Lecturers: F—if, Z20l, X550

Nanjing University

@ Greedy Algorithms and Matroids
@ Recap: Maximum-Weight Spanning Tree Problem
@ Maximum-Weight Independent Set in Matroids
@ Examples of Matroids

© Greedy Approximation Algorithms
@ (Inn + 1)-Approximation for Set-Cover
@ (1 —1)-Approximation for Maximum Coverage
@ Submodular Functions
° (1 — %)—Approximation for Cardinality-Constraied
Submodular Maximization

2/41

@ Greedy Algorithms and Matroids
@ Recap: Maximum-Weight Spanning Tree Problem
@ Maximum-Weight Independent Set in Matroids
@ Examples of Matroids

© Greedy Approximation Algorithms
@ (Inn + 1)-Approximation for Set-Cover
° (1 — %)—Approximation for Maximum Coverage
@ Submodular Functions
° (1 — %)—Approximation for Cardinality-Constraied
Submodular Maximization

3/41

Maximum-Weight Spanning Tree Problem
Input: Graph G = (V, F) and edge weights w € ZZ

Output: the spanning tree T' of G with the maximum total
weight

Maximum-Weight Spanning Tree Problem
Input: Graph G = (V, F) and edge weights w € ZZ

Output: the spanning tree T' of G with the maximum total
weight

Maximum-Weight Spanning Tree Problem
Input: Graph G = (V, F) and edge weights w € ZZ

Output: the spanning tree T' of G with the maximum total
weight

Kruskal's Algorithm for Maximum-Weight Spanning Tree
1. F«<0
2: sort edges in E in non-increasing order of weights w
3: for each edge (u,v) in the order do
4: if u and v are not connected by a path of edges in F' then
5 F+— FU{(u,v)}
6

. return (V. F)

Kruskal's Algorithm for Maximum-Weight Spanning Tree
1. F«<0
2: sort edges in E in non-increasing order of weights w
3: for each edge (u,v) in the order do
4: if u and v are not connected by a path of edges in F' then
5 F+— FU{(u,v)}
6

. return (V. F)

Kruskal's Algorithm for Maximum-Weight Spanning Tree
1. F«<0
2: sort edges in E in non-increasing order of weights w
3: for each edge (u,v) in the order do
4: if u and v are not connected by a path of edges in F' then
5 F+— FU{(u,v)}
6

. return (V. F)

Kruskal's Algorithm for Maximum-Weight Spanning Tree
1. F«<0
2: sort edges in E in non-increasing order of weights w
3: for each edge (u,v) in the order do
4: if u and v are not connected by a path of edges in F' then
5 F+— FU{(u,v)}
6

. return (V. F)

Kruskal's Algorithm for Maximum-Weight Spanning Tree
1. F«<0
2: sort edges in E in non-increasing order of weights w
3: for each edge (u,v) in the order do
4: if u and v are not connected by a path of edges in F' then
5 F+— FU{(u,v)}
6

. return (V. F)

Kruskal's Algorithm for Maximum-Weight Spanning Tree
1. F«<0
2: sort edges in E in non-increasing order of weights w
3: for each edge (u,v) in the order do
4: if u and v are not connected by a path of edges in F' then
5 F+— FU{(u,v)}
6

. return (V. F)

11

12

Kruskal's Algorithm for Maximum-Weight Spanning Tree
1. F«<0
2: sort edges in E in non-increasing order of weights w
3: for each edge (u,v) in the order do
4: if u and v are not connected by a path of edges in F' then
5 F+— FU{(u,v)}
6

. return (V. F)

Kruskal's Algorithm for Maximum-Weight Spanning Tree
1. F«<0
2: sort edges in E in non-increasing order of weights w
3: for each edge (u,v) in the order do
4: if u and v are not connected by a path of edges in F' then
5 F+— FU{(u,v)}
6

. return (V. F)

Kruskal's Algorithm for Maximum-Weight Spanning Tree
1. F«<0
2: sort edges in E in non-increasing order of weights w
3: for each edge (u,v) in the order do
4: if u and v are not connected by a path of edges in F' then
5 F+— FU{(u,v)}
6

. return (V. F)

Kruskal's Algorithm for Maximum-Weight Spanning Tree
1. F«<0
2: sort edges in E in non-increasing order of weights w
3: for each edge (u,v) in the order do
4: if u and v are not connected by a path of edges in F' then
5 F+— FU{(u,v)}
6

. return (V. F)

Proof of Correctness of Kruskal's Algorithm

Maximum-Weight Spanning Tree (MST) with Pre-Selected Edges
Input: Graph G = (V, F) and edge weights w € ZZ
a set Fy C F of edges, that does not contain a cycle

Output: the maximum-weight spanning tree 7' = (V| Er) of G
satisfying Fj, C Er

Proof of Correctness of Kruskal's Algorithm

Maximum-Weight Spanning Tree (MST) with Pre-Selected Edges |
Input: Graph G = (V, F) and edge weights w € ZZ
a set Fy C E of edges, that does not contain a cycle

Output: the maximum-weight spanning tree 7' = (V| Er) of G
satisfying Fi, C Fr

Lemma (Key Lemma) Given an instance (G = (V, E), w, Fy) of
the MST with pre-selected edges problem, let ¢* be the maximum
weight edge in £\ F{ such that F U {e*} does not contain a
cycle. Then there is an optimum solution 7" = (V, Er) to the
instance with e* € Frp.

S

edges in optimum tree

7/41

S

edges in optimum tree

7/41

S

edges in optimum tree

7/41

@ Greedy Algorithms and Matroids
@ Recap: Maximum-Weight Spanning Tree Problem
@ Maximum-Weight Independent Set in Matroids
@ Examples of Matroids

© Greedy Approximation Algorithms
@ (Inn + 1)-Approximation for Set-Cover
° (1 — %)—Approximation for Maximum Coverage
@ Submodular Functions
° (1 — %)—Approximation for Cardinality-Constraied
Submodular Maximization

8/41

Q: Does the greedy algorithm work for more general problems? J

0/41

Q: Does the greedy algorithm work for more general problems? J

A General Maximization Problem
Input: E: the ground set of elements
w € ZE,: weight vector on elements
S: an (implicitly given) family of subsets of £

o lesS
e S is downward closed: if A€ S,B C A, then B € S.

Output: A € S that maximizes) _, w.

Q: Does the greedy algorithm work for more general problems? J

A General Maximization Problem
Input: E: the ground set of elements
w € ZE,: weight vector on elements
S: an (implicitly given) family of subsets of £

o lesS
e S is downward closed: if A€ S,B C A, then B € S.

Output: A € S that maximizes) _, w.

@ maximum-weight spanning tree: & = family of forests

Greedy Algorithm

1. A< 0

2: sort elements in E in non-decreasing order of weights w
3: for each element e in the order do

4; if AU{e} € S then A < AU {e}

5. return A

Greedy Algorithm

1. A< 0

2: sort elements in E in non-decreasing order of weights w
3: for each element e in the order do

4; if AU{e} € S then A+ AU {e}

5. return A

Examples where Greedy Algorithm is Not Optimum

@ Knapsack Packing: given elements E, where every element has
a value and a cost, and a cost budget C', the goal is to find a
maximum value subset of items with cost at most C

Greedy Algorithm

1. A< 0

2: sort elements in E in non-decreasing order of weights w
3: for each element e in the order do

4; if AU{e} € S then A < AU {e}

5. return A

Examples where Greedy Algorithm is Not Optimum

@ Knapsack Packing: given elements E, where every element has
a value and a cost, and a cost budget C', the goal is to find a
maximum value subset of items with cost at most C'

@ Maximum Weight Bipartite Graph Matching

Greedy Algorithm

1. A< 0

2: sort elements in E in non-decreasing order of weights w
3: for each element e in the order do

4; if AU{e} € S then A < AU {e}

5. return A

Examples where Greedy Algorithm is Not Optimum

@ Knapsack Packing: given elements E, where every element has
a value and a cost, and a cost budget C', the goal is to find a
maximum value subset of items with cost at most C'

@ Maximum Weight Bipartite Graph Matching

e Matroids: cases where greedy algorithm is optimum

Def. A (finite) matroid M is a pair (E,Z), where E is a finite
set (called the ground set) and Z is a family of subsets of
(called independent sets) with the following properties:

Q0el

@ (downward-closed property) If B C A € Z, then B € T.

© (augmentation/exchange property) If A, B € 7 and |B| < |4],
then there exists e € A\ B such that BU {e} € T.

Def. A (finite) matroid M is a pair (E,Z), where E is a finite
set (called the ground set) and Z is a family of subsets of
(called independent sets) with the following properties:

Q0el
@ (downward-closed property) If B C A € Z, then B € T.

© (augmentation/exchange property) If A, B € 7 and |B| < |4],
then there exists e € A\ B such that BU {e} € T.

Lemma Let G = (V,E). FC Eisin Ziff (V,F) is a forest.
Then (E,Z) is a matroid, and it is called a graphic matroid.

Def. A (finite) matroid M is a pair (E,Z), where E is a finite
set (called the ground set) and Z is a family of subsets of
(called independent sets) with the following properties:

Q0el
@ (downward-closed property) If B C A € Z, then B € T.

© (augmentation/exchange property) If A, B € 7 and |B| < |4],
then there exists e € A\ B such that BU {e} € T.

Lemma Let G = (V,E). FC Eisin Ziff (V,F) is a forest.
Then (E,Z) is a matroid, and it is called a graphic matroid.

Proof of Exchange Property.
e |B| < |A| = (V, B) has more CC than (V, A).
@ Some edge in A connects two different CC of (V, B). O

o ¢, =cy = 10,c3 = 20,C = 20.

o {1,2},{3} €7, but {1,3},{2,3} ¢ T.

12/41

Feasible Family for Knapsack Packing Does Not Satisfy
Augmentation Property

@ ¢y =cy =10,c3 = 20,C = 20.

o {1,2},{3} €Z, but {1,3},{2,3} ¢ Z.

Feasible Family for Bipartite Matching Does Not Satisfy
Augmentation Property

e Complete bipartite graph between {a1,as} and {by, by }.
o {(ala bl)7 ((1,2, b2>}7 {(a17 b2)} S

Feasible Family for Knapsack Packing Does Not Satisfy
Augmentation Property

@ ¢y =y =10,c3 =20,C = 20.
o {1,2},{3} €Z, but {1,3},{2,3} ¢ Z.

Feasible Family for Bipartite Matching Does Not Satisfy
Augmentation Property

e Complete bipartite graph between {a1,as} and {by, by }.
o {(ah bl)7 ((1,2, b2>}7 {(ab b2)} S

Theorem The greedy algorithm gives optimum solution for the
maximum-weight independent set problem in a matroid.

Lemma (Key Lemma)
e given: matroid M = (E,Z), weights w € Z5,, A€ Z,
@ goal: find a maximum weight independent set containing A

@ €' = arg maXeep\ A:Au{e}ez We, asSUMIng e* exists

Lemma (Key Lemma)

e given: matroid M = (E,Z), weights w € Z5,, A€ Z,

@ goal: find a maximum weight independent set containing A
@ €' = arg maXeep\ A:Au{e}ez We, asSUMIng e* exists

@ Then, some optimum solution contains e*

Lemma (Key Lemma)

e given: matroid M = (E,Z), weights w € Z5,, A€ Z,

@ goal: find a maximum weight independent set containing A
@ €' = arg maXeep\ A:Au{e}ez We, asSUMIng e* exists

@ Then, some optimum solution contains e*

let S O A, S €7 be an optimum solution, e* ¢ S

Lemma (Key Lemma)

e given: matroid M = (E,Z), weights w € Z5,, A€ Z,

@ goal: find a maximum weight independent set containing A
@ €' = arg maXeep\ A:Au{e}ez We, asSUMIng e* exists

@ Then, some optimum solution contains e*

let S O A, S €7 be an optimum solution, e* ¢ S

Lemma (Key Lemma)

e given: matroid M = (E,Z), weights w € Z5,, A€ Z,

@ goal: find a maximum weight independent set containing A
@ €' = arg maXeep\ A:Au{e}ez We, asSUMIng e* exists

@ Then, some optimum solution contains e*

let S O A, S €7 be an optimum solution, e* ¢ S

Lemma (Key Lemma)

e given: matroid M = (E,Z), weights w € Z5,, A€ Z,

@ goal: find a maximum weight independent set containing A
@ €' = arg maXeep\ A:Au{e}ez We, asSUMIng e* exists

@ Then, some optimum solution contains e*

let S O A, S €7 be an optimum solution, e* ¢ S

Lemma (Key Lemma)

e given: matroid M = (E,Z), weights w € Z5,, A€ Z,

@ goal: find a maximum weight independent set containing A
@ €' = arg maXeep\ A:Au{e}ez We, asSUMIng e* exists

@ Then, some optimum solution contains e*

let S O A, S €7 be an optimum solution, e* ¢ S

Lemma (Key Lemma)

e given: matroid M = (E,Z), weights w € Z5,, A€ Z,

@ goal: find a maximum weight independent set containing A
@ €' = arg maXeep\ A:Au{e}ez We, asSUMIng e* exists

@ Then, some optimum solution contains e*

let S O A, S €7 be an optimum solution, e* ¢ S

Lemma (Key Lemma)

e given: matroid M = (E,Z), weights w € Z5,, A€ Z,

@ goal: find a maximum weight independent set containing A
@ €' = arg maXeep\ A:Au{e}ez We, asSUMIng e* exists

@ Then, some optimum solution contains e*

let S O A, S €7 be an optimum solution, e* ¢ S

Wex Z We!

w(S") = w(S)

Lemma (Key Lemma)

e given: matroid M = (E,Z), weights w € Z%, A € T,

@ goal: find a maximum weight independent set containing A
@ " = arg maX.cp\A:Au{e}ez We, assuming e* exists

@ Then, some optimum solution contains e*

Proof.
@ let S DO A,S €T be an optimum solution, e* ¢ S

Lemma (Key Lemma)

e given: matroid M = (E,Z), weights w € Z%, A € T,

@ goal: find a maximum weight independent set containing A
@ €' = arg maXeep\ A:Au{e}ez We, ASSUMING e* exists

@ Then, some optimum solution contains e*

Proof.
@ let S DO A,S €T be an optimum solution, e* ¢ S
1. S« Aud{e*}
2: while |5’| < |S] do
3 let e be any element in S\ S" with S"U{e} € Z

> e exists due to exchange property
4. S+ S'uU {6}

Lemma (Key Lemma)

e given: matroid M = (E,Z), weights w € Z%, A € T,

@ goal: find a maximum weight independent set containing A
@ €' = arg maXeep\ A:Au{e}ez We, ASSUMING e* exists

@ Then, some optimum solution contains e*

Proof.
@ let S DO A,S €T be an optimum solution, e* ¢ S
1. S« Aud{e*}
2: while |S’| < |S| do
3 let e be any element in S\ S" with S"U{e} € Z
> e exists due to exchange property
4: S"+ S'U{e}

e 5" and S differ by exactly one element

Lemma (Key Lemma)

e given: matroid M = (E,Z), weights w € Z%, A € T,

@ goal: find a maximum weight independent set containing A
@ €' = arg maXeep\ A:Au{e}ez We, ASSUMING e* exists

@ Then, some optimum solution contains e*

Proof.
@ let S DO A,S €T be an optimum solution, e* ¢ S
0 S+ AU {e*}
. while |S'| < |S| do
3 let e be any element in S\ S" with S"U{e} € Z
> e exists due to exchange property

N =

4. S+ S'uU {6}
e 5" and S differ by exactly one element
o w(S) =3 cqwe>w(S) = Sis also optimum O

4
\

@ Greedy Algorithms and Matroids
@ Recap: Maximum-Weight Spanning Tree Problem
@ Maximum-Weight Independent Set in Matroids
@ Examples of Matroids

© Greedy Approximation Algorithms
@ (Inn + 1)-Approximation for Set-Cover
@ (1 — 2)-Approximation for Maximum Coverage
@ Submodular Functions
° (1 — %)—Approximation for Cardinality-Constraied
Submodular Maximization

15/41

@ E: the ground set Z: the family of independent sets

16/41

@ E: the ground set Z: the family of independent sets

@ Uniform Matroid: k € Z+y.
I={ACE:|Al <k}

16/41

Examples of Matroids

@ F: the ground set Z: the family of independent sets
@ Uniform Matroid: k € Z+y.
I={ACE:|Al <k}

e Partition Matroid: partition (E4, Es, - - , E;) of E, positive
integers kq, ko, -+, k;

I={ACE:|ANE; <k;,Vielt]}

Examples of Matroids

@ F: the ground set Z: the family of independent sets

@ Uniform Matroid: k € Z+y.
I={ACE:|Al <k}
e Partition Matroid: partition (E4, Es, - - , E;) of E, positive
integers kq, ko, -+, k;
I={ACE:|ANE; <k;,Vielt]}
@ Laminar Matroid: laminar family of subsets of F
{E1, Es,--- , E}, positive integers ki, ko, - -+ , ki
I={ACE:|ANE]| <k,Vielt]}.

Def. A family {E), Es,--- , E;} of subsets of E is said to be
laminar if for every two distinct subsets F;, F; in the family, we
have E;NE;=0or E; C E; or E; C E,.

==

° {{1},{1,2},{3,4},{5},{3,4,5,6},{1,2,3,4,5,6}} is a

laminar family.
|

Examples of Matroids

@ F: the ground set Z: the family of independent sets
@ Graphic Matroid: graph G = (V, E)
I={ACE:(V,A)is a forest}

Examples of Matroids

e E: the ground set Z: the family of independent sets
@ Graphic Matroid: graph G = (V, E)

I={ACE:(V,A)is a forest}
@ Transversal Matroid: a bipartite graph G = (E' W B, £)

Z = {A C E : there is a matching in G covering A}

Examples of Matroids

e FE: the ground set Z: the family of independent sets
@ Graphic Matroid: graph G = (V, E)
I={ACE:(V,A)is a forest}
@ Transversal Matroid: a bipartite graph G = (E' W B, £)
Z = {A C E : there is a matching in G covering A}
@ Linear Matroid: a vector 7, € R? for every e € E/

Z ={A C E : vectors {U.}.ca are linearly independent}

Examples of Matroids

@ F: the ground set Z: the family of independent sets
@ Graphic Matroid: graph G = (V, E)
I={ACE:(V,A)is a forest}
@ Transversal Matroid: a bipartite graph G = (E' W B, £)
Z = {A C E : there is a matching in G covering A}
@ Linear Matroid: a vector 7, € R? for every e € E/

Z ={A C E : vectors {U.}.ca are linearly independent}

Relationship between matroids

Laminar\
Uniform —— Partition Aransvers‘?unear

Graphic

4

||| /| /| /|
olo|—|o|lolo|—
wl IS S|=|—]]
wieIel e -
.m O ||~ L1 =
gl |Sl—|s
S| |IS|S|—H |~
iy) el (=N ==}
S [| [| | — [~—
0 [||| |
AN CoN NGNS
S O~ ||| | e | <
. — e(((((((
2
)
]
=
—
3
£ .
O
<
%) <t
=)
o
- i
(g°]
=
QO
g
=~ (]
p -
(@)
<

19/41

A Laminar Matroid is A Linear Matroid

Example
sets | upper bounds
{1, 2,3} 2
{3,4,5} 2
{1,2,3,4,5,6} 3

A DAG (left to right)
1

S Ot s W N
~

A Laminar Matroid is A Linear Matroid

A DAG (left to right)

Example 1 d
sets | upper bounds 2
{1,2,3} 2 3 e
{3,4,5} 2 4 f
{1,2,3,4,5,6} 3 5
6 g

2%, 2%, 2¢ € R? are linearly independent rational vectors

2 2% 2 29 rand(0,1) - 2% + rand(0, 1) - 2° + rand(0,1) - x
xl, 2% 23 rand(0,1) - 2¢ + rand(0,1) - =

x4 2% 2% rand(0,1) - 2/ + rand(0, 1) - 29

each rand(0, 1) gives an independent random real in [0, 1]

almost surely, all the random numbers are algebraically
independent

@ Greedy Algorithms and Matroids
@ Recap: Maximum-Weight Spanning Tree Problem
@ Maximum-Weight Independent Set in Matroids
@ Examples of Matroids

e Greedy Approximation Algorithms
@ (Inn + 1)-Approximation for Set-Cover
@ (1 —1)-Approximation for Maximum Coverage
@ Submodular Functions
° (1 — %)—Approximation for Cardinality-Constraied
Submodular Maximization

21/41

Recap: Approximation Algorithms

@ For minimization problems:

cost of our solution

approximation ratio :=

cost of optimum solution —

@ For maximization problems:

value of our solution

approximation ratio :=

value of optimum solution —

or

. : value of optimum solution
approximation ratio :=

value of our solution

@ Greedy Algorithms and Matroids
@ Recap: Maximum-Weight Spanning Tree Problem
@ Maximum-Weight Independent Set in Matroids
@ Examples of Matroids

© Greedy Approximation Algorithms
@ (Inn + 1)-Approximation for Set-Cover
° (1 — %)—Approximation for Maximum Coverage
@ Submodular Functions
° (1 — %)—Approximation for Cardinality-Constraied
Submodular Maximization

23/41

Set Cover
Input: U, |U| = n: ground set
51,82, , 8 CU
Output: minimum size set C' C [m] such that | J,. S;i = U

24/41

Set Cover
Input: U, |U| = n: ground set
S1, 52, ,Sm CU
Output: minimum size set C' C [m] such that | J,. S;i = U

Greedy Algorithm for Set Cover
1: C«+ @, U+U
2: while U’ # () do
3 choose the ¢ that maximizes |U’ N S|
& O« CU{}U « U\S
5. return C

@ g: minimum number of sets needed to cover U

Lemma Let u;,t € Z>(be the number of uncovered elements
after ¢ steps. Then for every t > 1, we have

1
Ut S (1 — —> s Up—1-
g

@ g: minimum number of sets needed to cover U

Lemma Let u;,t € Z>(be the number of uncovered elements
after ¢ steps. Then for every t > 1, we have

1
U < <1 — —> cUp—1-
g
Proof.

e Consider the g sets 57,53, , Sy in optimum solution
e STUSSU---US; =U

@ g: minimum number of sets needed to cover U

Lemma Let u;,t € Z>(be the number of uncovered elements
after ¢ steps. Then for every t > 1, we have

1
U < <1 — —> cUp—1-
9

Proof.

e Consider the g sets 57,53, , Sy in optimum solution
@ STUSU---US;=U

@ at beginning of step ¢, some set in 57,55, ,.5; must

contain > “tT‘l uncovered elements

Ut—1 __ 1
@ up S U — 7 (1 - 5) Ut—1.-

Proof of (Inn + 1)-approximation.

@ Lett=[g-Inn]. ug =n. Then
1 Inn 1
UtS(l——)gl n<e M.p=n.—=1.
g n
@ So u; = 0, approximation ratio < “’%M <Inn+ 1.]

26/41

Proof of (Inn + 1)-approximation.

@ Lett=[g-lnn]. up =n. Then

up < (1 — ;})g'lnn n<e M.p

I

S
S

I

—_

@ So u; = 0, approximation ratio < WL%M <Inn+1.

@ A more careful analysis gives a H,,-approximation, where
H,=1+ % + % 4+ % is the n-th harmonic number.
e In(n+1)<H,<Ilnn+1.

Proof of (Inn + 1)-approximation.
@ Lett=[g-Inn]|. ug =n. Then

Inn

1g~1nn _
) ‘n<e n

<(1-=
ut_(g

Il
3

@ So u; = 0, approximation ratio < (g'lsfn"w <Inn+1.

@ A more careful analysis gives a H,,-approximation, where
H,=1+ % + % 4+ % is the n-th harmonic number.
e In(n+1)<H,<Ilnn+1.

(1 — ¢) Inn-hardness for any ¢ = Q(1)

Let ¢ > 0 be any constant. There is no polynomial-time

(1 — ¢) In n-approximation algorithm for set-cover, unless

@ NP C quasi-poly-time, [Lund, Yannakakis 1994; Feige 1998|
e P = NP. [Dinur, Steuer 2014]

@ Greedy Algorithms and Matroids
@ Recap: Maximum-Weight Spanning Tree Problem
@ Maximum-Weight Independent Set in Matroids
@ Examples of Matroids

© Greedy Approximation Algorithms
@ (Inn + 1)-Approximation for Set-Cover
o (1— 1)-Approximation for Maximum Coverage
@ Submodular Functions
° (1 — %)—Approximation for Cardinality-Constraied
Submodular Maximization

27/41

@ set cover: use smallest number of sets to cover all elements.

@ maximum coverage: use k sets to cover maximum number of
elements

@ set cover: use smallest number of sets to cover all elements.
@ maximum coverage: use k sets to cover maximum number of
elements
Maximum Coverage
Input: U, |U| = n: ground set,
Sy,8,+-, 8, CU, k € [m)]
Output: C C [m],|C| = k with the maximum J,. S;

@ set cover: use smallest number of sets to cover all elements.
@ maximum coverage: use k sets to cover maximum number of
elements
Maximum Coverage
Input: U, |U| = n: ground set,
S1,82,+++, 8, CU, k € [m)]
Output: C C [m],|C| = k with the maximum J,. S;

Greedy Algorithm for Maximum Coverage

1. C«+0U«+U

2: for t < 1 to k do

3: choose the ¢ that maximizes |U’ N S;|
4: C+ CU{i},U < U\ S;

5. return C

Theorem Greedy algorithm gives (1 — %)-approximation for
maximum coverage.

J

Theorem Greedy algorithm gives (1 — %)—approximation for
maximum coverage.

Proof.
@ 0: max. number of elements that can be covered by k sets.
@ p;: #(covered elements) by greedy algorithm after step ¢

Theorem Greedy algorithm gives (1 — %)—approximation for
maximum coverage.

Proof.

@ 0: max. number of elements that can be covered by k sets.
@ p;: #(covered elements) by greedy algorithm after step ¢
0 — D1

@ Pt > P+ 3

Theorem Greedy algorithm gives (1 — %)—approximation for
maximum coverage.

Proof.
@ 0: max. number of elements that can be covered by k sets.
@ p;: #(covered elements) by greedy algorithm after step ¢
0 — D1

k
@ 0—p < 0—pPry — O_],?_l = (1 - %)(O—Pt—ﬂ

@ Pt > P+

Theorem Greedy algorithm gives (1 — %)—approximation for
maximum coverage.

Proof.
@ 0: max. number of elements that can be covered by k sets.
@ p;: #(covered elements) by greedy algorithm after step ¢
0 — D1

k

@ 0—p;<0—pPi_1 —

@ Pt > P+

0—Pi-1 __
k

o—pr < (1= 1) o—po) <

1- %) (0—pi1)

-0

o=

Theorem Greedy algorithm gives (1 — %)—approximation for
maximum coverage.

Proof.

@ 0: max. number of elements that can be covered by k sets.

@ p;: #(covered elements) by greedy algorithm after step ¢

0 — D1
k

@ 0—p < 0—pp1—

@ Pt > P+

0—Pi-1 __
k

0—px < (1—‘) (0 —po) <
D > (1——) 0]

1- %) (0—pi1)

-0

o=

Theorem Greedy algorithm gives (1 — %)—approximation for
maximum coverage.

Proof. |
@ 0: max. number of elements that can be covered by k sets.
@ p;: #(covered elements) by greedy algorithm after step ¢

0 — P

°pt2pt—l+%

e o-nSomp = (1Yo p

°0—pk§(—%) (O—PO)S%'O

opkz(l—é)-o]

J

The (1 — 1)-approximation extends to a more general problem.

@ Greedy Algorithms and Matroids
@ Recap: Maximum-Weight Spanning Tree Problem
@ Maximum-Weight Independent Set in Matroids
@ Examples of Matroids

© Greedy Approximation Algorithms
@ (Inn + 1)-Approximation for Set-Cover
@ (1 — 2)-Approximation for Maximum Coverage
@ Submodular Functions
° (1 — %)—Approximation for Cardinality-Constraied
Submodular Maximization

30/41

Def. Let n € Z-,. A set function f: 2" — R is called
submodular if it satisfies one of the following three equivalent
conditions:

(1) VA,BC|n):
f(AUB)+ f(AN B) < f(A) + f(B).

(2) VACBC|[n],i€[n]\B:
f(BU{i}) = f(B) < f(AU{i}) — f(A).

(3) VACIn|i,jen\Ai#j:
fFAU{i,g}) + f(A) < fF(AU{i}) + fF(AU{5}).

Def. Let n € Z-,. A set function f: 2" — R is called
submodular if it satisfies one of the following three equivalent
conditions:

(1) VA, BCn:
f(AUB) + f(ANB) < f(A) + f(B).

(2) VAC BC|[n],i €[n]\B:
f(BU{i}) — f(B) < f(AU{i}) — f(A).

(3) VACIn],i,j€n]\4,i#:
fAU{i,i}) + f(A) < f(Au{i}) + F(AU {5}

@ (2): diminishing marginal values: the marginal value by getting
7 when | have B is at most that when | have A C B.

Def. Let n € Z-,. A set function f: 2" — R is called
submodular if it satisfies one of the following three equivalent
conditions:

(1) VA, BCn:
f(AUB) + f(ANB) < f(A) + f(B).

(2) VAC BC|[n],i €[n]\B:
f(BU{i}) — f(B) < f(AU{i}) — f(A).

(3) VACIn],i,j€n]\4,i#:
fAU{i,i}) + f(A) < f(Au{i}) + F(AU {5}

@ (2): diminishing marginal values: the marginal value by getting
7 when | have B is at most that when | have A C B.

o (=2)=0B), B)=2=01

e linear function: f(S sz,‘v’S C [n]

€S

32/41

Examples of Sumodular Functions

@ linear function: f(S sz,vs -

€S

@ budget-additive function: f(S mln{sz, } VS C [n]

€S

Examples of Sumodular Functions

@ linear function: f(S sz,vs -

€S

@ budget-additive function: f(S mln{sz, } VS C [n]
€S
@ coverage function: given sets Sq, S5, -+ ,.5, C €,
\U S| .ve c [n]

Examples of Sumodular Functions

@ linear function: f(S ZwZ,VS -

€S
e budget-additive function: f(S mln{sz, },‘V’S C [n]
€S
@ coverage function: given sets Sq, S5, -+ ,.5, C €,
)= U, S| ve <

@ matroid rank function:

Def. Given a matroid M = (E,Z), the rank of any AC E'is
defined as

rm(A) =max {|A'|: A/ C A A eI}

The function 7 : 2% — Zs is called the rank function of M.

Examples of Sumodular Functions

@ linear function: f(S ZwZ,VS -

€S
e budget-additive function: f(S mln{sz, },‘V’S C [n]
€S
@ coverage function: given sets Sq, S5, -+ ,.5, C €,
)= U, S| ve <

@ matroid rank function:

Def. Given a matroid M = (E,Z), the rank of any AC E'is
defined as

rm(A) =max {|A'|: A/ C A A eI}

The function 7 : 2% — Zs is called the rank function of M.

@ cut function: given graph G = ([|, E)
= |E(4,[n]\ 4)],

C [n]

@ linear function, budget-additive function, coverage function,

33/41

Examples of Sumodular Functions

@ linear function, budget-additive function, coverage function,

@ matroid rank function, cut function

Examples of Sumodular Functions

@ linear function, budget-additive function, coverage function,
@ matroid rank function, cut function

@ entropy function: given random variables X, X5, -+, X,

£(S) == H(X,:i € S),YS C [n]

Examples of Sumodular Functions

@ linear function, budget-additive function, coverage function,
@ matroid rank function, cut function

@ entropy function: given random variables X, X5, -+, X,

£(S) == H(X,:i € S),YS C [n]

Def. A submodular function f : 2" — R is said to be monotone
if f(A) < f(B) for every A C B C [n].

Examples of Sumodular Functions

@ linear function, budget-additive function, coverage function,
@ matroid rank function, cut function

@ entropy function: given random variables X, X5, -+, X,

£(S) == H(X,:i € S),YS C [n]

Def. A submodular function f : 2[") — R is said to be monotone
if f(A) < f(B) for every AC B C [n].

Def. A submodular function f : 2[") — R is said to be
symmetric if f(A) = f([n]\ A) for every A C [n].

Examples of Sumodular Functions

@ linear function, budget-additive function, coverage function,
@ matroid rank function, cut function

@ entropy function: given random variables X, X5, -+, X,

£(S) == H(X,:i € S),YS C [n]

Def. A submodular function f : 2[") — R is said to be monotone
if f(A) < f(B) for every AC B C [n].

Def. A submodular function f : 2[") — R is said to be
symmetric if f(A) = f([n]\ A) for every A C [n].

@ coverage, matroid rank and entropy functions are monotone

Examples of Sumodular Functions

@ linear function, budget-additive function, coverage function,
@ matroid rank function, cut function

@ entropy function: given random variables X, X5, -+, X,

£(S) = H(X;:i € S),¥S C [n]

Def. A submodular function f : 2[") — R is said to be monotone
if f(A) < f(B) for every AC B C [n].

Def. A submodular function f : 2[") — R is said to be
symmetric if f(A) = f([n]\ A) for every A C [n].

@ coverage, matroid rank and entropy functions are monotone

@ cut function is symmetric

@ Greedy Algorithms and Matroids
@ Recap: Maximum-Weight Spanning Tree Problem
@ Maximum-Weight Independent Set in Matroids
@ Examples of Matroids

© Greedy Approximation Algorithms
@ (Inn + 1)-Approximation for Set-Cover
° (1 — %)—Approximation for Maximum Coverage
@ Submodular Functions
e (1 —1)-Approximation for Cardinality-Constraied
Submodular Maximization

34/41

(1 — %)-Approximation for Submodular
Maximization with Cardinality Constraint

Submodular Maximization under a Cardinality Constraint
Input: An oracle to a non-negative monotone submodular
function f : 2" — R, k € [n]
Output: A subset S C [n] with |S| = k, so as to maximize f(S)

(1 — %)-Approximation for Submodular
Maximization with Cardinality Constraint

Submodular Maximization under a Cardinality Constraint
Input: An oracle to a non-negative monotone submodular
function f : 2" — R, k € [n]
Output: A subset S C [n] with |S| = k, so as to maximize f(S)

@ We can assume f()) =0

(1 - %)-Approximation for Submodular
Maximization with Cardinality Constraint

Submodular Maximization under a Cardinality Constraint
Input: An oracle to a non-negative monotone submodular
function f : 2" — R, k € [n]
Output: A subset S C [n] with |S| = k, so as to maximize f(S)

@ We can assume f()) =0

Greedy Algorithm for the Problem
1. S« 0
2: fort < 1to k do
3: choose the i that maximizes f(S U {i})
4. S+ SuU {Z}
5. return S

Theorem Greedy algorithm gives (1 — %)-approximation for
submodular-maximization under a cardinality constraint.

J

Theorem Greedy algorithm gives (1 — %)-approximation for
submodular-maximization under a cardinality constraint.

Proof.
@ o: optimum value

@ p,;: value obtained by greedy algorithm after step ¢

@ need to prove: p; > pi_ 1+%
@ 0—pt < 0— D 1—%:(1—%)(0—%71)
@ 0—pp < (1——) (0—po) <10

Di > (1——) 0

Def. A set function f : 2" — R is sub-additive if for every
two sets A, B C [n], we have f(AU B) < f(A) + f(B).

37/41

Def. A set function f : 2" — R is sub-additive if for every
two sets A, B C [n], we have f(AU B) < f(A) + f(B).

Lemma A non-negative submodular set function f : 2" — R,
is sub-additive.

Def. A set function f : 2" — R is sub-additive if for every
two sets A, B C [n], we have f(AU B) < f(A) + f(B).

Lemma A non-negative submodular set function f : 2" — R,
is sub-additive.

Proof.
For A, B C [n], we have f(AUB) + f(ANB) < f(A) + f(B).
So, f(AUB) < f(A)+ f(B) as f(ANB) > 0. O

V.

Lemma Let f: 2" — R be submodular. Let S C [n], and
fs(A) = f(SUA)— f(S) for every A C [n]. (fs is the marginal
value function for set S.) Then fs is also submodular.

Lemma Let f: 2 — R be submodular. Let S C [n], and
fs(A) = f(SUA)— f(S) for every A C [n]. (fs is the marginal
value function for set S.) Then fs is also submodular.

Proof. |
o Let A, B C [n]\ S; it suffices to consider ground set [n] \ S.

fs(AUB) + fs(AN B) — (fs(A4) + fs(B))
= f(SUAUB) - f(S) + f(SU(AN B)) — f(5)

— (F(SUA) = £(8) + f(SUB) - £(5))
=f(SUAUB)+ f(SU(ANB))— f(SUA)— f(SUB)
<0

@ The last inequality is by SUAUB = (SUA) U (SUB),
SU(ANB) = (SUA)N(SUB) and submodularity of f. [

Proof of p; > p,_y + =F=L.

@ S* C [n]: optimum set, |S*| =k, o = f(S*)

@ S: set chosen by the algorithm at beginning of time step ¢
S| =t —1, p1 = f(S)

Proof of p; > py—1 + =42

@ S* C [n]: optimum set, |S*| =k, o = f(S*)

@ S: set chosen by the algorithm at beginning of time step ¢
|S| =t—1,p1= f(S)

@ fs is submodular and thus sub-additive

f(S) S Y fsli) = e S fs() 2 pfs(S)

i€S*

Proof of py > py_1 + “F=.

@ S* C [n]: optimum set, |S*| =k, o = f(S*)

@ S: set chosen by the algorithm at beginning of time step ¢
S| =t—1, pr1 = f(S5)

@ fs is submodular and thus sub-additive

f(S) S Y fsli) = e S fs() 2 pfs(S)

i€S*

@ for the 7, we have

Submodular Maximization for Monotone Functions:

Constraint Approx. | Hardness Technique
S| < k 1—1/e| 1-1/e greedy
matroid 1-1/e| 1—1/e | multilinear ext.

O(1) knapsacks || 1 —1/e | 1—1/e | multilinear ext.

k matroids k+e | QFk/logk) | local search

o ("i)mkant:;:iscks O(k) | Q(k/logk) | multilinear ext.

Submodular Maximization for Non-Monotone Functions:

Constraint Approx. Hardness Technique
Unconstrained 1/2 1/2 combinatorial
matroid 1/e 0.48 multilinear ext.
O(1) knapsacks 1/e 0.49 multilinear ext.

k matroids E+O() | Qk/logk) | local search

k matroids .
O(1) knapsacks O(k) Q(k/logk) | multilinear ext.

From Prof. Jan Vodrak’s slides “Optimization of Submodular Functions”

Submodular Minimization

Constraint Approx. | Hardness | Technique

Unconstrained 1 1 combinatorial

|S| > k, Monotone || O(y/n) * | Q(y/n) * | combinatorial

@ * bounds are for query complexity under oracle model.

	Greedy Algorithms and Matroids
	Recap: Maximum-Weight Spanning Tree Problem
	Maximum-Weight Independent Set in Matroids
	Examples of Matroids

	Greedy Approximation Algorithms
	(n + 1)-Approximation for Set-Cover
	(to.1-1e)to.-Approximation for Maximum Coverage
	Submodular Functions
	(to.1-1e)to.-Approximation for Cardinality-Constraied Submodular Maximization

