Advanced Algorithms

Fingerprinting

Checking Matrix Multiplication

• three $n \times n$ matrices A, B, C:

Matrix Multiplication Algorithms

Checking Matrix Multiplication

• three $n \times n$ matrices A, B, C:

Freivald's Algorithm:

pick a uniform random $r \in \{0,1\}^n$; check whether A(Br) = Cr;

time: $O(n^2)$ if AB = C: always correct if $AB \neq C$:

Freivald's Algorithm:

pick a uniform random $r \in \{0,1\}^n$; check whether A(Br) = Cr;

if
$$AB \neq C$$
: let $D = AB - C \neq \mathbf{0}_{n \times n}$ suppose $D_{ij} \neq 0$

$$\Pr[ABr = Cr] = \Pr[Dr = \mathbf{0}] \le \frac{2^{n-1}}{2^n} = \frac{1}{2}$$

$$(Dr)_i = \sum_{k=1}^n D_{ik} r_k = 0$$

$$r_{j} = -\frac{1}{D_{ij}} \sum_{k \neq j} D_{ik} r_{k}$$

Freivald's Algorithm:

pick a uniform random $r \in \{0,1\}^n$; check whether A(Br) = Cr;

if AB = C: always correct

Theorem (Feivald 1979).

For $n \times n$ matrices A, B, C, if $AB \neq C$, for uniform random $r \in \{0,1\}^n$, $\Pr[ABr = Cr] \leq \frac{1}{2}$

repeat independently for $O(\log n)$ times

Total running time: $O(n^2 \log n)$ Correct with high probability (w.h.p.).

Input: two polynomials $f, g \in \mathbb{F}[x]$ of degree d.

Output: $f \equiv g$?

 $\mathbb{F}[x]$: polynomial ring in x over field \mathbb{F}

$$f \in \mathbb{F}[x]$$
 of degree d : $f(x) = \sum_{i=0}^d a_i x^i$ where $a_i \in \mathbb{F}$ field

Input: a polynomial $f \in \mathbb{F}[x]$ of degree d.

Output: $f \equiv 0$?

f is given as **black-box**

Input: a polynomial $f \in \mathbb{F}[x]$ of degree d.

Output: $f \equiv 0$?

Deterministic algorithm (polynomial interpolation):

pick arbitrary distinct $x_0, x_1, ..., x_d \in \mathbb{F}$; check if $f(x_i) = 0$ for all $0 \le i \le d$;

Fundamental Theorem of Algebra.

Any non-zero d-degree polynomial $f \in \mathbb{F}[x]$ has at most d roots.

Randomized algorithm (fingerprinting):

pick a uniform random $r \in S$; check if f(r) = 0;

let $S \subseteq \mathbb{F}$ be arbitrary (whose size to be fixed later)

Input: a polynomial $f \in \mathbb{F}[x]$ of degree d.

Output: $f \equiv 0$?

pick a uniform random $r \in S$; check if f(r) = 0; let $S \subseteq \mathbb{F}$ be arbitrary (whose size to be fixed later) |S| = 2d

if $f \equiv 0$: always correct

if $f \not\equiv 0$:

$$\Pr[f(r) = 0] \le \frac{d}{|S|} = \frac{1}{2}$$

Fundamental Theorem of Algebra.

Any non-zero d-degree polynomial $f \in \mathbb{F}[x]$ has at most d roots.

Checking Identity

北京

database 1

Are they identical?

database 2

Theorem (Yao 1979).

Every deterministic communication protocol solving EQ communicates n bits in the worst-case.

$$f = \sum_{i=0}^{n-1} a_i x^i \qquad f(r) = g(r) ?$$

$$a \in \{0, 1\}^n \qquad \longleftarrow \qquad r, g(r) \qquad b \in \{0, 1\}^n$$

by **PIT**: one-sided error
$$\leq \frac{1}{2}$$

pick uniform random $r \in [2n]$

of bit communicated: too large!

$$f = \sum_{i=0}^{n-1} a_i x^i$$

$$f(r)=g(r) ?$$

$$a \in \{0,1\}^n$$

$$(\log n) \text{ bits}$$

$$g = \sum_{i=0}^{n-1} b_i x^i$$

pick uniform random $r \in [p]$

- choose a prime $p \in [n^2, 2n^2]$
- $\operatorname{let} f, g \in \mathbb{Z}_p[x]$
- by PIT: one-sided error is $\frac{n}{p} = O\left(\frac{1}{n}\right)$

(correct w.h.p.)

Input: a polynomial $f \in \mathbb{F}[x_1, ..., x_n]$ of degree d.

Output: $f \equiv 0$?

 $\mathbb{F}[x_1, ..., x_n]$: ring of n-variate polynomials in $x_1, ..., x_n$ over field \mathbb{F}

$$f \in \mathbb{F}[x_1, ..., x_n]$$
:

$$f(x_1, \dots, x_n) = \sum_{i_1, \dots, i_n \ge 0} a_{i_1, i_2, \dots, i_n} x_1^{i_1} x_2^{i_2} \cdots x_n^{i_n}$$

Degree of f: maximum $i_1 + i_2 + \cdots + i_n$ with $a_{i_1, i_2, \dots, i_n} \neq 0$

Input: a polynomial $f \in \mathbb{F}[x_1, ..., x_n]$ of degree d.

Output: $f \equiv 0$?

$$f(x_1, \dots, x_n) = \sum_{\substack{i_1, \dots, i_n \ge 0 \\ i_1 + \dots + i_n \le d}} a_{i_1, i_2, \dots, i_n} x_1^{i_1} x_2^{i_2} \cdots x_n^{i_n}$$

f is given as **black-box**: given any $\vec{x} \in \mathbb{F}^n$, return $f(\vec{x})$

or as product form: e.g. Vandermonde determinant

$$M = \begin{bmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{bmatrix} \qquad f(\vec{x}) = \det(M) = \prod_{j < i} (x_i - x_j)$$

Input: a polynomial $f \in \mathbb{F}[x_1, ..., x_n]$ of degree d.

Output: $f \equiv 0$?

f is given as product form

if ∃ a *poly-time deterministic* algorithm for PIT:

either: NEXP ≠ P/poly or: #P ≠ FP

Input: a polynomial $f \in \mathbb{F}[x_1, ..., x_n]$ of degree d.

Output: $f \equiv 0$?

Fix an arbitrary $S \subseteq \mathbb{F}$:

pick $r_1, ..., r_n \in S$ uniformly and independently at random; check if $f(r_1, ..., r_n) = 0$;

$$f \equiv 0 \implies f(r_1, ..., r_n) = 0$$

Schwartz-Zippel Theorem.

$$f \not\equiv 0 \implies \Pr\left[f(r_1, ..., r_n) = 0\right] \le \frac{d}{|S|}$$

of roots for any $f \not\equiv 0$ in any cube S^n is $\leq d \cdot |S|^{n-1}$

$$f \not\equiv 0 \implies \Pr\left[f(r_1, ..., r_n) = 0\right] \le \frac{d}{|S|}$$

$$f(x_1, x_2, \dots, x_n) = \sum_{\substack{i_1, i_2, \dots, i_n \ge 0 \\ i_1 + i_2 + \dots + i_n \le d}} a_{i_1, i_2, \dots, i_n} x_1^{i_1} x_2^{i_2} \cdots x_n^{i_n}$$

f can be treated as a single-variate polynomial of x_n :

$$f(x_1, x_2, \dots, x_n) = \sum_{i=0}^{d} x_n^i f_i(x_1, x_2, \dots, x_{n-1})$$
$$= g_{x_1, x_2, \dots, x_{n-1}}(x_n)$$

$$\Pr[f(r_1, r_2, \dots, r_n) = 0] = \Pr[g_{r_1, r_2, \dots, r_{n-1}}(r_n) = 0]$$

 $g_{r_1,r_2,...,r_{n-1}} \not\equiv 0$?

$$f \not\equiv 0 \implies \Pr\left[f(r_1, ..., r_n) = 0\right] \le \frac{d}{|S|}$$

induction on n:

basis: n=1 single-variate case, proved by the fundamental Theorem of algebra

I.H.: Schwartz-Zippel Thm is true for all smaller n

$$f \not\equiv 0 \implies \Pr\left[f(r_1, ..., r_n) = 0\right] \le \frac{d}{|S|}$$

induction step:

$$k$$
: highest power of x_n in f \Rightarrow $\begin{cases} f_k \not\equiv 0 \\ \text{degree of } f_k \leq d-k \end{cases}$

$$f(x_1, x_2, \dots, x_n) = \sum_{i=0}^k x_n^i f_i(x_1, x_2, \dots, x_{n-1})$$

= $x_n^k f_k(x_1, x_2, \dots, x_{n-1}) + \bar{f}(x_1, x_2, \dots, x_n)$

where
$$\bar{f}(x_1, x_2, \dots, x_n) = \sum_{i=0}^{\kappa-1} x_n^i f_i(x_1, x_2, \dots, x_{n-1})$$

highest power of x_n in $\bar{f} < k$

$$f \not\equiv 0 \implies \Pr\left[f(r_1, ..., r_n) = 0\right] \le \frac{d}{|S|}$$

$$f(x_1, x_2, \dots, x_n) = x_n^k f_k(x_1, x_2, \dots, x_{n-1}) + \bar{f}(x_1, x_2, \dots, x_n)$$

$$\begin{cases} f_k \not\equiv 0 \\ \text{degree of } f_k \leq d - k \end{cases}$$

highest power of x_n in $\bar{f} < k$

law of total probability:

$$\Pr[f(r_1, r_2, \dots, r_n) = 0]$$

I.H.
$$\leq \frac{d-k}{|S|}$$

$$=\Pr[f(\vec{r})=0 \mid f_k(r_1,\ldots,r_{n-1})=0] \cdot \Pr[f_k(r_1,\ldots,r_{n-1})=0]$$

+
$$\Pr[f(\vec{r}) = 0 \mid f_k(r_1, \dots, r_{n-1}) \neq 0] \cdot \Pr[f_k(r_1, \dots, r_{n-1}) \neq 0]$$

$$= \Pr[g_{r_1,\dots,r_{n-1}}(r_n) = 0 \mid f_k(r_1,\dots,r_{n-1}) \neq 0] \leq \frac{k}{|S|}$$

where
$$g_{x_1,...,x_{n-1}}(x_n) = f(x_1,...,x_n)$$

$$f \not\equiv 0 \implies \Pr\left[f(r_1, ..., r_n) = 0\right] \le \frac{d}{|S|}$$

$$\Pr[f(r_1, r_2, \dots, r_n) = 0] \le \frac{d - k}{|S|} + \frac{k}{|S|} = \frac{d}{|S|}$$

Input: a polynomial $f \in \mathbb{F}[x_1, ..., x_n]$ of degree d.

Output: $f \equiv 0$?

Fix an arbitrary $S \subseteq \mathbb{F}$:

pick $r_1, ..., r_n \in S$ uniformly and independently at random; check if $f(r_1, ..., r_n) = 0$;

$$f \equiv 0 \implies f(r_1, ..., r_n) = 0$$

Schwartz-Zippel Theorem.

$$f \not\equiv 0 \implies \Pr\left[f(r_1, ..., r_n) = 0\right] \le \frac{d}{|S|}$$

of roots for any $f \not\equiv 0$ in any cube S^n is $\leq d \cdot |S|^{n-1}$

Applications of Schwartz-Zippel

- test whether a graph has perfect matching;
- test isomorphism of rooted trees;
- distance property of Reed-Muller codes;
- proof of hardness vs randomness tradeoff;
- algebraic construction of probabilistically checkable proofs (PCP);

•

Bipartite Perfect Matching

bipartite graph

perfect matchings

- determine whether G has a perfect matching:
 - Hall's theorem: enumerates all subset of [n]
 - Hungarian method: $O(n^3)$
 - Hopcroft-Karp algorithm: $O(m\sqrt{n})$

$$A = \begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & 0 \\ 0 & x_{32} & x_{33} \end{bmatrix}$$

$$A = \begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & 0 \\ 0 & x_{32} & x_{33} \end{bmatrix} \qquad \det(A) = x_{11}x_{22}x_{33} \\ +x_{13}x_{21}x_{32} \\ -x_{12}x_{21}x_{33}$$

Edmonds matrix: an $n \times n$ matrix A defined as

$$\forall i, j \in [n], \quad A(i,j) = \begin{cases} x_{i,j} & \text{if } (i,j) \in E \\ 0 & \text{if } (i,j) \notin E \end{cases}$$

Theorem: $det(A) \not\equiv 0 \iff \exists$ a perfect matching in G

$$\det(A) = \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \prod_{i \in [n]} A(i, \pi(i)) = \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \begin{cases} \prod_{i \in [n]} x_{i, \pi(i)} & \pi \text{ is a P.M.} \\ 0 & \text{otherwise} \end{cases}$$

1 0 0 1
2 0 0 2
3 0 0 3

$$G([n],[n],E)$$

$$A = \begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & 0 \\ 0 & x_{32} & x_{33} \end{bmatrix} det(A) = x_{11}x_{22}x_{33} + x_{13}x_{21}x_{32} - x_{12}x_{21}x_{33}$$

Edmonds matrix: an $n \times n$ matrix A defined as

$$\forall i, j \in [n], \quad A(i,j) = \begin{cases} x_{i,j} & \text{if } (i,j) \in E \\ 0 & \text{if } (i,j) \notin E \end{cases}$$

 $-x_{12}x_{21}x_{33}$

Theorem: $det(A) \not\equiv 0 \iff \exists$ a perfect matching in G

- det(A) is an *m*-variate degree-*n* polynomial:
 - Use Schwartz-Zippel to check whether $det(A) \not\equiv 0$
 - Computing determinants is generic and can be done in parallel (Chistov's algorithm)

Fingerprinting

$$X = Y ?$$

$$\downarrow \qquad \qquad \downarrow$$

$$FING(X) = FING(Y) ?$$

- FING() is a function: $X = Y \implies \text{FING}(X) = \text{FING}(Y)$
- if $X \neq Y$, $\Pr[\mathsf{FING}(X) = \mathsf{FING}(Y)]$ is small.
- Fingerprints are easy to compute and compare.

Checking Matrix Multiplication

• three $n \times n$ matrices A, B, C:

Freivald's Algorithm:

pick a uniform random $r \in \{0,1\}^n$; check whether A(Br) = Cr;

For an $n \times n$ matrix M:

FING(M) = Mr for uniform random $r \in \{0,1\}^n$

Input: a polynomial $f \in \mathbb{F}[x_1, ..., x_n]$ of degree d.

Output: $f \equiv 0$?

Fix an arbitrary $S \subseteq \mathbb{F}$:

pick $r_1, ..., r_n \in S$ uniformly and independently at random; check if $f(r_1, ..., r_n) = 0$;

For a polynomial $f \in \mathbb{F}[x_1, ..., x_n]$:

 $FING(f) = f(r_1, ..., r_n)$ for uniform independent $r_1, ..., r_n \in S$

$$a = b?$$

$$a = b$$

$$b$$

$$EQ: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$$

$$EQ(a,b) = \begin{cases} 1 & a = b \\ 0 & a \neq b \end{cases}$$

Fingerprinting

FING(a) = FING(b)? \uparrow description
of FING() aFING(b)

pick a random
FING() b

- FING() is a function: $a = b \implies FING(a) = FING(b)$
- if $a \neq b$, $\Pr[\mathsf{FING}(a) = \mathsf{FING}(b)]$ is small.
- Fingerprints are short.

$$f = \sum_{i=0}^{n-1} a_i x^i \qquad f(r) = g(r) ?$$

$$g = \sum_{i=0}^{n-1} b_i x^i$$

$$a \in \{0, 1\}^n \qquad \longleftarrow \qquad b \in \{0, 1\}^n$$

pick uniform random $r \in [p]$

$$f,g \in \mathbb{Z}_p[x]$$
 for a prime $p \in [n^2,2n^2]$

$$FING(b) = \sum_{i=0}^{n-1} b_i r^i \text{ for random } r$$

$$a \equiv b \pmod{p}$$
? uniform random prime $p \in [k]$
$$a \in [2^n] \qquad b \mod p \qquad b \in [2^n]$$

FING(x) = $x \mod p$ for uniform random prime $p \in [k]$ communication complexity: O(log k)

if
$$a = b \implies a \equiv b \pmod{p}$$

if
$$a \neq b$$
: $\Pr[a \equiv b \pmod{p}] \leq ?$

for a $z = |a - b| \neq 0$: $\Pr[z \mod p = 0] \leq ?$

uniform random prime $p \in [k]$

for a
$$z = |a - b| \neq 0$$
: $\Pr[z \mod p = 0] \leq ?$
 $\in [2^n]$ # of prime divisors of $z \leq n$
each prime divisor ≥ 2

$$\Pr[z \bmod p = 0] = \frac{\text{\# of prime divisors of } z \leq n}{\text{\# of primes in } [k]} = \pi(k)$$

 $\pi(N)$: # of primes in [N]

Prime Number Theorem (PNT):

$$\pi(N) \sim \frac{N}{\ln N} \text{ as } N \to \infty$$

$$a \equiv b \pmod{p}?$$

uniform random prime $p \in [k]$

 $b \in [2^n]$

for a $z = |a - b| \neq 0$: $\Pr[z \mod p = 0] \leq ?$

$$\Pr[z \bmod p = 0] = \frac{\text{# of prime divisors of } z \leq n}{\text{# of primes in } [k]} = \frac{\pi(k)}{}$$

choose
$$k = n^3$$
 $\leq \frac{n \ln k}{k} = \frac{3 \ln n}{n^2} = O\left(\frac{1}{n}\right)$

$$a \equiv b \pmod{p}$$
? uniform random prime $p \in [n^3]$
$$a \in [2^n] \qquad b \mod p \qquad b \in [2^n]$$

 $FING(b) = b \mod p$ for uniform random prime $p \in [n^3]$

communication complexity: $O(\log n)$

if
$$a = b$$
 \Rightarrow $a \equiv b \pmod{p}$
if $a \neq b$ \Rightarrow $\Pr[a \equiv b \pmod{p}] = O\left(\frac{1}{n}\right)$

Pattern Matching

Input: string $x \in \{0,1\}^n$, pattern $y \in \{0,1\}^m$

Check whether y is a substring of x.

- naive algorithm: O(mn) time
- Knuth-Morris-Prat (KMP) algorithm: O(m + n) time
 - finite state automaton

Pattern Matching via Fingerprinting


```
pick a random FING(); for i=1,2,\ldots,n-m+1 do: if \text{FING}(x[i,i+m-1])=\text{FING}(y) then return i; return "no match";
```

Karp-Rabin Algorithm


```
Karp-Rabin Algorithm: FING(a) = a \mod p pick a uniform random prime p \in [mn^3]; for i = 1, 2, ..., n - m + 1 do:

if x[i, i + m - 1] \equiv y \pmod{p} then return i; return "no match";
```

$$y: \quad \boxed{y_1 \mid y_2 \mid \dots \mid y_m} \in \{0,1\}^m$$

$$x: x_1 \dots x_i x_{i+1} \dots x_{i+m-1} \dots x_n \in \{0,1\}^n$$

Karp-Rabin Algorithm: $FING(a) = a \mod p$

pick a uniform random prime $p \in [mn^3]$;

for i = 1, 2, ..., n - m + 1 do:

if $x[i, i+m-1] \equiv y \pmod{p}$ then return i; return "no match";

For each i, if $x[i, i+m-1] \neq y$:

$$\Pr[x[i, i+m-1] \equiv y \pmod{p}] \le m \ln(mn^3)/mn^3 = o(1/n^2)$$

By union bound: when y is not a substring of x

Pr[the algorithm ever makes a mistake]

$$\leq \Pr\left[\exists i, x[i, i+m-1] \equiv y \pmod{p}\right] = o(1/n)$$

$$y: y_1 y_2 \dots y_m \in \{0,1\}^m$$

$$x: x_1 \dots x_i x_{i+1} \dots x_{i+m-1} \dots x_n \in \{0,1\}^n$$

$$x[i, i+m-1] \triangleq x_i x_{i+1} \cdots x_{i+m-1}$$

Karp-Rabin Algorithm: $FING(a) = a \mod p$

pick a uniform random prime $p \in [mn^3]$;

for i = 1, 2, ..., n - m + 1 do:

if $x[i, i + m - 1] \equiv y \pmod{p}$ then return i;

return "no match"; Testable in O(1) time

Observe:
$$x[i+1,i+m] = x_{i+m} + 2(x[i,i+m-1]-2^{m-1}x_i)$$

$$\mathsf{FING}(x[i+1,i+m]) = \left(x_{i+m} + 2\left(\mathsf{FING}(x[i,i+m-1]) - 2^{m-1}x_i\right)\right) \bmod p$$

Checking Distinctness

Input: *n* numbers $x_1, x_2, ..., x_n \in \{1, 2, ..., n\}$

Determine whether every number appears exactly once.

$$A = \{x_1, x_2, ..., x_n\}$$

$$B = \{1, 2, ..., n\}$$

Input: two multisets $A = \{a_1, ..., a_n\}$ and $B = \{b_1, ..., b_n\}$ where $a_1, ..., a_n, b_1, ..., b_n \in \{1, ..., n\}$

Output: A = B (as multisets)?

$$A = B$$
 $\forall x$: # of times x appearing in A = # of times x appearing in B

Input: two multisets
$$A = \{a_1, ..., a_n\}$$
 and $B = \{b_1, ..., b_n\}$ where $a_1, ..., a_n, b_1, ..., b_n \in \{1, ..., n\}$

Output: A = B (as multisets)?

- naive algorithm: use O(n) time and O(n) space
- fingerprinting: random fingerprint function FING()
 - check FING(A) = FING(B)?
 - time cost: time to compute and check fingerprints O(n)
 - space cost: space to store fingerprints $O(\log p)$

multisets
$$A = \{a_1, a_2, ..., a_n\}$$
 $f_A(x) = \prod_{i=1}^n (x - a_i)$

 $f_A \in \mathbb{Z}_p[x]$ for prime p (to be specified)

 $FING(A) = f_A(r)$ for uniform random $r \in \mathbb{Z}_p$

multisets
$$A = \{a_1, a_2, ..., a_n\}$$

 $B = \{b_1, b_2, ..., b_n\}$

multisets $A = \{a_1, a_2, ..., a_n\}$ $B = \{b_1, b_2, ..., b_n\}$ $\{f_A(x) = \prod_{i=1}^n (x - a_i) \}$ where $a_i, b_i \in \{1, 2, ..., n\}$ where $a_i, b_i \in \{1, 2, ..., n\}$

 $f_A, f_B \in \mathbb{Z}_p[x]$ for prime p (to be specified)

FING(A) =
$$f_A(r)$$
 for uniform random $r \in \mathbb{Z}_p$

$$A \neq B \implies f_A \not\equiv f_B \text{ on reals } \mathbb{R}$$
 (but possibly $f_A \equiv f_B \text{ on finite field } \mathbb{Z}_p$)

if
$$A = B$$
: FING(A) = FING(B)

if
$$A \neq B$$
: FING(A) = FING(B)

in
$$f_A$$
 - f_B on \mathbb{R} :
$$\exists \text{ coefficient } c \neq 0$$

$$c \mod p = 0$$

•
$$f_A \neq f_B$$
 on \mathbb{Z}_p but $f_A(r) = f_B(r)$

multisets
$$A = \{a_1, a_2, ..., a_n\}$$

$$B = \{b_1, b_2, ..., b_n\}$$

$$\{f_A(x) = \prod_{i=1}^n (x - a_i) \}$$
where $a_i, b_i \in \{1, 2, ..., n\}$

 $f_A, f_B \in \mathbb{Z}_p[x]$ for uniform random prime $p \in [L, U]$

FING(
$$A$$
) = $f_A(r)$ for uniform random $r \in \mathbb{Z}_p$

if
$$A \neq B$$
: FING(A) = FING(B)

in
$$f_A$$
 - f_B on \mathbb{R} :
$$\exists \text{ coefficient } c \neq 0$$

$$c \mod p = 0$$

•
$$f_A \equiv f_B$$
 on finite field \mathbb{Z}_p \exists coefficient $c \neq 0$ $c \mod p = 0$

Pr[$c \mod p = 0$] $\leq \frac{\# \text{ of prime factors of } c}{\# \text{ of primes in } [L, U]}$
 $|c| \leq n^n$ $\leq \frac{n \log_2 n}{\pi(U) - \pi(L)} \sim \frac{n \log_2 n}{U/\ln U - L/\ln L}$

• $f_A \not\equiv f_B$ on \mathbb{Z}_p but $f_A(r) = f_B(r)$ $f_A \not\equiv f_B$ on \mathbb{Z}_p but $f_A(r) = f_B(r)$ $f_A \not\equiv f_B$ on \mathbb{Z}_p but $f_A(r) = f_B(r)$ $f_A \not\equiv f_B$ on \mathbb{Z}_p but $f_A(r) = f_B(r)$ $f_A \not\equiv f_B$ on \mathbb{Z}_p but $f_A(r) = f_B(r)$ $f_A \not\equiv f_B(r)$ with probability $f_A(r) = f_B(r)$

multisets
$$A = \{a_1, a_2, ..., a_n\}$$

$$B = \{b_1, b_2, ..., b_n\}$$

$$\{f_A(x) = \prod_{i=1}^n (x - a_i) \}$$
where $a_i, b_i \in \{1, 2, ..., n\}$

$$f_A, f_B \in \mathbb{Z}_p[x]$$
 for uniform random prime $p \in [L, U]$
 $FING(A) = f_A(r)$ with $U = 2L = (n \log n)^2$
 $FING(B) = f_B(r)$ for uniform random $r \in \mathbb{Z}_p$

if
$$A \neq B$$
: FING(A) = FING(B)

•
$$f_A \neq f_B$$
 on \mathbb{Z}_p but $f_A(r) = f_B(r)$ Schwarz with probability $\leq n/p \leq n/L$ $\leq O(1/n)$

Input: two multisets
$$A = \{a_1, ..., a_n\}$$
 and $B = \{b_1, ..., b_n\}$ where $a_1, ..., a_n, b_1, ..., b_n \in \{1, ..., n\}$

Output: A = B (as multisets)?

Lipton's Algorithm (1989):

$$\operatorname{FING}(A) = \prod_{i=1}^{n} (r - a_i) \bmod p$$
 for uniform random prime
$$p \in [(n \log n)^2/2, (n \log n)^2]$$

$$\operatorname{FING}(B) = \prod_{i=1}^{n} (r - b_i) \bmod p$$
 and uniform random $r \in \mathbb{Z}_p$

if $A \neq B$ as multisets:

$$f_A(x) = \prod_{i=1}^n (x - a_i) \bmod p$$
 $f_B(x) = \prod_{i=1}^n (x - b_i) \bmod p$

$$Pr[FING(A) = FING(B)]$$

$$\leq \Pr[f_A = f_B] + \Pr[f_A(r) = f_B(r) | f_A \neq f_B] = O(1/n)$$

Input: *n* numbers $x_1, x_2, ..., x_n \in \{1, 2, ..., n\}$

Determine whether every number appears exactly once.

Lipton's Algorithm (1989):

FING(A) =
$$\prod_{i=1}^{n} (r - a_i) \mod p$$
 for uniform random prime check if:

FING(A) = $\prod_{i=1}^{n} (r - i) \mod p$? for uniform random prime $p \in [(n \log n)^2/2, (n \log n)^2]$ and uniform random $r \in \mathbb{Z}_p$

- time cost: O(n)
- space cost: $O(\log n)$
- error probability (false positive): O(1/n)
- data stream: input comes one at a time