Lecturers: F—if, Z20l, X550

Nanjing University

Approximation Algorithm based on LP Rounding

relax

@ Opti. Problem X <= 0/1 Integer Program (IP) == LP

0/1 Integer Program Linear Program Relaxation
min c'x
Ar > b min ¢’z
z € {0,1}" Az > b
z € [0, 1]"
o LP <IP
@ Integer programming is NP-hard, linear programming is in P
@ Solve LP to obtain a fractional = € [0, 1].
@ Round it to an integral Z € {0, 1}" <= solution for X
@ Provec'? <a-c'z,thenc' -2 <a-LP<a-IP=a-opt
@ — q-approximation

min ¢’z

Ax > b
xz € {0,1}"

LP Relaxation

min ¢z
Ax > b

z € [0,1]"

integrality gap 1P = opt

— /

Def. The ratio between IP = opt and
LP is called the integrality gap of the
LP relaxation.

@ The approximation ratio based on this analysis can not be
better than the worst integrality gap.

@ 2-Approximation Algorithm for Weighted Vertex Cover
© 2-Approximation Algorithm for Unrelated Machine Scheduling

© Congestion Minimization *

4/25

Weighted Vertex Cover Problem
Input: graph G = (V, E), vertex weights w € ZY
Output: vertex cover S of G, to minimize) . w,

5/25

e 1z, € {0,1},Vv € V: indicate if we include v in the vertex

cover

Integer Program

Ty +2, > 1
x, € {0,1}

LP Relaxation

min

Ty + 2, > 1

E Woy Ty

veV

V(u,v) € £

z, €10,1] YveV

@ |IP := value of integer program, LP := value of linear program

o LP < IP = opt

Rounding Algorithm

1: Solve LP to obtain solution {z} },cv
>So, LP =3 o wuay <IP
2: return S:={ueV:x,>1/2}

Lemma S is a vertex cover of G. J

Proof.
e Consider any (u,v) € E: we have z} + x5 > 1
@ So, i >1/2o0rx;>1/2 — ueSorvelsS. O

7/25

Rounding Algorithm

1: Solve LP to obtain solution {z }.cv
>So, LP =3 _, w,z < IP
2: return S :={ueV:x,>1/2}

Lemma S is a vertex cover of G.

Lemma cost(S) :=) cqw, < 2-LP.

Proof.
cost(S) = Zwu < Zwu 2z = QZwu-xZ
ues ues ucsS
<2 w, -} =2-LP. O
ueV

Theorem The algorithm is a 2-approximation algorithm for
weighted vertex cover.

© 2-Approximation Algorithm for Weighted Vertex Cover
© 2-Approximation Algorithm for Unrelated Machine Scheduling

© Congestion Minimization *

9/25

Unrelated Machine Scheduling

=
=

Input: J, |J| = n: jobs load=14

M, |M| = m: machines

=
=2

pi;: processing time of

job 7 on machine ¢ job

) — load=8
Output: assignment o : J — M:, —
so as to minimize o
makespan: -
job

load=13

w2 P

je€o—1(i maximum load=14

@ Assumption: we are given a target makespan 7’, and
Dij € [0, T] U {OO} J

@ x;;: fraction of j assigned to i

ZIZ’]‘ =1 \V/] eJ
J

11/25

2-Approximate Rounding Algorithm of
Shmoys-Tardos

sub-machines

Obs. x between J and sub-machines is a point in the
bipartite-matching polytope, where all jobs in J are matched.

@ Recall bipartite matching polytope is integral.
@ x is a convex combination of matchings.

@ Any matching in the combination covers all jobs J.

Lemma Any matching in the combination gives an schedule of
makespan < 27 J

Lemma Any matching in the combination gives an schedule of

makespan < 27'.

a1

J2 T I g1

. Tijp L

J3 Tij i2

i _Zuaa)3

Ja Tijy | - — —
i4

Js

Piji = Pijy = 2 Pijs

sub-machines for 7

Proof.

e focus on machine 7, let i1, 149, - - , 7, be the sub-machines for ¢

@ assume job k; is assigned to sub-machine i;.

a a
(load on i) = Zpikt < Pik, + Z
t=1 =2

< Pik, + injpij <T+T=2T.

J

E Liy_1j = Pij

J

W,

o fix i, use p; for p;;

@ P >pr > 2 D7
@ worst case:

o 1 —141,2—12

o 4 —13,7T—14

m <T

p2 < 0.7p1 + 0.3py

ps < 0.3p2 + 0.5p3 + 0.2py

pr < 0.1pg + 0.5p5 + 0.2pg + 0.2p7

p1+p2+ps+pr < T+ (0.7p; 4+ 0.3p2) + (0.3p2 + 0.5p3 + 0.2py)
+ (0.1p4 + 0.5p5 + 0.2pg + 0.2p7)
< T+ (0.7p; 4+ 0.6p2 + 0.5p3 + 0.3p4 + 0.5p5 + 0.2pg + 0.4p7)
<T+T=2T

@ 2-Approximation Algorithm for Weighted Vertex Cover
© 2-Approximation Algorithm for Unrelated Machine Scheduling

© Congestion Minimization *

16/25

Congestion Minimization
Input: directed graph G = (V, E)
k pairs of vertices (s1,t1), (S2,t2), -+, (Sk, tx)

Output: find k paths: P; from s; to t;, P, from sy to to, - -,
P, from S}, to t}.

cong(e) := |{i € [k] : e € P;}|.

goal: minimize max.cg cong(e)

Q: What if s; = s for every i € [k]?)

A: (Single Source Single Sink) maximum flow problem. Can be
solved exactly in polynomial time. J

Linear Programming

@ P;: set of paths from s; to ¢; ® z;.,1€ [k],e € E:
assume terminals are distinct whether the path P; uses
the edge e or not
° P = Ui Pi &
— Compact LP
Exponential Size LP |
. min C
min C
k
> ap= Vi € [K] C>) z,. VeckE
PeP; i=1
C > Z Tp Vee E C2>1
PeP ¥ _ "
. Vi e k] t
op >0 WP P *) i € [k capacities
(Zie)ecr support 1 unit flow
c>1

from s; to t;

IR wavis

Equivalent Polynomial-Sized LP

@ (*) can be checked using ellipsoid method, or the following LP
network flow

Constraints (*) for a fixed 4

1 v =s;
Z fle_ Z fi,e: -1 v=t
ccdom(v) e€din(v) 0 wveV\{s,t}

fic €10,2;],e € E

Lemma The Exponential-Size LP and the Compact LP for
congestion minimization are equivalent.

e Easy direction:
solution for exponential-size LP = solution for compact LP

Hard Direction: Solution for Compact LP —-
Solution for Exponential-Size LP

@ (*) is feasible: in the digraph G with source s;, sink ¢; and
edge capacities z; ., the maximum flow has value at least 1.

@ We can find (yp > 0)pep, such that

Z <., Vee€ E and Zypzl

PeP;:P>i PeP;
@ (yp)pep is a solution for exponential size LP.

@ We assume we are given (yp)pep, using the sparse
representation.

Rounding Algorithm

1: for every i < 1 to k do
2: independently and randomly choose P; so that

Pr[B = P] :Z'p,VP € ,Pl

3: return P, P, --- | Py

Analysis for a fixed e €

o Prle € P| = i =Y pep,.pse TP
> Zie[k’] Tie < C

e Let X; € {0,1} indicate if e € P,
o E[X;| =u;,

o cong(c) = ¥,y X

Using Chernoff Bound:

65 ©
> < |\ —
P |z 00| = (e

66

Sm SinCCCZl

@ We need to choose a large enough ¢ so that
how big should ¢ be?

@ To get an estimate, we replace ed with 1, and 1+ § with §
1
on2"

5
0 § = O(—22") suffices.
loglogn

el 1
(1+5)1+6 S 2n2

@ So, we need

@ For some § = O(lolgoign), we have

Prlcong(e) > (1 +6)C] < &

2n2 "

@ Using Union Bound over all edges e € E

Pr[3e € E,cong(e) > (1 +6)C] <

Pr[Ve € E,cong(e) < (1+0)C] >

logn

@ Remarks: the approximation ratio is as bad as O(p;:7) only
when C'is a constant.

@ As (' becomes bigger, the ratio becomes better.
e If C' = O(logn), then the approximation ratio can be O(1).

@ The algorithm can be derandomized using the idea of
conditional expectation.

Summary

@ 2-approximation algorithm for weighted vertex cover

@ 2-approximation for unrelated machine scheduling

e O (—%"_)_approximation for congestion minimization
loglogn

	2-Approximation Algorithm for Weighted Vertex Cover
	2-Approximation Algorithm for Unrelated Machine Scheduling
	Congestion Minimization *

