1, . . . , n}, and edge set E ⊆ N × N . A perfect
matching is an edge subset M ⊆ E that includes every node as an endpoint
exactly once. See Fig. 3 for some interpretations.

Fig. 3. Row 1: A bipartite
graph and its three perfect
matchings. Row 2: In the
graph’s adjacency matrix
A, every perfect matching
corresponds to a permuta-
tion π for which Ai,π(i) = 1
for all i ∈ [n]. Row 3: In
the directed n-node graph
defined by A, every perfect
matching corresponds to
a directed cycle partition.
Bottom row: an equiva-
lent formulation in terms
of non-attacking rooks on
a chess board with forbid-
den positions.

1 1 1

1 1 0

0 1 1

1 1 1

1 1 0

0 1 1

1 1 1

1 1 0

0 1 1

1 1 1

1 1 0

0 1 1

1

23

1

23

1

23

1

23

VR
VR

VR

VR
VR

VR

VR
VR
VR

The Ryser formula for counting the perfect matchings in such a graph can
be given as

∑

π∈Sn

n
∏

i=1

[iπ(i) ∈ E] =
∑

S⊆N

(−1)|N\S|
n
∏

i=1

∑

j∈S

[ij ∈ E] , (4)

where Sn denotes the set of permutations from N to N . The left hand side
succinctly describes the problem as iterating over all permutations and checking
if the corresponding edges (namely, 1π(1), 2π(2), . . ., nπ(n)) are all in E. Direct
evaluation would require n! iterations. The right hand side provides an equivalent
expression that can be evaluated in time O(2nn2), see Fig. 4.

Proof of (4). For fixed i ∈ N , the value
∑

j∈S [ij ∈ E] counts the number of i’s
neighbours in S ⊆ N . Thus the expression

n
∏

i=1

∑

j∈S

[ij ∈ E] (5)

is the number of ways every node i ∈ N can choose a neighbour from S. (This
allows some nodes to select the same neighbour.) Consider such a choice as a
mapping g : N → N , not necessarily onto, with image R = g(N). The contribu-
tion of g to (5) is 1 for every S ⊇ R, and its total contribution to the right hand

G([n],[n],E)

1

2

3

1

2

3

4 Perfect matchings in bipartite graphs. Consider a bipartite graph with bi-
partition (N,N), where N = {1, . . . , n}, and edge set E ⊆ N × N . A perfect
matching is an edge subset M ⊆ E that includes every node as an endpoint
exactly once. See Fig. 3 for some interpretations.

Fig. 3. Row 1: A bipartite
graph and its three perfect
matchings. Row 2: In the
graph’s adjacency matrix
A, every perfect matching
corresponds to a permuta-
tion π for which Ai,π(i) = 1
for all i ∈ [n]. Row 3: In
the directed n-node graph
defined by A, every perfect
matching corresponds to
a directed cycle partition.
Bottom row: an equiva-
lent formulation in terms
of non-attacking rooks on
a chess board with forbid-
den positions.

1 1 1

1 1 0

0 1 1

1 1 1

1 1 0

0 1 1

1 1 1

1 1 0

0 1 1

1 1 1

1 1 0

0 1 1

1

23

1

23

1

23

1

23

VR
VR

VR

VR
VR

VR

VR
VR
VR

The Ryser formula for counting the perfect matchings in such a graph can
be given as

∑

π∈Sn

n
∏

i=1

[iπ(i) ∈ E] =
∑

S⊆N

(−1)|N\S|
n
∏

i=1

∑

j∈S

[ij ∈ E] , (4)

where Sn denotes the set of permutations from N to N . The left hand side
succinctly describes the problem as iterating over all permutations and checking
if the corresponding edges (namely, 1π(1), 2π(2), . . ., nπ(n)) are all in E. Direct
evaluation would require n! iterations. The right hand side provides an equivalent
expression that can be evaluated in time O(2nn2), see Fig. 4.

Proof of (4). For fixed i ∈ N , the value
∑

j∈S [ij ∈ E] counts the number of i’s
neighbours in S ⊆ N . Thus the expression

n
∏

i=1

∑

j∈S

[ij ∈ E] (5)

is the number of ways every node i ∈ N can choose a neighbour from S. (This
allows some nodes to select the same neighbour.) Consider such a choice as a
mapping g : N → N , not necessarily onto, with image R = g(N). The contribu-
tion of g to (5) is 1 for every S ⊇ R, and its total contribution to the right hand

4 Perfect matchings in bipartite graphs. Consider a bipartite graph with bi-
partition (N,N), where N = {1, . . . , n}, and edge set E ⊆ N × N . A perfect
matching is an edge subset M ⊆ E that includes every node as an endpoint
exactly once. See Fig. 3 for some interpretations.

Fig. 3. Row 1: A bipartite
graph and its three perfect
matchings. Row 2: In the
graph’s adjacency matrix
A, every perfect matching
corresponds to a permuta-
tion π for which Ai,π(i) = 1
for all i ∈ [n]. Row 3: In
the directed n-node graph
defined by A, every perfect
matching corresponds to
a directed cycle partition.
Bottom row: an equiva-
lent formulation in terms
of non-attacking rooks on
a chess board with forbid-
den positions.

1 1 1

1 1 0

0 1 1

1 1 1

1 1 0

0 1 1

1 1 1

1 1 0

0 1 1

1 1 1

1 1 0

0 1 1

1

23

1

23

1

23

1

23

VR
VR

VR

VR
VR

VR

VR
VR
VR

The Ryser formula for counting the perfect matchings in such a graph can
be given as

∑

π∈Sn

n
∏

i=1

[iπ(i) ∈ E] =
∑

S⊆N

(−1)|N\S|
n
∏

i=1

∑

j∈S

[ij ∈ E] , (4)

where Sn denotes the set of permutations from N to N . The left hand side
succinctly describes the problem as iterating over all permutations and checking
if the corresponding edges (namely, 1π(1), 2π(2), . . ., nπ(n)) are all in E. Direct
evaluation would require n! iterations. The right hand side provides an equivalent
expression that can be evaluated in time O(2nn2), see Fig. 4.

Proof of (4). For fixed i ∈ N , the value
∑

j∈S [ij ∈ E] counts the number of i’s
neighbours in S ⊆ N . Thus the expression

n
∏

i=1

∑

j∈S

[ij ∈ E] (5)

is the number of ways every node i ∈ N can choose a neighbour from S. (This
allows some nodes to select the same neighbour.) Consider such a choice as a
mapping g : N → N , not necessarily onto, with image R = g(N). The contribu-
tion of g to (5) is 1 for every S ⊇ R, and its total contribution to the right hand

4 Perfect matchings in bipartite graphs. Consider a bipartite graph with bi-
partition (N,N), where N = {1, . . . , n}, and edge set E ⊆ N × N . A perfect
matching is an edge subset M ⊆ E that includes every node as an endpoint
exactly once. See Fig. 3 for some interpretations.

Fig. 3. Row 1: A bipartite
graph and its three perfect
matchings. Row 2: In the
graph’s adjacency matrix
A, every perfect matching
corresponds to a permuta-
tion π for which Ai,π(i) = 1
for all i ∈ [n]. Row 3: In
the directed n-node graph
defined by A, every perfect
matching corresponds to
a directed cycle partition.
Bottom row: an equiva-
lent formulation in terms
of non-attacking rooks on
a chess board with forbid-
den positions.

1 1 1

1 1 0

0 1 1

1 1 1

1 1 0

0 1 1

1 1 1

1 1 0

0 1 1

1 1 1

1 1 0

0 1 1

1

23

1

23

1

23

1

23

VR
VR

VR

VR
VR

VR

VR
VR
VR

The Ryser formula for counting the perfect matchings in such a graph can
be given as

∑

π∈Sn

n
∏

i=1

[iπ(i) ∈ E] =
∑

S⊆N

(−1)|N\S|
n
∏

i=1

∑

j∈S

[ij ∈ E] , (4)

where Sn denotes the set of permutations from N to N . The left hand side
succinctly describes the problem as iterating over all permutations and checking
if the corresponding edges (namely, 1π(1), 2π(2), . . ., nπ(n)) are all in E. Direct
evaluation would require n! iterations. The right hand side provides an equivalent
expression that can be evaluated in time O(2nn2), see Fig. 4.

Proof of (4). For fixed i ∈ N , the value
∑

j∈S [ij ∈ E] counts the number of i’s
neighbours in S ⊆ N . Thus the expression

n
∏

i=1

∑

j∈S

[ij ∈ E] (5)

is the number of ways every node i ∈ N can choose a neighbour from S. (This
allows some nodes to select the same neighbour.) Consider such a choice as a
mapping g : N → N , not necessarily onto, with image R = g(N). The contribu-
tion of g to (5) is 1 for every S ⊇ R, and its total contribution to the right hand

Theorem: a perfect matching in det(A) ≢ 0 ⟺ ∃ G

Edmonds matrix: an matrix defined as
n × n A

∀i, j ∈ [n], A(i, j) = {xi,j if (i, j) ∈ E
0 if (i, j) ∉ E

det(A) = x11x22x33
+x13x21x32
−x12x21x33

A =
x11 x12 x13

x21 x22 0
0 x32 x33

• is an -variate degree- polynomial:

• Use Schwartz-Zippel to check whether

• Computing determinants is generic and can be done in

parallel (Chistov’s algorithm)

det(A) m n
det(A) ≢ 0

• FING() is a function:

• if , is small.

• Fingerprints are easy to compute and compare.

X = Y ⟹ FING(X) = FING(Y)

X ≠ Y Pr[FING(X) = FING(Y)]

Fingerprinting

X = Y ?

 = ?FING(X) FING(Y)

• three matrices :n × n A, B, C

Checking Matrix Multiplication

A B C× =
?

Freivald’s Algorithm:

pick a uniform random ;

check whether ;

r ∈ {0,1}n

A(Br) = Cr

For an matrix :n × n M
 for uniform random FING(M) = Mr r ∈ {0,1}n

Input: a polynomial of degree .

Output: ?

f ∈ 𝔽[x1, …, xn] d
f ≡ 0

Polynomial Identity Testing (PIT)

pick uniformly and independently at random;

check if ;

r1, …, rn ∈ S
f(r1, …, rn) = 0

Fix an arbitrary :S ⊆ 𝔽

For a polynomial :f ∈ 𝔽[x1, …, xn]

 for uniform independent FING(f) = f(r1, …, rn) r1, …, rn ∈ S

Communication Complexity

EQ : {0, 1}n × {0, 1}n → {0, 1}

a b

a = b?

EQ(a, b) =

{
1 a = b

0 a ̸= b

Fingerprinting

a b

FING(a) = FING(b)?

FING(b)

description

of FING()

pick a random
FING()

• FING() is a function:

• if , is small.

• Fingerprints are short.

a = b ⟹ FING(a) = FING(b)

a ≠ b Pr[FING(a) = FING(b)]

a b∈{0, 1}n ∈{0, 1}n

f =
n�1�

i=0

aix
i

pick uniform
random r ∈[p]

r, g(r)

f(r)=g(r) ?
g =

n�1X

i=0

bix
i

for a primef, g � Zp[x]

FING(b) = for random r
n−1

∑
i=0

biri

p 2 [n2, 2n2]

a ∈[2n] b ∈[2n]
p

a ≡ b (mod p)? uniform random
prime p ∈[k]

communication complexity: O(log k)

FING(x) = x mod p for uniform random prime p ∈[k]

if a ≠ b : Pr[a ≡ b (mod p)] ≤ ?
if a = b a ≡ b (mod p)

for a z = | a - b | ≠ 0 : Pr[z mod p =0] ≤ ?

b mod p

for a z = | a - b | ≠ 0 : Pr[z mod p =0] ≤ ?
∈[2n]

Pr[z mod p = 0]
of primes in [k]

uniform random prime p ∈[k]

of prime divisors of z ≤ n
= π(k)

each prime divisor ≥ 2
of prime divisors of z ≤ n }

π(N) : # of primes in [N]

=

Prime Number Theorem (PNT):

 as π(N) ∼
N

ln N
N → ∞

for a z = | a - b | ≠ 0 : Pr[z mod p =0] ≤ ?

Pr[z mod p = 0]
of primes in [k]

of prime divisors of z ≤ n
= π(k)

=

∑ n lnk
k

choose k = n3

a ∈[2n] b ∈[2n]
p

a ≡ b (mod p)? uniform random
prime p ∈[k]

b mod p

=
3 ln n

n2
= O (1

n)

a ∈[2n] b ∈[2n]

a ≡ b (mod p)? uniform random
prime p ∈[n3]

communication complexity: O(log n)

FING(b) = b mod p for uniform random prime p ∈[n3]

if a ≠ b Pr[a ≡ b (mod p)] = O (1
n)

if a = b a ≡ b (mod p)

p

b mod p

• naive algorithm: time

• Knuth-Morris-Prat (KMP) algorithm: time

• finite state automaton

O(mn)

O(m + n)

Pattern Matching

Input: string , pattern

Check whether is a substring of .

x ∈ {0,1}n y ∈ {0,1}m

y x

Pattern Matching via Fingerprinting

x :

y : y1 y2 ym

xi+m-1xi+1x1 xi xn

∈{0,1}m

∈{0,1}nΩ
x[i, i + m − 1] ≜ xixi+1⋯xi+m−1

y

x[i, i + m − 1]

 ?x[i, i + m − 1] = y

pick a random FING();

for do:

if then return ;

return “no match”;

i = 1,2,…, n − m + 1
FING(x[i, i + m − 1]) = FING(y) i

Karp-Rabin Algorithm

x :

y : y1 y2 ym

xi+m-1xi+1x1 xi xn

∈{0,1}m

∈{0,1}nΩ
x[i, i + m − 1] ≜ xixi+1⋯xi+m−1

y

x[i, i + m − 1]

 ?x[i, i + m − 1] = y

Karp-Rabin Algorithm:

pick a uniform random prime ;

for do:

if then return ;

return “no match”;

p ∈ [mn3]
i = 1,2,…, n − m + 1
x[i, i + m − 1] ≡ y (mod p) i

FING(a) = a mod p

x :

y : y1 y2 ym

xi+m-1xi+1x1 xi xn

∈{0,1}m

∈{0,1}n

Karp-Rabin Algorithm:

pick a uniform random prime ;

for do:

if then return ;

return “no match”;

p ∈ [mn3]
i = 1,2,…, n − m + 1
x[i, i + m − 1] ≡ y (mod p) i

FING(a) = a mod p

For each , if :i x[i, i + m − 1] ≠ y

 Pr [x[i, i + m − 1] ≡ y (mod p)] ≤ m ln(mn3)/mn3 = o(1/n2)

By union bound: when is not a substring of y x

Pr[the algorithm ever makes a mistake]
≤ Pr [∃i, x[i, i + m − 1] ≡ y (mod p)] = o(1/n)

x :

y : y1 y2 ym

xi+m-1xi+1x1 xi xn

∈{0,1}m

∈{0,1}n

Karp-Rabin Algorithm:

pick a uniform random prime ;

for do:

if then return ;

return “no match”;

p ∈ [mn3]
i = 1,2,…, n − m + 1
x[i, i + m − 1] ≡ y (mod p) i

FING(a) = a mod p

Observe: x[i + 1,i + m] = xi+m + 2 (x[i, i + m − 1]−2m−1xi)

Ω
x[i, i + m − 1] ≜ xixi+1⋯xi+m−1

 FING(x[i + 1,i + m]) = (xi+m + 2 (FING(x[i, i + m − 1])−2m−1xi)) mod p

Testable in O(1) time

Input: numbers

Determine whether every number appears exactly once.

n x1, x2, …, xn ∈ {1,2,…, n}

Checking Distinctness

Input: two multisets and

 where

Output: (as multisets)?

A = {a1, …, an} B = {b1, …, bn}
a1, …, an, b1, …, bn ∈ {1,…, n}

A = B

A = {x1, x2, ..., xn}
B = {1, 2, ..., n}

A = B ∀x: # of times x appearing in A
= # of times x appearing in B

• naive algorithm: use O(n) time and O(n) space

• fingerprinting: random fingerprint function FING()
• check FING(A) = FING(B) ?
• time cost: time to compute and check fingerprints
• space cost: space to store fingerprints

FING(A) = fA(r)

multisets A={a1, a2, ..., an}

for uniform random r 2 Zp

for prime p (to be specified)

fA(x) =
nY

i=1

(x� ai)

fA 2 Zp[x]

 O(log p)
O(n)

Input: two multisets and

 where

Output: (as multisets)?

A = {a1, …, an} B = {b1, …, bn}
a1, …, an, b1, …, bn ∈ {1,…, n}

A = B

 on reals A ≠ B ⟹ fA ≢ fB ℝ

FING(A) = fA(r)
for uniform random r 2 Zp

for

fA(x) =
nY

i=1

(x� ai)

fB(x) =
nY

i=1

(x� bi)

(

fA, fB 2 Zp[x]

FING(B) = fB(r)

�
(to be specified)prime p

(but possibly fA ≡ fB on finite field)Zp

if A = B : FING(A) = FING(B)
if A ≠ B : FING(A) = FING(B) (

• fA ≡ fB on finite field Zp

• fA ≢ fB on but fA(r) = fB(r)Zp
Schwartz
-Zippel

with probability
≤ n/p

multisets A={a1, a2, ..., an}
B={b1, b2, ..., bn}

where ai, bi ∈ {1, 2, ..., n}

in fA - fB on ℝ:
∃ coefficient c ≠0

c mod p = 0

FING(A) = fA(r)

multisets A={a1, a2, ..., an}

for uniform random r 2 Zp

for

fA(x) =
nY

i=1

(x� ai)

B={b1, b2, ..., bn}
fB(x) =

nY

i=1

(x� bi)

(

fA, fB 2 Zp[x]

FING(B) = fB(r)

�
prime p

if A ≠ B : FING(A) = FING(B)

(

Schwartz
-Zippel

with probability

in fA - fB on ℝ:
∃ coefficient c ≠0

c mod p = 0

uniform random ∈[L, U]

≤ n/p ≤ n/L

|c| ≤ nn

where ai, bi ∈ {1, 2, ..., n}

Pr[c mod p = 0] ≤
of prime factors of c
of primes in [L, U]

 n log2 n

⇡(U)� ⇡(L)
⇠ n log2 n

U/ lnU � L/ lnL

(L, U to be specified)

• fA ≡ fB on finite field Zp

• fA ≢ fB on but fA(r) = fB(r)Zp

FING(A) = fA(r)

multisets A={a1, a2, ..., an}

for uniform random r 2 Zp

for

fA(x) =
nY

i=1

(x� ai)

B={b1, b2, ..., bn}
fB(x) =

nY

i=1

(x� bi)

(

fA, fB 2 Zp[x]

FING(B) = fB(r)

�
prime p

if A ≠ B : FING(A) = FING(B) (
• fA ≡ fB on finite field Zp

Schwartz
-Zippel

with probability

uniform random ∈[L, U]

≤ n/p ≤ n/L

where ai, bi ∈ {1, 2, ..., n}

with probability

 n log2 n

U/ lnU � L/ lnL

with U = 2L = (n log n)2

= O(1/n)

= O(1/n)

• fA ≢ fB on but fA(r) = fB(r)Zp

if A ≠ B as multisets:

 Pr[FING(A) = FING(B)]
 ≤ Pr[fA ≡ fB] + Pr[fA(r) = fB(r) | fA ≢ fB]

fA(x) =
nY

i=1

(x� ai) mod p fB(x) =
nY

i=1

(x� bi) mod p

= O(1/n)

Input: two multisets and

 where

Output: (as multisets)?

A = {a1, …, an} B = {b1, …, bn}
a1, …, an, b1, …, bn ∈ {1,…, n}

A = B

FING(A) =
nY

i=1

(r � ai) mod p
(
for uniform random prime
p ∈[(n log n)2/2, (n log n)2]

and uniform random r 2 Zp
FING(B) =

nY

i=1

(r � bi) mod p

Lipton’s Algorithm (1989):

FING(A) =
nY

i=1

(r � ai) mod p
(
for uniform random prime
p ∈[(n log n)2/2, (n log n)2]

and uniform random r 2 Zp

Lipton’s Algorithm (1989):

• time cost: O(n)
• space cost: O(log n)
• error probability (false positive): O(1/n)
• data stream: input comes one at a time

Input: numbers

Determine whether every number appears exactly once.

n x1, x2, …, xn ∈ {1,2,…, n}

FING(A) =
nY

i=1

(r � i) mod p?
check if:

