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Maximum-Weight Spanning Tree Problem

Input: Graph G = (V,E) and edge weights w ∈ ZE
>0

Output: the spanning tree T of G with the maximum total
weight
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Kruskal’s Algorithm for Maximum-Weight Spanning Tree

1: F ← ∅
2: sort edges in E in non-increasing order of weights w
3: for each edge (u, v) in the order do
4: if u and v are not connected by a path of edges in F then
5: F ← F ∪ {(u, v)}
6: return (V, F )
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Proof of Correctness of Kruskal’s Algorithm

Maximum-Weight Spanning Tree (MST) with Pre-Selected Edges

Input: Graph G = (V,E) and edge weights w ∈ ZE
>0

a set F0 ⊆ E of edges, that does not contain a cycle

Output: the maximum-weight spanning tree T = (V,ET ) of G
satisfying F0 ⊆ ET

Lemma (Key Lemma) Given an instance (G = (V,E), w, F0) of
the MST with pre-selected edges problem, let e∗ be the maximum
weight edge in E \ F0 such that F0 ∪ {e∗} does not contain a
cycle. Then there is an optimum solution T = (V,ET ) to the
instance with e∗ ∈ ET .
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Proof of Correctness of Kruskal’s Algorithm

Proof of Key Lemma.

e∗
F0

edges in optimum tree
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Q: Does the greedy algorithm work for more general problems?

A General Maximization Problem

Input: E: the ground set of elements

w ∈ ZE
>0: weight vector on elements

S: an (implicitly given) family of subsets of E

∅ ∈ S
S is downward closed: if A ∈ S, B ⊊ A, then B ∈ S.

Output: A ∈ S that maximizes
∑

e∈A we

maximum-weight spanning tree: S = family of forests
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Greedy Algorithm

1: A← ∅
2: sort elements in E in non-decreasing order of weights w
3: for each element e in the order do
4: if A ∪ {e} ∈ S then A← A ∪ {e}
5: return A

Examples where Greedy Algorithm is Not Optimum

Knapsack Packing: given elements E, where every element has
a value and a cost, and a cost budget C, the goal is to find a
maximum value subset of items with cost at most C

Maximum Weight Bipartite Graph Matching

Matroids: cases where greedy algorithm is optimum
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Def. A (finite) matroidM is a pair (E, I), where E is a finite
set (called the ground set) and I is a family of subsets of E
(called independent sets) with the following properties:

1 ∅ ∈ I.
2 (downward-closed property) If B ⊊ A ∈ I, then B ∈ I.
3 (augmentation/exchange property) If A,B ∈ I and |B| < |A|,

then there exists e ∈ A \B such that B ∪ {e} ∈ I.

Lemma Let G = (V,E). F ⊆ E is in I iff (V, F ) is a forest.
Then (E, I) is a matroid, and it is called a graphic matroid.

Proof of Exchange Property.

|B| < |A| ⇒ (V,B) has more CC than (V,A).

Some edge in A connects two different CC of (V,B).
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Feasible Family for Knapsack Packing Does Not Satisfy
Augmentation Property

c1 = c2 = 10, c3 = 20, C = 20.

{1, 2}, {3} ∈ I, but {1, 3}, {2, 3} /∈ I.

Feasible Family for Bipartite Matching Does Not Satisfy
Augmentation Property

Complete bipartite graph between {a1, a2} and {b1, b2}.
{(a1, b1), (a2, b2)}, {(a1, b2)} ∈ I.

Theorem The greedy algorithm gives optimum solution for the
maximum-weight independent set problem in a matroid.
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Lemma (Key Lemma)

given: matroidM = (E, I), weights w ∈ ZE
>0, A ∈ I,

goal: find a maximum weight independent set containing A

e∗ = argmaxe∈E\A:A∪{e}∈I we, assuming e∗ exists

Then, some optimum solution contains e∗

let S ⊇ A, S ∈ I be an optimum solution, e∗ /∈ S

S
A

e∗
S′

e′

we∗ ≥ we′

w(S′) ≥ w(S)
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Lemma (Key Lemma)

given: matroidM = (E, I), weights w ∈ ZE
>0, A ∈ I,

goal: find a maximum weight independent set containing A

e∗ = argmaxe∈E\A:A∪{e}∈I we, assuming e∗ exists

Then, some optimum solution contains e∗

Proof.

let S ⊇ A, S ∈ I be an optimum solution, e∗ /∈ S

1: S ′ ← A ∪ {e∗}
2: while |S ′| < |S| do
3: let e be any element in S \ S ′ with S ′ ∪ {e} ∈ I

▷ e exists due to exchange property
4: S ′ ← S ′ ∪ {e}

S ′ and S differ by exactly one element

w(S ′) :=
∑

e∈S′ we ≥ w(S) =⇒ S ′ is also optimum
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Examples of Matroids

E: the ground set I: the family of independent sets

Uniform Matroid: k ∈ Z>0.

I = {A ⊆ E : |A| ≤ k}.
Partition Matroid: partition (E1, E2, · · · , Et) of E, positive
integers k1, k2, · · · , kt
I = {A ⊆ E : |A ∩ Ei| ≤ ki,∀i ∈ [t]}.

Laminar Matroid: laminar family of subsets of E
{E1, E2, · · · , Et}, positive integers k1, k2, · · · , kt
I = {A ⊆ E : |A ∩ Ei| ≤ ki,∀i ∈ [t]}.

Def. A family {E1, E2, · · · , Et} of subsets of E is said to be
laminar if for every two distinct subsets Ei, Ej in the family, we
have Ei ∩ Ej = ∅ or Ei ⊊ Ej or Ej ⊊ Ei.



17/41

{
{1}, {1, 2}, {3, 4}, {5}, {3, 4, 5, 6}, {1, 2, 3, 4, 5, 6}

}
is a

laminar family.

3

4 5

6

1 2
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Examples of Matroids

E: the ground set I: the family of independent sets

Graphic Matroid: graph G = (V,E)

I = {A ⊆ E : (V,A) is a forest}
Transversal Matroid: a bipartite graph G = (E ⊎B, E)
I = {A ⊆ E : there is a matching in G covering A}

Linear Matroid: a vector v⃗e ∈ Rd for every e ∈ E

I = {A ⊆ E : vectors {v⃗e}e∈A are linearly independent}

Relationship between matroids

Uniform Partition Linear

Laminar

Transversal

Graphic
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A Graphic Matroid is A Linear Matroid

1

2 4

5
3

edges vectors
(1, 2) (1,−1, 0, 0, 0)
(1, 3) (1, 0,−1, 0, 0)
(1, 5) (1, 0, 0, 0,−1)
(2, 3) (0, 1,−1, 0, 0)
(2, 4) (0, 1, 0,−1, 0)
(3, 4) (0, 0, 1,−1, 0)
(4, 5) (0, 0, 0, 1,−1)
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A Laminar Matroid is A Linear Matroid

Example

sets upper bounds
{1, 2, 3} 2
{3, 4, 5} 2

{1, 2, 3, 4, 5, 6} 3

A DAG (left to right)

a

b

c

d

e

f

g
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4

5

6

xa, xb, xc ∈ R3 are linearly independent rational vectors

xd, xe, xf , xg: rand(0, 1) · xa + rand(0, 1) · xb + rand(0, 1) · xc

x1, x2, x3: rand(0, 1) · xd + rand(0, 1) · xe

x4, x5, x6: rand(0, 1) · xf + rand(0, 1) · xg

each rand(0, 1) gives an independent random real in [0, 1]

almost surely, all the random numbers are algebraically
independent
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Recap: Approximation Algorithms

For minimization problems:

approximation ratio :=
cost of our solution

cost of optimum solution
≥ 1

For maximization problems:

approximation ratio :=
value of our solution

value of optimum solution
≤ 1

or

approximation ratio :=
value of optimum solution

value of our solution
≥ 1
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Set Cover

Input: U, |U | = n: ground set

S1, S2, · · · , Sm ⊆ U

Output: minimum size set C ⊆ [m] such that
⋃

i∈C Si = U

Greedy Algorithm for Set Cover

1: C ← ∅, U ′ ← U
2: while U ′ ̸= ∅ do
3: choose the i that maximizes |U ′ ∩ Si|
4: C ← C ∪ {i}, U ′ ← U ′ \ Si

5: return C
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g: minimum number of sets needed to cover U

Lemma Let ut, t ∈ Z≥0 be the number of uncovered elements
after t steps. Then for every t ≥ 1, we have

ut ≤
(
1− 1

g

)
· ut−1.

Proof.

Consider the g sets S∗
1 , S

∗
2 , · · · , S∗

g in optimum solution

S∗
1 ∪ S∗

2 ∪ · · · ∪ S∗
g = U

at beginning of step t, some set in S∗
1 , S

∗
2 , · · · , S∗

g must
contain ≥ ut−1

g
uncovered elements

ut ≤ ut−1 − ut−1

g
=

(
1− 1

g

)
ut−1.
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Proof of (lnn+ 1)-approximation.

Let t = ⌈g · lnn⌉. u0 = n. Then

ut ≤
(
1− 1

g

)g·lnn · n < e− lnn · n = n · 1
n
= 1.

So ut = 0, approximation ratio ≤ ⌈g·lnn⌉
g
≤ lnn+ 1.

A more careful analysis gives a Hn-approximation, where
Hn = 1 + 1

2
+ 1

3
+ · · ·+ 1

n
is the n-th harmonic number.

ln(n+ 1) < Hn < lnn+ 1.

(1− c) lnn-hardness for any c = Ω(1)

Let c > 0 be any constant. There is no polynomial-time
(1− c) lnn-approximation algorithm for set-cover, unless

NP ⊆ quasi-poly-time, [Lund, Yannakakis 1994; Feige 1998]

P = NP. [Dinur, Steuer 2014]
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set cover: use smallest number of sets to cover all elements.

maximum coverage: use k sets to cover maximum number of
elements

Maximum Coverage

Input: U, |U | = n: ground set,

S1, S2, · · · , Sm ⊆ U , k ∈ [m]

Output: C ⊆ [m], |C| = k with the maximum
⋃

i∈C Si

Greedy Algorithm for Maximum Coverage

1: C ← ∅, U ′ ← U
2: for t← 1 to k do
3: choose the i that maximizes |U ′ ∩ Si|
4: C ← C ∪ {i}, U ′ ← U ′ \ Si

5: return C
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Theorem Greedy algorithm gives (1− 1
e
)-approximation for

maximum coverage.

Proof.

o: max. number of elements that can be covered by k sets.

pt: #(covered elements) by greedy algorithm after step t

pt ≥ pt−1 +
o− pt−1

k
o− pt ≤ o− pt−1 − o−pt−1

k
=

(
1− 1

k

)
(o− pt−1)

o− pk ≤
(
1− 1

k

)k
(o− p0) ≤ 1

e
· o

pk ≥
(
1− 1

e

)
· o

The
(
1− 1

e

)
-approximation extends to a more general problem.
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Def. Let n ∈ Z>0. A set function f : 2[n] → R is called
submodular if it satisfies one of the following three equivalent
conditions:

(1) ∀A,B ⊆ [n]:

f(A ∪B) + f(A ∩B) ≤ f(A) + f(B).

(2) ∀A ⊆ B ⊊ [n], i ∈ [n] \B:

f(B ∪ {i})− f(B) ≤ f(A ∪ {i})− f(A).

(3) ∀A ⊆ [n], i, j ∈ [n] \ A, i ̸= j:

f(A ∪ {i, j}) + f(A) ≤ f(A ∪ {i}) + f(A ∪ {j}).

(2): diminishing marginal values: the marginal value by getting
i when I have B is at most that when I have A ⊆ B.

(1)⇒ (2)⇒ (3), (3)⇒ (2)⇒ (1)
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Examples of Sumodular Functions

linear function: f(S) =
∑
i∈S

wi,∀S ⊆ [n]

budget-additive function: f(S) = min
{∑

i∈S

wi, B
}
,∀S ⊆ [n]

coverage function: given sets S1, S2, · · · , Sn ⊆ Ω,

f(C) :=
∣∣∣⋃

i∈C
Si

∣∣∣ ,∀C ⊆ [n]

matroid rank function:

Def. Given a matroidM = (E, I), the rank of any A ⊆ E is
defined as

rM(A) = max
{
|A′| : A′ ⊆ A,A′ ∈ I

}
.

The function rM : 2E → Z≥0 is called the rank function ofM.

cut function: given graph G = ([n], E)

f(A) =
∣∣E(A, [n] \ A)

∣∣,∀A ⊆ [n]
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Examples of Sumodular Functions

linear function, budget-additive function, coverage function,

matroid rank function, cut function

entropy function: given random variables X1, X2, · · · , Xn

f(S) := H(Xi : i ∈ S),∀S ⊆ [n]

Def. A submodular function f : 2[n] → R is said to be monotone
if f(A) ≤ f(B) for every A ⊆ B ⊆ [n].

Def. A submodular function f : 2[n] → R is said to be
symmetric if f(A) = f([n] \ A) for every A ⊆ [n].

coverage, matroid rank and entropy functions are monotone

cut function is symmetric
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(
1− 1

e

)
-Approximation for Submodular

Maximization with Cardinality Constraint

Submodular Maximization under a Cardinality Constraint

Input: An oracle to a non-negative monotone submodular
function f : 2[n] → R≥0, k ∈ [n]

Output: A subset S ⊆ [n] with |S| = k, so as to maximize f(S)

We can assume f(∅) = 0

Greedy Algorithm for the Problem

1: S ← ∅
2: for t← 1 to k do
3: choose the i that maximizes f(S ∪ {i})
4: S ← S ∪ {i}
5: return S
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Theorem Greedy algorithm gives (1− 1
e
)-approximation for

submodular-maximization under a cardinality constraint.

Proof.

o: optimum value

pt: value obtained by greedy algorithm after step t

need to prove: pt ≥ pt−1 +
o− pt−1

k
o− pt ≤ o− pt−1 − o−pt−1

k
=

(
1− 1

k

)
(o− pt−1)

o− pk ≤
(
1− 1

k

)k
(o− p0) ≤ 1

e
· o

pk ≥
(
1− 1

e

)
· o
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Def. A set function f : 2[n] → R≥0 is sub-additive if for every
two sets A,B ⊆ [n], we have f(A ∪B) ≤ f(A) + f(B).

Lemma A non-negative submodular set function f : 2[n] → R≥0

is sub-additive.

Proof.

For A,B ⊆ [n], we have f(A ∪B) + f(A ∩B) ≤ f(A) + f(B).
So, f(A ∪B) ≤ f(A) + f(B) as f(A ∩B) ≥ 0.
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Lemma Let f : 2[n] → R be submodular. Let S ⊆ [n], and
fS(A) = f(S ∪ A)− f(S) for every A ⊆ [n]. (fS is the marginal
value function for set S.) Then fS is also submodular.

Proof.

Let A,B ⊆ [n] \ S; it suffices to consider ground set [n] \ S.
fS(A ∪B) + fS(A ∩B)− (fS(A) + fS(B))

= f(S ∪ A ∪B)− f(S) + f(S ∪ (A ∩B))− f(S)

−
(
f(S ∪ A)− f(S) + f(S ∪B)− f(S)

)
= f(S ∪ A ∪B) + f(S ∪ (A ∩B))− f(S ∪ A)− f(S ∪B)

≤ 0

The last inequality is by S ∪ A ∪B = (S ∪ A) ∪ (S ∪B),
S ∪ (A∩B) = (S ∪A)∩ (S ∪B) and submodularity of f .
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Proof of pt ≥ pt−1 +
o−pt−1

k
.

S∗ ⊆ [n]: optimum set, |S∗| = k, o = f(S∗)

S: set chosen by the algorithm at beginning of time step t

|S| = t− 1, pt−1 = f(S)

fS is submodular and thus sub-additive

fS(S
∗) ≤

∑
i∈S∗

fS(i) ⇒ ∃i ∈ S∗, fS(i) ≥
1

k
fS(S

∗)

for the i, we have

f(S ∪ {i})− f(S) ≥ 1

k
(f(S∗)− f(S))

pt ≥ f(S ∪ {i}) ≥ pt−1 +
1

k
(o− pt−1)
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Submodular Maximization for Monotone Functions:

Constraint Approx. Hardness Technique
|S| ≤ k 1− 1/e 1− 1/e greedy
matroid 1− 1/e 1− 1/e multilinear ext.

O(1) knapsacks 1− 1/e 1− 1/e multilinear ext.
k matroids k + ϵ Ω(k/ log k) local search
k matroids

O(k) Ω(k/ log k) multilinear ext.
O(1) knapsacks

Submodular Maximization for Non-Monotone Functions:

Constraint Approx. Hardness Technique
Unconstrained 1/2 1/2 combinatorial

matroid 1/e 0.48 multilinear ext.
O(1) knapsacks 1/e 0.49 multilinear ext.

k matroids k +O(1) Ω(k/ log k) local search
k matroids

O(k) Ω(k/ log k) multilinear ext.
O(1) knapsacks

From Prof. Jan Vodrak’s slides “Optimization of Submodular Functions”
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Submodular Minimization

Constraint Approx. Hardness Technique

Unconstrained 1 1 combinatorial

|S| ≥ k, Monotone Õ(
√
n) ∗ Ω(

√
n) ∗ combinatorial

∗ bounds are for query complexity under oracle model.
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