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Output: the spanning tree T' of G with the maximum total
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Kruskal's Algorithm for Maximum-Weight Spanning Tree
1. F«<0
2: sort edges in E in non-increasing order of weights w
3: for each edge (u,v) in the order do
4: if u and v are not connected by a path of edges in F' then
5 F+— FU{(u,v)}
6

. return (V. F)
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Proof of Correctness of Kruskal's Algorithm

Maximum-Weight Spanning Tree (MST) with Pre-Selected Edges
Input: Graph G = (V, F) and edge weights w € ZZ
a set Fy C F of edges, that does not contain a cycle

Output: the maximum-weight spanning tree 7' = (V| Er) of G
satisfying Fj, C Er




Proof of Correctness of Kruskal's Algorithm

Maximum-Weight Spanning Tree (MST) with Pre-Selected Edges |
Input: Graph G = (V, F) and edge weights w € ZZ
a set Fy C E of edges, that does not contain a cycle

Output: the maximum-weight spanning tree 7' = (V| Er) of G
satisfying Fi, C Fr

Lemma (Key Lemma) Given an instance (G = (V, E), w, Fy) of
the MST with pre-selected edges problem, let ¢* be the maximum
weight edge in £\ F{ such that F U {e*} does not contain a
cycle. Then there is an optimum solution 7" = (V, Er) to the
instance with e* € Frp.
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A General Maximization Problem
Input: E: the ground set of elements
w € ZE,: weight vector on elements
S: an (implicitly given) family of subsets of £

o lesS
e S is downward closed: if A€ S,B C A, then B € S.

Output: A € S that maximizes ) _, w.




Q: Does the greedy algorithm work for more general problems? J

A General Maximization Problem
Input: E: the ground set of elements
w € ZE,: weight vector on elements
S: an (implicitly given) family of subsets of £

o lesS
e S is downward closed: if A€ S,B C A, then B € S.

Output: A € S that maximizes ) _, w.

@ maximum-weight spanning tree: & = family of forests



Greedy Algorithm

1. A< 0

2: sort elements in E in non-decreasing order of weights w
3: for each element e in the order do

4; if AU{e} € S then A < AU {e}

5. return A
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Examples where Greedy Algorithm is Not Optimum

@ Knapsack Packing: given elements E, where every element has
a value and a cost, and a cost budget C', the goal is to find a
maximum value subset of items with cost at most C
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Greedy Algorithm

1. A< 0

2: sort elements in E in non-decreasing order of weights w
3: for each element e in the order do

4; if AU{e} € S then A < AU {e}

5. return A

Examples where Greedy Algorithm is Not Optimum

@ Knapsack Packing: given elements E, where every element has
a value and a cost, and a cost budget C', the goal is to find a
maximum value subset of items with cost at most C'

@ Maximum Weight Bipartite Graph Matching

e Matroids: cases where greedy algorithm is optimum



Def. A (finite) matroid M is a pair (E,Z), where E is a finite
set (called the ground set) and Z is a family of subsets of
(called independent sets) with the following properties:

Q0el

@ (downward-closed property) If B C A € Z, then B € T.

© (augmentation/exchange property) If A, B € 7 and |B| < |4],
then there exists e € A\ B such that BU {e} € T.
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Def. A (finite) matroid M is a pair (E,Z), where E is a finite
set (called the ground set) and Z is a family of subsets of
(called independent sets) with the following properties:

Q0el
@ (downward-closed property) If B C A € Z, then B € T.

© (augmentation/exchange property) If A, B € 7 and |B| < |4],
then there exists e € A\ B such that BU {e} € T.

Lemma Let G = (V,E). FC Eisin Ziff (V,F) is a forest.
Then (E,Z) is a matroid, and it is called a graphic matroid.

Proof of Exchange Property.
e |B| < |A| = (V, B) has more CC than (V, A).
@ Some edge in A connects two different CC of (V, B). O



o ¢, =cy = 10,c3 = 20,C = 20.

o {1,2},{3} €7, but {1,3},{2,3} ¢ T.
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Feasible Family for Knapsack Packing Does Not Satisfy
Augmentation Property

@ ¢y =cy =10,c3 = 20,C = 20.

o {1,2},{3} €Z, but {1,3},{2,3} ¢ Z.

Feasible Family for Bipartite Matching Does Not Satisfy
Augmentation Property

e Complete bipartite graph between {a1,as} and {by, by }.
o {(ala bl)7 ((1,2, b2>}7 {(a17 b2)} S




Feasible Family for Knapsack Packing Does Not Satisfy
Augmentation Property

@ ¢y =y =10,c3 =20,C = 20.
o {1,2},{3} €Z, but {1,3},{2,3} ¢ Z.

Feasible Family for Bipartite Matching Does Not Satisfy
Augmentation Property

e Complete bipartite graph between {a1,as} and {by, by }.
o {(ah bl)7 ((1,2, b2>}7 {(ab b2)} S

Theorem The greedy algorithm gives optimum solution for the
maximum-weight independent set problem in a matroid.
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@ goal: find a maximum weight independent set containing A
@ €' = arg maXeep\ A:Au{e}ez We, asSUMIng e* exists
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let S O A, S €7 be an optimum solution, e* ¢ S

Wex Z We!

w(S") = w(S)




Lemma (Key Lemma)

e given: matroid M = (E,Z), weights w € Z%, A € T,

@ goal: find a maximum weight independent set containing A
@ " = arg maX.cp\A:Au{e}ez We, assuming e* exists

@ Then, some optimum solution contains e*
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@ let S DO A,S €T be an optimum solution, e* ¢ S
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Lemma (Key Lemma)

e given: matroid M = (E,Z), weights w € Z%, A € T,

@ goal: find a maximum weight independent set containing A
@ €' = arg maXeep\ A:Au{e}ez We, ASSUMING e* exists

@ Then, some optimum solution contains e*

Proof.
@ let S DO A,S €T be an optimum solution, e* ¢ S
0 S+ AU {e*}
. while |S'| < |S| do
3 let e be any element in S\ S" with S"U{e} € Z
> e exists due to exchange property

N =

4. S+ S'uU {6}
e 5" and S differ by exactly one element
o w(S) =3 cqwe>w(S) = Sis also optimum O

4
\
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Examples of Matroids

@ F: the ground set Z: the family of independent sets
@ Uniform Matroid: k € Z+y.
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e Partition Matroid: partition (E4, Es, - - , E;) of E, positive
integers kq, ko, -+, k;

I={ACE:|ANE; <k;,Vielt]}



Examples of Matroids

@ F: the ground set Z: the family of independent sets

@ Uniform Matroid: k € Z+y.
I={ACE:|Al <k}
e Partition Matroid: partition (E4, Es, - - , E;) of E, positive
integers kq, ko, -+, k;
I={ACE:|ANE; <k;,Vielt]}
@ Laminar Matroid: laminar family of subsets of F
{E1, Es,--- , E}, positive integers ki, ko, - -+ , ki
I={ACE:|ANE]| <k,Vielt]}.

Def. A family {E), Es,--- , E;} of subsets of E is said to be
laminar if for every two distinct subsets F;, F; in the family, we
have E;NE;=0or E; C E; or E; C E,.

==




° {{1},{1,2},{3,4},{5},{3,4,5,6},{1,2,3,4,5,6}} is a

laminar family.
|
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Examples of Matroids

@ F: the ground set Z: the family of independent sets
@ Graphic Matroid: graph G = (V, E)
I={ACE:(V,A)is a forest}
@ Transversal Matroid: a bipartite graph G = (E' W B, £)
Z = {A C E : there is a matching in G covering A}
@ Linear Matroid: a vector 7, € R? for every e € E/

Z ={A C E : vectors {U.}.ca are linearly independent}

Relationship between matroids

Laminar\
Uniform —— Partition Aransvers‘?unear

Graphic

4
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A Laminar Matroid is A Linear Matroid

Example
sets | upper bounds
{1, 2,3} 2
{3,4,5} 2
{1,2,3,4,5,6} 3

A DAG (left to right)
1

S Ot s W N
~




A Laminar Matroid is A Linear Matroid

A DAG (left to right)

Example 1 d
sets | upper bounds 2
{1,2,3} 2 3 e
{3,4,5} 2 4 f
{1,2,3,4,5,6} 3 5
6 g

2%, 2%, 2¢ € R? are linearly independent rational vectors

2 2% 2 29 rand(0,1) - 2% + rand(0, 1) - 2° + rand(0,1) - x
xl, 2% 23 rand(0,1) - 2¢ + rand(0,1) - =

x4 2% 2% rand(0,1) - 2/ + rand(0, 1) - 29

each rand(0, 1) gives an independent random real in [0, 1]

almost surely, all the random numbers are algebraically
independent
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Recap: Approximation Algorithms

@ For minimization problems:

cost of our solution

approximation ratio :=

cost of optimum solution —

@ For maximization problems:

value of our solution

approximation ratio :=

value of optimum solution —

or

. : value of optimum solution
approximation ratio :=

value of our solution
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Set Cover
Input: U, |U| = n: ground set
51,82, , 8 CU
Output: minimum size set C' C [m] such that | J,. S;i = U
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Set Cover
Input: U, |U| = n: ground set
S1, 52, ,Sm CU
Output: minimum size set C' C [m] such that | J,. S;i = U

Greedy Algorithm for Set Cover
1: C«+ @, U+U
2: while U’ # () do
3 choose the ¢ that maximizes |U’ N S|
& O« CU{}U « U\S
5. return C




@ g: minimum number of sets needed to cover U

Lemma Let u;,t € Z>( be the number of uncovered elements
after ¢ steps. Then for every t > 1, we have

1
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@ g: minimum number of sets needed to cover U

Lemma Let u;,t € Z>( be the number of uncovered elements
after ¢ steps. Then for every t > 1, we have

1
U < <1 — —> cUp—1-
9

Proof.

e Consider the g sets 57,53, , Sy in optimum solution
@ STUSU---US;=U

@ at beginning of step ¢, some set in 57,55, ,.5; must

contain > “tT‘l uncovered elements

Ut—1 __ 1
@ up S U — 7 (1 - 5) Ut—1.-




Proof of (Inn + 1)-approximation.

@ Lett=[g-Inn]. ug =n. Then
1 Inn 1
UtS(l——)gl n<e M.p=n.—=1.
g n
@ So u; = 0, approximation ratio < “’%M <Inn+ 1. ]
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Proof of (Inn + 1)-approximation.

@ Lett=[g-lnn]. up =n. Then

up < (1 — ;})g'lnn n<e M.p

I

S
S

I

—_

@ So u; = 0, approximation ratio < WL%M <Inn+1.

@ A more careful analysis gives a H,,-approximation, where
H,=1+ % + % 4+ % is the n-th harmonic number.
e In(n+1)<H,<Ilnn+1.



Proof of (Inn + 1)-approximation.
@ Lett=[g-Inn]|. ug =n. Then

Inn

1g~1nn _
) ‘n<e n

<(1-=
ut_( g

Il
3

@ So u; = 0, approximation ratio < (g'lsfn"w <Inn+1.

@ A more careful analysis gives a H,,-approximation, where
H,=1+ % + % 4+ % is the n-th harmonic number.
e In(n+1)<H,<Ilnn+1.

(1 — ¢) Inn-hardness for any ¢ = Q(1)

Let ¢ > 0 be any constant. There is no polynomial-time

(1 — ¢) In n-approximation algorithm for set-cover, unless

@ NP C quasi-poly-time, [Lund, Yannakakis 1994; Feige 1998|
e P = NP. [Dinur, Steuer 2014]
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@ set cover: use smallest number of sets to cover all elements.

@ maximum coverage: use k sets to cover maximum number of
elements



@ set cover: use smallest number of sets to cover all elements.
@ maximum coverage: use k sets to cover maximum number of
elements
Maximum Coverage
Input: U, |U| = n: ground set,
Sy,8,+-, 8, CU, k € [m)]
Output: C C [m],|C| = k with the maximum J,. S;




@ set cover: use smallest number of sets to cover all elements.
@ maximum coverage: use k sets to cover maximum number of
elements
Maximum Coverage
Input: U, |U| = n: ground set,
S1,82,+++, 8, CU, k € [m)]
Output: C C [m],|C| = k with the maximum J,. S;

Greedy Algorithm for Maximum Coverage

1. C«+0U«+U

2: for t < 1 to k do

3: choose the ¢ that maximizes |U’ N S;|
4: C+ CU{i},U < U\ S;

5. return C




Theorem Greedy algorithm gives (1 — %)-approximation for
maximum coverage.

J




Theorem Greedy algorithm gives (1 — %)—approximation for
maximum coverage.

Proof.
@ 0: max. number of elements that can be covered by k sets.
@ p;: #(covered elements) by greedy algorithm after step ¢
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Theorem Greedy algorithm gives (1 — %)—approximation for
maximum coverage.

Proof.
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Theorem Greedy algorithm gives (1 — %)—approximation for
maximum coverage.

Proof. |
@ 0: max. number of elements that can be covered by k sets.
@ p;: #(covered elements) by greedy algorithm after step ¢

0 — P

°pt2pt—l+%

e o-nSomp = (1Yo p

°0—pk§( —%) (O—PO)S%'O

opkz(l—é)-o ]

J

The (1 — 1)-approximation extends to a more general problem.
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Def. Let n € Z-,. A set function f: 2" — R is called
submodular if it satisfies one of the following three equivalent
conditions:

(1) VA,BC|n):
f(AUB)+ f(AN B) < f(A) + f(B).

(2) VACBC|[n],i€[n]\B:
f(BU{i}) = f(B) < f(AU{i}) — f(A).

(3) VACIn|i,jen\Ai#j:
fFAU{i,g}) + f(A) < fF(AU{i}) + fF(AU{5}).
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@ (2): diminishing marginal values: the marginal value by getting
7 when | have B is at most that when | have A C B.



Def. Let n € Z-,. A set function f: 2" — R is called
submodular if it satisfies one of the following three equivalent
conditions:

(1) VA, BCn:
f(AUB) + f(ANB) < f(A) + f(B).

(2) VAC BC|[n],i €[n]\B:
f(BU{i}) — f(B) < f(AU{i}) — f(A).

(3) VACIn],i,j€n]\4,i#:
fAU{i,i}) + f(A) < f(Au{i}) + F(AU {5}

@ (2): diminishing marginal values: the marginal value by getting
7 when | have B is at most that when | have A C B.

o (=2)=0B), B)=2=01



e linear function: f(S sz,‘v’S C [n]

€S
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Examples of Sumodular Functions

@ linear function: f(S ZwZ,VS -

€S
e budget-additive function: f(S mln{sz, },‘V’S C [n]
€S
@ coverage function: given sets Sq, S5, -+ ,.5, C €,
)= U, S| ve <

@ matroid rank function:

Def. Given a matroid M = (E,Z), the rank of any AC E'is
defined as

rm(A) =max {|A'|: A/ C A A eI}

The function 7 : 2% — Zs is called the rank function of M.

@ cut function: given graph G = ([ |, E)
= |E(4,[n]\ 4)],

C [n]



@ linear function, budget-additive function, coverage function,
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Examples of Sumodular Functions

@ linear function, budget-additive function, coverage function,
@ matroid rank function, cut function

@ entropy function: given random variables X, X5, -+, X,

£(S) = H(X;:i € S),¥S C [n]

Def. A submodular function f : 2[") — R is said to be monotone
if f(A) < f(B) for every AC B C [n].

Def. A submodular function f : 2[") — R is said to be
symmetric if f(A) = f([n]\ A) for every A C [n].

@ coverage, matroid rank and entropy functions are monotone

@ cut function is symmetric



@ Greedy Algorithms and Matroids
@ Recap: Maximum-Weight Spanning Tree Problem
@ Maximum-Weight Independent Set in Matroids
@ Examples of Matroids

© Greedy Approximation Algorithms
@ (Inn + 1)-Approximation for Set-Cover
° (1 — %)—Approximation for Maximum Coverage
@ Submodular Functions
e (1 —1)-Approximation for Cardinality-Constraied
Submodular Maximization
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(1 — %)-Approximation for Submodular
Maximization with Cardinality Constraint

Submodular Maximization under a Cardinality Constraint
Input: An oracle to a non-negative monotone submodular
function f : 2" — R, k € [n]
Output: A subset S C [n] with |S| = k, so as to maximize f(S)
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(1 - %)-Approximation for Submodular
Maximization with Cardinality Constraint

Submodular Maximization under a Cardinality Constraint
Input: An oracle to a non-negative monotone submodular
function f : 2" — R, k € [n]
Output: A subset S C [n] with |S| = k, so as to maximize f(S)

@ We can assume f()) =0

Greedy Algorithm for the Problem
1. S« 0
2: fort < 1to k do
3: choose the i that maximizes f(S U {i})
4. S+ SuU {Z}
5. return S




Theorem Greedy algorithm gives (1 — %)-approximation for
submodular-maximization under a cardinality constraint.

J




Theorem Greedy algorithm gives (1 — %)-approximation for
submodular-maximization under a cardinality constraint.

Proof.
@ o: optimum value

@ p,;: value obtained by greedy algorithm after step ¢

@ need to prove: p; > pi_ 1+%
@ 0—pt < 0— D 1—%:(1—%)(0—%71)
@ 0—pp < (1——) (0—po) <10

Di > (1——) 0




Def. A set function f : 2" — R is sub-additive if for every
two sets A, B C [n], we have f(AU B) < f(A) + f(B).
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Lemma A non-negative submodular set function f : 2" — R,
is sub-additive.




Def. A set function f : 2" — R is sub-additive if for every
two sets A, B C [n], we have f(AU B) < f(A) + f(B).

Lemma A non-negative submodular set function f : 2" — R,
is sub-additive.

Proof.
For A, B C [n], we have f(AUB) + f(ANB) < f(A) + f(B).
So, f(AUB) < f(A)+ f(B) as f(ANB) > 0. O

V.




Lemma Let f: 2" — R be submodular. Let S C [n], and
fs(A) = f(SUA)— f(S) for every A C [n]. (fs is the marginal
value function for set S.) Then fs is also submodular.




Lemma Let f: 2 — R be submodular. Let S C [n], and
fs(A) = f(SUA)— f(S) for every A C [n]. (fs is the marginal
value function for set S.) Then fs is also submodular.

Proof. |
o Let A, B C [n]\ S; it suffices to consider ground set [n] \ S.

fs(AUB) + fs(AN B) — (fs(A4) + fs(B))
= f(SUAUB) - f(S) + f(SU(AN B)) — f(5)

— (F(SUA) = £(8) + f(SUB) - £(5))
=f(SUAUB)+ f(SU(ANB))— f(SUA)— f(SUB)
<0

@ The last inequality is by SUAUB = (SUA) U (SUB),
SU(ANB) = (SUA)N(SUB) and submodularity of f. [




Proof of p; > p,_y + =F=L.

@ S* C [n]: optimum set, |S*| =k, o = f(S*)

@ S: set chosen by the algorithm at beginning of time step ¢
S| =t —1, p1 = f(S)
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@ S* C [n]: optimum set, |S*| =k, o = f(S*)

@ S: set chosen by the algorithm at beginning of time step ¢
|S| =t—1,p1= f(S)

@ fs is submodular and thus sub-additive

f(S) S Y fsli) = e S fs() 2 pfs(S)

i€S*




Proof of py > py_1 + “F=.

@ S* C [n]: optimum set, |S*| =k, o = f(S*)

@ S: set chosen by the algorithm at beginning of time step ¢
S| =t—1, pr1 = f(S5)

@ fs is submodular and thus sub-additive

f(S) S Y fsli) = e S fs() 2 pfs(S)

i€S*

@ for the 7, we have




Submodular Maximization for Monotone Functions:

Constraint Approx. | Hardness Technique
S| < k 1—1/e| 1-1/e greedy
matroid 1-1/e| 1—1/e | multilinear ext.

O(1) knapsacks || 1 —1/e | 1—1/e | multilinear ext.

k matroids k+e | QFk/logk) | local search

o ("i)mkant:;:iscks O(k) | Q(k/logk) | multilinear ext.

Submodular Maximization for Non-Monotone Functions:

Constraint Approx. Hardness Technique
Unconstrained 1/2 1/2 combinatorial
matroid 1/e 0.48 multilinear ext.
O(1) knapsacks 1/e 0.49 multilinear ext.

k matroids E+O() | Qk/logk) | local search

k matroids .
O(1) knapsacks O(k) Q(k/logk) | multilinear ext.

From Prof. Jan Vodrak’s slides “Optimization of Submodular Functions”




Submodular Minimization

Constraint Approx. | Hardness | Technique

Unconstrained 1 1 combinatorial

|S| > k, Monotone || O(y/n) * | Q(y/n) * | combinatorial

@ * bounds are for query complexity under oracle model.



	Greedy Algorithms and Matroids
	Recap: Maximum-Weight Spanning Tree Problem
	Maximum-Weight Independent Set in Matroids
	Examples of Matroids

	Greedy Approximation Algorithms
	(n + 1)-Approximation for Set-Cover
	(to.1-1e)to.-Approximation for Maximum Coverage
	Submodular Functions
	(to.1-1e)to.-Approximation for Cardinality-Constraied Submodular Maximization


