
Advanced Algorithms (Fall 2024)

Linear Programming Rounding Algorithms

Lecturers: 尹一通，栗师，刘景铖

Nanjing University

2/25

Approximation Algorithm based on LP Rounding

Opti. Problem X ⇐⇒ 0/1 Integer Program (IP)
relax
===⇒ LP

0/1 Integer Program

min cTx

Ax ≥ b

x ∈ {0, 1}n

Linear Program Relaxation

min cTx

Ax ≥ b

x ∈ [0, 1]n

LP ≤ IP

Integer programming is NP-hard, linear programming is in P

Solve LP to obtain a fractional x ∈ [0, 1]n.

Round it to an integral x̃ ∈ {0, 1}n ⇐⇒ solution for X

Prove cTx̃ ≤ α · cTx, then cT · x̃ ≤ α · LP ≤ α · IP = α · opt
=⇒ α-approximation

3/25

IP

min cTx

Ax ≥ b

x ∈ {0, 1}n

LP Relaxation

min cTx

Ax ≥ b

x ∈ [0, 1]n

IP = opt

LP

integrality gap

α ≥ gap
round

LP = IP = opt

round

Def. The ratio between IP = opt and
LP is called the integrality gap of the
LP relaxation.

The approximation ratio based on this analysis can not be
better than the worst integrality gap.

4/25

Outline

1 2-Approximation Algorithm for Weighted Vertex Cover

2 2-Approximation Algorithm for Unrelated Machine Scheduling

3 Congestion Minimization *

5/25

Weighted Vertex Cover Problem

Input: graph G = (V,E), vertex weights w ∈ ZV
>0

Output: vertex cover S of G, to minimize
∑

v∈S wv

6/25

xv ∈ {0, 1},∀v ∈ V : indicate if we include v in the vertex
cover

Integer Program

min
∑
v∈V

wvxv

xu + xv ≥ 1 ∀(u, v) ∈ E

xv ∈ {0, 1} ∀v ∈ V

LP Relaxation

min
∑
v∈V

wvxv

xu + xv ≥ 1 ∀(u, v) ∈ E

xv ∈ [0, 1] ∀v ∈ V

IP := value of integer program, LP := value of linear program

LP ≤ IP = opt

7/25

Rounding Algorithm

1: Solve LP to obtain solution {x∗
u}u∈V
▷ So, LP =

∑
u∈V wux

∗
u ≤ IP

2: return S := {u ∈ V : xu ≥ 1/2}

Lemma S is a vertex cover of G.

Proof.

Consider any (u, v) ∈ E: we have x∗
u + x∗

v ≥ 1

So, x∗
u ≥ 1/2 or x∗

v ≥ 1/2 =⇒ u ∈ S or v ∈ S.

8/25

Rounding Algorithm

1: Solve LP to obtain solution {x∗
u}u∈V
▷ So, LP =

∑
u∈V wux

∗
u ≤ IP

2: return S := {u ∈ V : xu ≥ 1/2}

Lemma S is a vertex cover of G.

Lemma cost(S) :=
∑

u∈S wu ≤ 2 · LP.

Proof.

cost(S) =
∑
u∈S

wu ≤
∑
u∈S

wu · 2x∗
u = 2

∑
u∈S

wu · x∗
u

≤ 2
∑
u∈V

wu · x∗
u = 2 · LP.

Theorem The algorithm is a 2-approximation algorithm for
weighted vertex cover.

Proof.

cost(S) ≤ 2 · LP ≤ 2 · IP = 2 · (optimum value)

9/25

Outline

1 2-Approximation Algorithm for Weighted Vertex Cover

2 2-Approximation Algorithm for Unrelated Machine Scheduling

3 Congestion Minimization *

10/25

Unrelated Machine Scheduling

Input: J, |J | = n: jobs

M, |M | = m: machines

pij: processing time of
job j on machine i

Output: assignment σ : J 7→M :,
so as to minimize
makespan:

max
i∈M

∑
j∈σ−1(i)

pij

load=14

load=8

load=13

job

job

job

job

job

maximum load=14

96

10
5

5

13
10

11
3

8
12

11/25

Assumption: we are given a target makespan T , and
pij ∈ [0, T] ∪ {∞}

xij: fraction of j assigned to i

∑
i

xij = 1 ∀j ∈ J∑
j

pijxij ≤ T ∀i ∈M

xij ≥ 0 ∀ij

12/25

2-Approximate Rounding Algorithm of

Shmoys-Tardos

xij

J M

J

sub-machines

∑
g xgj = 1

∑
j xgj ≤ 1

Obs. x between J and sub-machines is a point in the
bipartite-matching polytope, where all jobs in J are matched.

13/25

Recall bipartite matching polytope is integral.

x is a convex combination of matchings.

Any matching in the combination covers all jobs J .

Lemma Any matching in the combination gives an schedule of
makespan ≤ 2T .

14/25

Lemma Any matching in the combination gives an schedule of
makespan ≤ 2T .

xij1

xij2

xij3

xij5

xij4

j1

j2

j3

j5

j4

pij1 ≥ pij2 ≥ · · · ≥ pij5

xij1
xij2

xij3

xij4

xij5

i1

i2

i3

i4

j1

j2

j3

j4

j5

i1

i2

i3

i4

sub-machines for i

i

Proof.

focus on machine i, let i1, i2, · · · , ia be the sub-machines for i

assume job kt is assigned to sub-machine it.

(load on i) =
a∑

t=1

pikt ≤ pik1 +
a∑

t=2

∑
j

xit−1j · pij

≤ pik1 +
∑
j

xijpij ≤ T + T = 2T.

15/25

fix i, use pj for pij

p1 ≥ p2 ≥ · · · ≥ p7
worst case:

1→ i1, 2→ i2
4→ i3, 7→ i4

p1 ≤ T

p2 ≤ 0.7p1 + 0.3p2

p4 ≤ 0.3p2 + 0.5p3 + 0.2p4

p7 ≤ 0.1p4 + 0.5p5 + 0.2p6 + 0.2p7

i

1

7

6

5

4

3

2

0.7

0.3

0.5

0.6

0.5

0.2

0.4

1

7

6

5

4

3

2

0.7

i10.3

0.3

i2
0.5

0.2
0.1

i30.5

0.2

0.2 0.2 i4

p1 + p2 + p4 + p7 ≤ T + (0.7p1 + 0.3p2) + (0.3p2 + 0.5p3 + 0.2p4)

+ (0.1p4 + 0.5p5 + 0.2p6 + 0.2p7)

≤ T + (0.7p1 + 0.6p2 + 0.5p3 + 0.3p4 + 0.5p5 + 0.2p6 + 0.4p7)

≤ T + T = 2T

16/25

Outline

1 2-Approximation Algorithm for Weighted Vertex Cover

2 2-Approximation Algorithm for Unrelated Machine Scheduling

3 Congestion Minimization *

17/25

Congestion Minimization

Input: directed graph G = (V,E)

k pairs of vertices (s1, t1), (s2, t2), · · · , (sk, tk)
Output: find k paths: P1 from s1 to t1, P2 from s2 to t2, · · · ,

Pk from Sk to tk.

cong(e) := |{i ∈ [k] : e ∈ Pi}|.
goal: minimize maxe∈E cong(e)

Q: What if si = s for every i ∈ [k]?

A: (Single Source Single Sink) maximum flow problem. Can be
solved exactly in polynomial time.

18/25

Linear Programming

Pi: set of paths from si to ti

assume terminals are distinct

P :=
⋃

i∈[k]Pi

Exponential Size LP

min C∑
P∈Pi

xP = 1 ∀i ∈ [k]

C ≥
∑
P∈P

xP ∀e ∈ E

xP ≥ 0 ∀P ∈ P
C ≥ 1

xi,e, i ∈ [k], e ∈ E:
whether the path Pi uses
the edge e or not

Compact LP

min C

C ≥
k∑

i=1

xi,e ∀e ∈ E

C ≥ 1

(*): ∀i ∈ [k]: capacities
(xi,e)e∈E support 1 unit flow
from si to ti

19/25

Equivalent Polynomial-Sized LP

(*) can be checked using ellipsoid method, or the following LP
network flow

Constraints (*) for a fixed i

∑
e∈δout(v)

fi,e −
∑

e∈δin(v)

fi,e =


1 v = si

−1 v = ti

0 v ∈ V \ {si, ti}
fi,e ∈ [0, xi,e], e ∈ E

Lemma The Exponential-Size LP and the Compact LP for
congestion minimization are equivalent.

Easy direction:
solution for exponential-size LP =⇒ solution for compact LP

20/25

Hard Direction: Solution for Compact LP =⇒
Solution for Exponential-Size LP

(*) is feasible: in the digraph G with source si, sink ti and
edge capacities xi,e, the maximum flow has value at least 1.

We can find (yP ≥ 0)P∈Pi
such that∑

P∈Pi:P∋i

≤ xi,e,∀e ∈ E and
∑
P∈Pi

yP = 1

(yP)P∈P is a solution for exponential size LP.

We assume we are given (yP)P∈P , using the sparse
representation.

21/25

Rounding Algorithm

1: for every i← 1 to k do
2: independently and randomly choose Pi so that

Pr[Pi = P] = xP ,∀P ∈ Pi.

3: return P1, P2, · · · , Pk

Analysis for a fixed e ∈ E

Pr[e ∈ Pi] = xi,e :=
∑

P∈Pi:P∋e xP∑
i∈[k] xi,e ≤ C

Let Xi ∈ {0, 1} indicate if e ∈ Pi

E[Xi] = xi,e

cong(e) =
∑

i∈[k] Xi

22/25

Using Chernoff Bound:

Pr

∑
i∈[k]

Xi ≥ (1 + δ)C

 ≤ (
eδ

(1 + δ)1+δ

)C

≤ eδ

(1 + δ)1+δ
since C ≥ 1

We need to choose a large enough δ so that eδ

(1+δ)1+δ ≤ 1
2n2 ,

how big should δ be?

To get an estimate, we replace eδ with 1, and 1 + δ with δ

So, we need 1
δδ

= 1
2n2 .

δ = O(logn
log logn

) suffices.

23/25

For some δ = O(logn
log logn

), we have

Pr[cong(e) ≥ (1 + δ)C] ≤ 1
2n2 .

Using Union Bound over all edges e ∈ E

Pr[∃e ∈ E, cong(e) ≥ (1 + δ)C] ≤ 1

2n2
·m ≤ 1

2

Pr[∀e ∈ E, cong(e) < (1 + δ)C] ≥ 1− 1

2
=

1

2

24/25

Remarks: the approximation ratio is as bad as O(logn
log logn

) only
when C is a constant.

As C becomes bigger, the ratio becomes better.

If C = Θ(log n), then the approximation ratio can be O(1).

The algorithm can be derandomized using the idea of
conditional expectation.

25/25

Summary

2-approximation algorithm for weighted vertex cover

2-approximation for unrelated machine scheduling

O
(

logn
log logn

)
-approximation for congestion minimization

	2-Approximation Algorithm for Weighted Vertex Cover
	2-Approximation Algorithm for Unrelated Machine Scheduling
	Congestion Minimization *

