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Typical Combinatorial Optimizatiion Problem
Input: [n]: ground set
S feasible sets: a family of subsets of U, often
implicitly given
w;, 1 € [n]: values/costs of elements

Output: the set S € S with the minimum/maximum
w(8) =) ies Wi

Example:
@ Shortest Path, Minimum Spanning Tree

@ Maximum Independent Set, Maximum Matching, Knapsack
Packing
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Typical Combinatorial Optimizatiion Problem
Input: [n]: ground set
S feasible sets: a family of subsets of U, often
implicitly given
w;, 1 € [n]: values/costs of elements

Output: the set S € S with the minimum/maximum
w(8) =) ies Wi

Example:
@ Shortest Path, Minimum Spanning Tree

@ Maximum Independent Set, Maximum Matching, Knapsack
Packing

relax?

e CO problem <= Integer Program (IP) — Linear Program
(LP)

@ In general: Integer programming is NP-hard; linear
programming is in P
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Standard Form of Linear Programs

min cxy; + Ty + -+ + cpy,
a11%1 + @122 + - + a1 Ty > by

a21T1 + Q29T + - -+ + A2,Ty > by

Am,1T1 + Am 222 +- 4+ QmnTn 2 bm

L1, Lo, ,Tnp ZO

@ n: number of variables m: number of constraints
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Standard Form of Linear Programs

min cxy; + Ty + -+ + cpy,
a11%1 + @122 + - + a1 Ty > by

a21T1 + Q29T + - -+ + A2,Ty > by

Am,1T1 + Am 222 +- 4+ QmnTn 2 bm
L1, X2y yTnp Z 0
@ n: number of variables m: number of constraints

@ Other considerations: < constraints? equlities?

@ variables can be negative? maximization problem?



Standard Form of Linear Programs

X1
) n

T = . € R", c
Tn
11 Q12 -+ Qinp
Q21 Q22 -+ Q2p

A= . . : . e R™™ b=
Qm,1 Gm2 Qm,n




min cxy + cay + -+ - + ¢ Xy,
a1121 + @122 + - + a1 Ty > by

A21T1 + Q29%2 + - -+ + Q2. Ty, > by

Am, 121 + Qm,222 SFoceTF Amndn 2 bm

T1,Lo, - XLy >0

@ >: coordinate-wise less than or equal to

Standard Form of
Linear Program

min  c'z

Ax > b
x>0




e feasible region: the set of z's satisfying
Axr > b,z >0
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o feasible region: the set of z's satisfying
Axr > b,z >0

@ a polyhedron is the intersection of finite
number of closed half-spaces

@ so, feasible region is a polyhedron

Polyhedron
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o feasible region: the set of z's satisfying
Axr > b,z >0

@ a polyhedron is the intersection of finite
number of closed half-spaces
@ so, feasible region is a polyhedron

o if every coordinate has an upper and lower
bound in the polyhedron, then the
polyhedron is a polytope

Polyhedron Polytope
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Given a polytope P C R™:
@ The dimension of P is n minus the maximum number of
linearly-independent equalities satisfied by all points in P.
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Given a polytope P C R™:

@ The dimension of P is n minus the maximum number of
linearly-independent equalities satisfied by all points in P.

@ Assume the linear inequality a2 < b holds for every x € P,
and some x € P satisfies a’z = b. Then {z € P:a'z = b} is
said to be a face of P.

@ A face of P is also a polytope.

@ Assume the dimension of P is d. Then a face of P of
dimension d — 1 is said to be a facet of P.
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Given a polytope P C R™:

@ The dimension of P is n minus the maximum number of
linearly-independent equalities satisfied by all points in P.

@ Assume the linear inequality a2 < b holds for every x € P,
and some x € P satisfies a’z = b. Then {z € P:a'z = b} is
said to be a face of P.

@ A face of P is also a polytope.

@ Assume the dimension of P is d. Then a face of P of
dimension d — 1 is said to be a facet of P.

a f;‘ace ‘(L‘f.él(i(t

a face I I

! a face
! /’ _a facet Y *
* / - - |

y Vg I

imef}sion =3

—_—————
s
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@ x is a convex combination of {z(M, z® ... M} if the
following condition holds: there exist A\, Ao, -+, A\ € [0, 1]
such that

M AN+ N=1, Mz 4+ Az® 4+ N2 =2
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', 2" € P such that x is a convex combination of 2’ and z”,
then x is called a vertex/extreme point of P
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Terminology and Preliminaries

@ let P be polytope, © € P. If there are no other points
', 2" € P such that x is a convex combination of 2’ and z”,
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Terminology and Preliminaries

@ let P be polytope, © € P. If there are no other points
', 2" € P such that x is a convex combination of 2’ and z”,
then x is called a vertex/extreme point of P

Lemma A polytope has finite number of vertices, and it is the
convex hull of the vertices.
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Terminology and Preliminaries

@ let P be polytope, © € P. If there are no other points
', 2" € P such that x is a convex combination of 2’ and z”,
then x is called a vertex/extreme point of P

Lemma A polytope has finite number of vertices, and it is the
convex hull of the vertices. J

3

P = conv({x!, 22, 23, 2% 25})



Terminology and Preliminaries

Lemma Let x € R" be a vertex of a
polytope. Then, there are n constraints
in the definition of the polytope, such
that x is the unique solution to the
linear system obtained from the n
constraints by replacing inequalities to
equalities.

4z + 9 > 8

T+ 229 > 6

x>0
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Terminology and Preliminaries

Lemma Let z € R” be a vertex of a <o

T

polytope. Then, there are n constraints | .., .., %}

in the definition of the polytope, such Va1t 28
that x is the unique solution to the
linear system obtained from the n
constraints by replacing inequalities to
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Lemma If the feasible region of a linear program is a polytope,
then the opimum value can be attained at some vertex of the

polytope.




Terminology and Preliminaries

Lemma Let z € R" be a vertex of a )
polytope. Then, there are n constraints | 1., ... . ¥}

in the definition of the polytope, such Va1t 28 )
that z is the unique solution to the . e
linear system obtained from the n " 2‘”2;) o
constraints by replacing inequalities to o | .

equalities. s

T+ 219 =6

Lemma If the feasible region of a linear program is a polytope,
then the opimum value can be attained at some vertex of the

polytope.

Special cases (for minimization linear programs):
o if feasible region is empty, then its value is oo
o if the feasible region is unbounded, then its value can be —oo
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Algorithms for Linear Programming

algorithm running time practice
Simplex Method exponential time fast
Ellipsoid Method polynomial time slow
Interior Point Method | polynomial time fast




Simplex Method

o [Dantzig, 1946]

@ move from one vertex to another, so
as to improve the objective

@ repeat until we reach an optimum
vertex
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o [Dantzig, 1946]

@ move from one vertex to another, so
as to improve the objective

@ repeat until we reach an optimum
vertex

@ the number of iterations might be expoentially large; but
algorithm runs fast in practice

@ [Spielman-Teng,2002]: smoothed analysis
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Interior Point Method

e [Karmarkar, 1984]

@ keep the solution inside the
polytope

@ design penalty function so
that the solution is not too
close to the boundary

@ the final solution will be

arbitrarily close to the
optimum solution
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o [Karmarkar, 1984]

@ keep the solution inside the
polytope

@ design penalty function so
that the solution is not too
close to the boundary

@ the final solution will be
arbitrarily close to the
optimum solution

@ polynomial time
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e [Khachiyan, 1979]
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e [Khachiyan, 1979]
@ used to decide if the feasible region is empty or not
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Ellipsoid Method

e [Khachiyan, 1979]

@ used to decide if the feasible region is empty or not

@ maintain an ellipsoid that contains
the feasible region

@ query a separation oracle if the
center of ellipsid is in the feasible

region:
e yes: then the feasible region is not

empty )
e no: cut the elliposid in half, find P

smaller ellipsoid to enclose the
half-ellipsoid, and repeat

@ polynomial time, but impractical



Q: The exact running time of these algorithms? J
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@ it depends on many parameters: #variables, #constraints,
#(non-zero coefficients), magnitude of integers

@ precision issue



Q: The exact running time of these algorithms?

@ it depends on many parameters: #variables, #constraints,
#(non-zero coefficients), magnitude of integers

@ precision issue

Open Problem

Can linear programming be solved in strongly polynomial time
algorithm?
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Applications of Linear Programming

@ domain: computer science, mathematics, operations research,
economics

@ types of problems: transportation, scheduling, clustering,
network routing, resource allocation, facility location

Research Directions

@ polynomial time exact algorithm

@ polynomial time approximation algorithm

@ sub-routines for the branch-and-bound metheod for integer
programming

@ other algorithmic models: online algorithm, distributed
algorithms, dynamic algorithms, fast algorithms




Typical Combinatorial Optimizatiion Problem
Input: [n]: ground set
S: feasible sets: a family of subsets of U, often
implicitly given
w;, 1 € [n]: values/costs of elements

Output: the set S € S with the minimum/maximum
w(S) =3 ics Wi

Def. For any S C [n], we use x° € {0,1}["] to denote the
indicator vector for S:

=0 ifi ¢S
! 1 ifie S

polytope of interest: P = conv({xs .S € S})




Examples

Bipartite Matching Polytope
@ Given bipartite graph G = (LUR, E)
® Ppy = conv({x" : M is a matching in G})

General Matching Polytope
e Given a graph G = (V, E)
@ Pgu = conv ({XM : M C E is a matching in G})

Spanning Tree Polytope
@ Given a connected graph G = (V, E)
® Psr:=conv ({x* : T C E is a spanning tree of G'})




e Given the complete graph G = (V, (‘2/))

o Prsp := conv({x¥, S C () is a TSP tour of V})
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polytope of interest: P = conv({x" : S € S}) J
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@ Mechanic description of P:

E w;x; < max W; Vuw € R
. Ses
€S €S

@ However, the description is often useless; many constraints are
redundant

@ It is often interesting and important to find the facet-defining
constraints; those are the constraints that can not be removed



polytope of interest: P = conv({XS : S € S})

@ Mechanic description of P:

E w;x; < max W; Vuw € R
. Ses
€S €S

@ However, the description is often useless; many constraints are
redundant

@ It is often interesting and important to find the facet-defining
constraints; those are the constraints that can not be removed
© In some cases, P has polynomial number of facets

© In some cases, P has exponential number of facets, but has an
efficient separation oracle.

© In some cases, P does not have an efficient separation oracle,
unless P = NP.



polytope of interest: P = conv({XS .S € S})

Def. A polytope P C [0, 1]" is said to be integral, if all vertices
of P arein {0,1}".

v

Lemma Fora Q@ C [0,1]", if 9N{0,1}" ={x°: S € S} and Q

is integral, then Q = P.

4
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polytope of interest: P = conv({x”: S € S})

Def. A polytope P C [0, 1]" is said to be integral, if all vertices
of P are in {0,1}".

Lemma Fora Q@ C [0,1]", if 9N{0,1}" ={x°: S € S} and Q
is integral, then Q = P.

Proof.
@ P C O, as every vertex of P is x° for some S € S, and

x° € Q.
@ O C P: take some vertex z of Q
e Qisintegral = z is integral = z = x° for some S C [n]
0 As ON{0,1}"={x*: S €S8}, x=x"forsome S €8
exrcP O] )

~




polytope of interest: P = conv({XS .S € 8}) J

Lemma Fora Q C[0,1]*, if 9N {0,1}" = {x*: S € S} and Q
is integral, then Q = P. J
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polytope of interest: P = conv({y”: S € S}) J

Lemma Fora Q@ C [0,1]", if 9N{0,1}" ={x°: S € S} and Q
is integral, then Q = P. J

e Often, it is easy to guarantee QN {0,1}" = {x°: S € S}

@ The linear program that defines such a Q is often called a LP
relaxation for the problem.



polytope of interest: P = conv({y”: S € S}) J

Lemma Fora Q@ C [0,1]", if 9N{0,1}" ={x°: S € S} and Q
is integral, then Q = P. J

e Often, it is easy to guarantee QN {0,1}" = {x°: S € S}
@ The linear program that defines such a Q is often called a LP
relaxation for the problem.

@ The harder part is often to prove that Q is integral.



@ Linear Programming
@ Introduction
@ Methods for Solving Linear Programs

© Polytope with Polynomial Number of Facets
@ Bipartite Matching Polytope
@ Polytopes with Totally Unimodular Coefficient Matrices

© Polytopes with Efficient Separation Oracles
@ s-t Cut Polytope
@ Spanning Tree Polytope
@ General Graph (Perfect) Matching Polytope

0 Matroid, Matroid Basis and Matroid Intersection Polytopes *
@ Preliminaries on Matroid Theory
@ Matroid Polytope
@ Matroid Basis and Matroid Intersection Polytope
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Bipartite Matching Polytope

Maximum Weight Bipartite Matching
Input: bipartite graph G = (LW R, F)
edge weights w € ZZ,
Output: a matching M C E so as to
maximize ) __,, W

Bipartite Matching Polytope
@ Given bipartite graph G = (LUR, E)
® Ppy = conv({x" : M is a matching in G})
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Bipartite Matching Polytope
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® Ppy = conv({x" : M is a matching in G})

Theorem 7Pgy; is the set of 2 € R¥ satisfying the following
constraints:
ergl,VveLUR; ze. > 0,Ve € E.
e€d(v)
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maximize ) __,, W

Bipartite Matching Polytope |
@ Given bipartite graph G = (LUR, E)
® Ppy = conv({x" : M is a matching in G})

Theorem 7Pgy; is the set of 2 € R¥ satisfying the following
constraints:
ergl,VveLUR; ze. > 0,Ve € E.
e€d(v)




Theorem 7Ppy; is the set of 2 € R¥ satisfying the following
constraints:

ergl,VveLUR; ze > 0,Ve € E.
e€d(v)

Proof.




Theorem 7Ppy; is the set of 2 € R¥ satisfying the following
constraints:

ergl,VveLUR; ze > 0,Ve € E.
e€d(v)

Proof. |
@ take any x that satisfies the constraints



Theorem 7Ppy; is the set of 2 € R¥ satisfying the following
constraints:

ergl,VveLUR; ze > 0,Ve € E.
e€d(v)

Proof. |
@ take any x that satisfies the constraints

@ prove: x non integral => x non-vertex



Theorem 7Ppy; is the set of 2 € R¥ satisfying the following
constraints:

ergl,VveLUR; ze > 0,Ve € E.
e€d(v)

Proof. |
@ take any x that satisfies the constraints
@ prove: x non integral => x non-vertex

o find 2/, 2" € P: o/ # 1", x = (' + 2")



Theorem 7Ppy; is the set of 2 € R¥ satisfying the following
constraints:

ergl,VveLUR; ze > 0,Ve € E.
e€d(v)

Proof. |

@ take any x that satisfies the constraints

@ prove: x non integral = x non-vertex

o find 2/, 2" € P: o/ # 1", x = (' + 2") 1

@ case 1: fractional edges contain a cycle
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@ prove: x non integral => x non-vertex
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Theorem 7Ppy; is the set of 2 € R¥ satisfying the following
constraints:

Zmegl,VveLUR; ze > 0,Ve € E.
e€d(v)

Proof. |

@ take any x that satisfies the constraints

@ prove: x non integral = x non-vertex

o find 2/, 2" € P: o/ # 1", x = (' + 2") L
@ case 1: fractional edges contain a cycle

e color edges in cycle blue and red

o z’: +e¢ for blue edges, —¢ for red edges

o 2'": —e for blue edges, +¢ for red edges .
@ case 2: fractional edges form a forest

e color edges in leaf-leaf path blue and red



Theorem 7Ppy; is the set of 2 € R¥ satisfying the following
constraints:

Zmegl,VveLUR; ze > 0,Ve € E.
e€d(v)

Proof. |
@ take any x that satisfies the constraints

@ prove: x non integral => x non-vertex

o find 2/, 2" € P: o/ # 1", x = (' + 2") —L

@ case 1: fractional edges contain a cycle =
e color edges in cycle blue and red N
o z’: +e¢ for blue edges, —¢ for red edges te
o 2'": —e for blue edges, +¢ for red edges .

@ case 2: fractional edges form a forest
e color edges in leaf-leaf path blue and red
o z/: +e for blue edges, —e for red edges
o 1”1 —e for blue edges, +¢ for red edges [J
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Def. A matrix A € R™*" is said to be totally unimodular
(TUM), if every sub-square of A has determinant in {—1,0,1}. J

Theorem |If a polytope P is defined by Az > b, x > 0 with a
totally unimodular matrix A and integral b, then P is integral. J




Def. A matrix A € R™*" is said to be totally unimodular
(TUM), if every sub-square of A has determinant in {—1,0,1}.

Theorem |If a polytope P is defined by Az > b, x > 0 with a
totally unimodular matrix A and integral b, then P is integral.

Proof. |
@ Every vertex x € P is the unique solution to the linear system

/ /
(after permuting coordinates): <fé ?) T = (%) where

o A’is a square submatrix of A with det(A’) = +1, ¥ is a

sub-vector of b,
e and the rows for b’ are the same as the rows for A’.
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Proof. |
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sub-vector of b,
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o Let z = (iz) so that A’z! =¥ and 22 = 0.



Def. A matrix A € R™*" is said to be totally unimodular
(TUM), if every sub-square of A has determinant in {—1,0,1}.

Theorem |If a polytope P is defined by Az > b, x > 0 with a
totally unimodular matrix A and integral b, then P is integral.

Proof. |
@ Every vertex x € P is the unique solution to the linear system

/ /
(after permuting coordinates): (13 ?) <%> where

o A’is a square submatrix of A with det(A’) = +1, ¥ is a

sub-vector of b,
e and the rows for b’ are the same as the rows for A’.

1
o Let z = (iz) so that A’z! =¥ and 22 = 0.

| _ det(Al]b)
e Cramer's rule: z, det(AN for every i — x;

Al|b: the matrix of A’ with the i-th column replaced by b O

Lis integer

q



T
11 Ai12 A1z 414 Qip X2 by
(21 Q22 Q23 Q24 25 x3 | > | be
az1 G322 Ga33 (A34 435 Ty bs
Ts

L1, X2, X3, T4, L5 2 0
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Example for the Proof

T
11 Ai12 A1z Aai4 Qaip X2 by
G2,1 Q22 QA3 a4 Q25 x3 | > | b2
az1 a3z AaA33 aA3z4 a35 Xy b3
Ts

T1,22,T3,Ty4,Ts Z 0

The following equation system may give a vertex:

aj1 Ar2 a3 Ar4 Qai1p £y by
a31 G322 Aa33 A3z4 A35 X2
1 0 0 0 0 r3 | =
0 0 0 1 0 T4
0 0 0 0 1 T

S
w

o O O



Example for the Proof

11 Q12 A13 AdA14 dis
a31 G322 Aa33 A34 435
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1

£y
Z2
Z3
Ty
L5



Example for the Proof

11 Q12 A13 AdA14 dis
a31 G322 Aa33 A34 435
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1

Equivalently, the vertex satisfies

12 Aa13 0 0O
azg2 Aa3;3 0 00
0 0 1 00
0 0 010
0 0 001

Iy

Z2

I3 =

Ty

L5
o) by
T3 bs
T = 0
T4 0

Ty 0



Lemma Let A’ € {0,4+1}"*" such that every row of A’ contains
at most one 1 and one —1. Then det(A’) € {0,£1}.

v

Proof.
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@ wlog assume every row of A’ contains one 1 and one —1
e otherwise, we can reduce the matrix
@ treat A’ as a directed graph: columns = vertices, rows = arcs

@ #edges = #vertices = underlying undirected graph
contains a cycle = det(A’) =0 O

Lemma Let A € {0, £1}™*™ such that every row of A contains
at most one 1 and one —1. Then A is TUM.



Lemma Let A’ € {0,£1}"*" such that every row of A’ contains
at most one 1 and one —1. Then det(A’) € {0, +1}.

Proof.
@ wlog assume every row of A’ contains one 1 and one —1
e otherwise, we can reduce the matrix
@ treat A’ as a directed graph: columns = vertices, rows = arcs

@ #edges = #vertices = underlying undirected graph
contains a cycle = det(A’) =0 O

Lemma Let A € {0, £1}™*™ such that every row of A contains
at most one 1 and one —1. Then A is TUM.

Coro. In the LP for s-t network flow problem with integer
capacities, every vertex solution to the LP is integral.



OOO\
0 0 00
1
-1 0 0

-1
0

/1—100000
0
0

1
0

-1 0 0

0

0 O
0
1

0
0
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0 0 00
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-1 0 0

-1
0
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0
0

1
0

-1 0 0

0

0 O
0
1

0
0
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0 00
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-1 0 1
-1 0 0

1

1
0 0 0 O
0 0 0

1

1 -10 0 00
0 -1
0 O

0 0
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0 00
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10
-1 0 1
-1 0 0

1

1
0 0 0 O
0 0 0

1

1 -10 0 00
0 -1
0 O

0 0
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Lemma A matrix A € {0, 1}™*"™ where the 1's on every row
form an interval is TUM.

Proof.
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Lemma A matrix A € {0, 1}™*"™ where the 1's on every row
form an interval is TUM.

Proof.
@ take any square submatrix A’ of A,
@ the 1's on every row of A’ form an interval.

e A'M is a matrix satisfying condition of first lemma, where

1 -1 0 --- 0
0o 1 -1 --- 0
M=1]: : : : co|. det(M) = 1.
0 O 1 -1
0 O 0 1




Lemma A matrix A € {0, 1}™*"™ where the 1's on every row
form an interval is TUM.

Proof.
@ take any square submatrix A’ of A,
@ the 1's on every row of A’ form an interval.

e A'M is a matrix satisfying condition of first lemma, where

1 -1 0 - 0
0o 1 -1 --- 0

M=1]: : : : co|. det(M) = 1.
0o 0 .-~ 1 -1
0 O 0 1

o det(A'M) € {0,£1} = det(A’) € {0,+1}.
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01 1 100
111100
001111
00 0O0T11
000110
01 1 110

|



o O

—

—

—

(=R

00111
000171
01111
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oo o= O
_ O O =
— O~ =
= = s
_ = =0 O

@ (col 1,col 2 —col 1,col 3 —col 2,col 4 — col 3,col 5 — col 4)
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Example for the Proof

01110 0100 -1
11110 1000 O
00111 =1]00120 0
000171 0001 O
01111 0100 O

@ (col 1,col 2 —col 1,col 3 —col 2,col 4 — col 3,col 5 — col 4)



Example for the Proof

01110 0100 -1
11110 1000 O
00111 =1]00120 0
000171 0001 O
01111 0100 O

@ (col 1,col 2 —col 1,col 3 —col 2,col 4 — col 3,col 5 — col 4)

@ every row has at most one 1, at most one —1



Weighted Interval Scheduling Problem
Input: n activities, activity ¢ starts at time s;, finishes at time
fi, and has weight w; > 0
i and j can be scheduled together iff [s;, f;) and
[s;, fj) are disjoint
Output: maximum weight subset of jobs that can be scheduled

[90 ] | 30 | |
I 30 | | 70 ]

@ optimum value= 220



Weighted Interval Scheduling Problem
Input: n activities, activity ¢ starts at time s;, finishes at time
fi, and has weight w; > 0
i and j can be scheduled together iff [s;, f;) and
[s;, fj) are disjoint
Output: maximum weight subset of jobs that can be scheduled

[90 ] | 30 | |
I 30 | | 70 ]

@ optimum value= 220

@ Classic Problem for Dynamic Programming
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Weighted Interval Scheduling Problem

Linear Program
max Z .’ijj
jem) @ The pol.ytope is integral as
the 1's in every column are
consecutive.

> oz <1 vte(T)
JE[nl:tels;, f;)
x; >0 Vjen]
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Lemma The edge-vertex incidence matrix A of a bipartite graph
is totally-unimodular.
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Lemma The edge-vertex incidence matrix A of a bipartite graph
is totally-unimodular.

Proof.
e G = (LYR,E): the bipartite graph
e A’: obtained from A by negating columns correspondent to R

@ each row of A’ has exactly one +1, and exactly one —1

o — A isTUM < Ais TUM O
Example
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Lemma The edge-vertex incidence matrix A of a bipartite graph
is totally-unimodular.

Proof.
e G = (LYR,E): the bipartite graph
e A’: obtained from A by negating columns correspondent to R

@ each row of A’ has exactly one +1, and exactly one —1

o — A'isTUM < A is TUM O
Example
) A 100100
1 00010
1 0 00 0 1
2 > 010100
01 0001
3 6 001010



Lemma The edge-vertex incidence matrix A of a bipartite graph
is totally-unimodular.

Proof.
e G = (LYR,E): the bipartite graph
e A’: obtained from A by negating columns correspondent to R

@ each row of A’ has exactly one +1, and exactly one —1

o — A'isTUM < A is TUM O
Example
. A 100 -1 0 0
100 0 -1 0
1 0 0 O 0 -1
2 > 010 -1 0 0
01 0 O 0 -1
3 6 001 0 -1 0
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A different proof for the theorem we proved:

Theorem 7Ppy; is the set of 2 € R¥ satisfying the following
constraints:
ergl,VveLUR; r, > 0,Ve € E.
e€d(v)

Proof.

The coefficient matrix for the constraints
Zeea(u) z. < 1,Vv € LU R is the vertex-edge incidence matrix of

the graph G. Therefore, the polytope is integral. )
@ remark: bipartiteness is needed. The edge-vertex incidence
011
matrix [ 1 0 1] of a triangle has determinent 2.
110
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Def. A separation oracle for a polytope P C R" is an algorithm
that, given some z* € R",
@ either correctly claims that x € P,
@ or outputs a linear constraint a¥x < b that separating z* from
P: every x € P satisfies aTx < b, but aTz* > b. We say
a®z < b is a separation plane for z*.
The separation oracle is efficient if its running time is polynomial
in the size of the instance plus the size of x




Def. A separation oracle for a polytope P C R" is an algorithm
that, given some z* € R",

@ either correctly claims that x € P,

@ or outputs a linear constraint a¥x < b that separating z* from
P: every x € P satisfies aTx < b, but aTz* > b. We say
a¥x < b is a separation plane for z*.

The separation oracle is efficient if its running time is polynomial
in the size of the instance plus the size of x

@ Clearly, if P C R" can be described using a polynomial-size
LP, then it has an efficient separation oracle.

@ However, there are cases where P C R™ has exponential
number of facets, but still admits an efficient separation oracle.



@ We can use ellipsoid method to solve the LP
min / maxwtxz, z € P, when P has an efficient separation
oracle, using the ellipsoid method.

Ellipsoid Method

@ maintain an ellipsoid that contains
the feasible region

@ query a separation oracle if the
center of ellipsid is in the feasible
region:

e yes: then the feasible region is not
empty 4

e no: cut the elliposid in half, find
smaller ellipsoid to enclose the
half-ellipsoid, and repeat
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@ We can use ellipsoid method to solve the LP
min / maxwtxz, z € P, when P has an efficient separation
oracle, using the ellipsoid method.

Ellipsoid Method

@ maintain an ellipsoid that contains
the feasible region

@ query a separation oracle if the
center of ellipsid is in the feasible
region:

e yes: then the feasible region is not
empty 4

e no: cut the elliposid in half, find
smaller ellipsoid to enclose the
half-ellipsoid, and repeat
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s-t Cut Polytope

Def. Given a digraph G = (V, E), Cisa s-t cutin G, if s and ¢
are disconnected in (V, E'\ C).

® Puin—cut = conv({x? : C'is a s-t cut in G})

Theorem P,in_cu is the set of vectors € RF satisfying the
following inequalities:

er >1 V simple s-t path P *)

ecP

z. € [0, 1] Vee E



s-t Cut Polytope

Def. Given a digraph G = (V, E), Cisa s-t cutin G, if s and ¢
are disconnected in (V, E'\ C).

® Puin—cut = conv({x? : C'is a s-t cut in G})

Theorem P,in_cu is the set of vectors € RF satisfying the
following inequalities:

er >1 V simple s-t path P *)

ecP

er[O,l] Vee B

Q: Given z € [0, 1]F, how can we check if z satisfies all
constraints in (*)?



s-t Cut Polytope

Def. Given a digraph G = (V, E), Cisa s-t cutin G, if s and ¢
are disconnected in (V, E'\ C).

® Puin—cut = conv({x? : C'is a s-t cut in G})

Theorem P,in_cu is the set of vectors € RF satisfying the
following inequalities:

er >1 V simple s-t path P *)

ecP

er[O,l] Vee B

Q: Given z € [0, 1]F, how can we check if z satisfies all
constraints in (*)?

A: Use shortest path algorithm with weights (z.).cp.

),



Theorem P, _cu is the set of vectors z € RE satisfying the
following inequalities:

er > 1 V simple s-t path P (*)
ecP

z. € [0,1] Veec E

Proof of Lemma.
e Given x € [0, 1]F satisfying (*)

@ d,(v),v € V: length of shortest path from s to v, with x
being the weights; so d.(s) = 0 and d,(t) > 1




Theorem P, _cu is the set of vectors z € RE satisfying the
following inequalities:

er > 1 V simple s-t path P (*)

z. € [0,1] Veec E

Proof of Lemma.

e Given x € [0, 1] satisfying (*)

@ d,(v),v € V: length of shortest path from s to v, with x
being the weights; so d.(s) = 0 and d,(t) > 1

@ randomly choose a real # € (0,1)

0 S:={veV:d,(v)<0}, T:=V\S={veV:d,(v)>06}

o C:=FE(ST)




Claim For an edge (u,v) € E, we have

Pr{(u,v) € C] < max{d,(v) — d,(u),0}.

Proof.
@ (u,v) € C happens only if d,(u) < 0 < d,(v).

@ This happens with probability at most
max{d,(v) — dy(u),0} < (). O

Proof of Lemma, Continued
o Ey[x°] <=z

@ We can define a random set C’ so that C' O C' happens with
probability 1, and Ey[x¢'] = z.

@ So x € conv({x“ : C"is a s-t cut in G}) O
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Spanning Tree Polytope
@ Given a connected graph G = (V, E)
® Psr :=conv ({x* : T C E is a spanning tree of G})

Theorem (Spanning Tree Polytope Theorem) Pgr is the set
of vectors € R¥ satisfying the following inequalities:

ecE
> oz <|8|-1 VSCV,2<|S|<n—1 (¥
e€E(S]

T, >0 Vee B

@ Spanning trees correspond to bases of graphic matroid for G

@ Later we prove a more general theorem on matroid polytopes



Theorem (Spanning Tree Polytope Theorem) Pgr is the set
of vectors € R” satisfying the following inequalities:

Zme:n—l

ecE
S m<IS|-1  vSCV2<|s|<n-1 (4
eEE|(S]

e >0 Veec E

Q: How can we check if all constraints in (*) are satisfied?



Theorem (Spanning Tree Polytope Theorem) Pgr is the set

of vectors € R” satisfying the following inequalities:

Zme:n—l

eck
Zx€§\5|—1 VSCV,2<|S|<n—-1
e€E[S

$620 Vee B

Q: How can we check if all constraints in (*) are satisfied?

reduce

A: —— densest sub-graph reduce, haximum flow




Checking if ZeeE[S] T, <|S|—1,¥VSCV

@ We need to check if 35 C V, |€S]|3—1 > 1:

@ Guess a vertex v € S; set w, = 0 and w, = 1 for every

ueV\{v}
@ The problem becomes to check if 35 C V/, ﬂ > 1

uES Wy,




Checking if ZeeE[S] T, <|S|—1,¥VSCV

@ We need to check if 35 C V, |€S]|2—1 > 1:

@ Guess a vertex v € S; set w, = 0 and w, = 1 for every
ueV\{v}
@ The problem becomes to check if 35 C V, % > 1
uE @

@ This is a (weighted) densest subgraph problem




Checking if ZeeE[S] T, <|S|—1,¥VSCV

We need to check if 35 C V, |€S]|2—1 > 1:

@ Guess a vertex v € S; set w, = 0 and w, = 1 for every

ueV\{v}

The problem becomes to check if 35 C V, % > 1
uE @

This is a (weighted) densest subgraph problem

Exercise: It can be solved using maximum flow
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e Given a graph G = (V, E), where |V| is even
® Papm = conv ({xM : M C E is a perfect matching in G})
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General Graph Perfect Matching Polytope

General Perfect Matching Polytope
@ Given a graph G = (V, E), where |V| is even
@ Papm = conv ({XM : M C Eis a perfect matching in G})

Theorem (General Perfect Matching Polytope Theorem)
Papu is the set of vectors 2 € R¥ satisfying the following
inequalities:

Z Te =1 YveV
e€d(v
> ze>1 VS C V,|S] is odd (*)
ecE(S,V\S)

Te >0 Vee B




Theorem (General Perfect Matching Polytope Theorem)
Papu is the set of vectors 2 € R¥ satisfying the following
inequalities:

Z Te=1 YveV
e€d(v)
> oze>1 VS C V,|S] is odd (*)
e€E(S,V\S)
Te > 0 Vee E

Proof of General Perfect Matching Polytope Theorem
@ Clearly, every x € Pgpm satisfies all the LP constraints
@ We prove the LP polytope is integral; this implies lemma

@ We choose the counter-example G with the smallest |V'| + | E],
and focus on a non-integral vertex x of the LP polytope



Proof of General Perfect Matching Polytope Theorem

z, = 0 for some e € E: e could be removed.

2., = 1 for some e € E: e and its 2 end vertices could be

removed.

So z. € (0,

1) for every e € E.

Every v € V has degree at least 2.

Every v € V has degree exactly 2: G is union of disjoint
cycles, x would not be a vertex of LP polytope.

Assume some v € V has degree at least 3; |E| > |V] + 1.

x is the unique solution to a system ot n linear equations from

the LP.

So, some linear equation is

>

e€E(S,V\S)

x. =1 for some S C V with |[S| > 3,|[V\ S| >3

g A
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Proof of General Perfect

Matching Polytope Theorem

@ Consider two instances:
(G/V,2),(G/(V\S),z")

@ Both 2’ and z” satisfy the LP
constraints for their
respective graphs.




Proof of General Perfect
Matching Polytope Theorem

gl
I

I
)

@ Consider two instances:
/ \ (G/V,2'),(G/(V\S), ")

@ Both 2’ and z” satisfy the LP

G% o= @ constraints for their
Yete=1 z. =1

respective graphs.

ol
Il

@ By the minimality assumption:

v’ € conv({x™ : M is a perfect matching in G/S})
2" € conv({x™ : M is a perfect matching in G/(V '\ S)})




S 1 Proof of General Perfect
@ Matching Polytope Theorem

[
71— @ Consider two instances:

/ \ (G/V.2), (G/(V\ ), 2")
@ Both 2’ and z” satisfy the LP

G% Qé @ constraints for their
S =1 5 c

respective graphs.

l’l\

i

@ By the minimality assumption:

2’ € conv({x™ : M is a perfect matching in G/S})
2" € conv({x™ : M is a perfect matching in G/(V '\ S)})

@ Decompose z’ and 2" into a convex combinations of matchings




Proof of General Perfect
Matching Polytope Theorem

I
S

@ Consider two instances:
/ \ (G/V,2),(G/(V\ 5),2")
@ Both 2’ and z” satisfy the LP

G% Qé @ constraints for their
S =1 5 c

respective graphs.

l’l\

i

@ By the minimality assumption:

2’ € conv({x™ : M is a perfect matching in G/S})
2" € conv({x™ : M is a perfect matching in G/(V '\ S)})

@ Decompose z’ and 2" into a convex combinations of matchings
@ Each e € E(S,V \ 5) has the same fraction in combinations




Proof of General Perfect
Matching Polytope Theorem

i
S

@ Consider two instances:

/ \ (G/V, '), (G/(V\ 5),z")

@ Both 2’ and z” satisfy the LP

@ constraints for their
=1
@ By the minimality assumption:

\

¥
i

4

respective graphs.

2’ € conv({x™ : M is a perfect matching in G/S})
2" € conv({x™ : M is a perfect matching in G/(V '\ S)})

@ Decompose z’ and 2" into a convex combinations of matchings
@ Each e € E(S,V \ 5) has the same fraction in combinations

@ “Concatenate” two convex combinations into one convex

combinations of matching in G. So = can not be a vertex. Di




Theorem (General Perfect Matching Polytope Theorem)
Papu is the set of vectors x € R¥ satisfying the following
inequalities:

> ze=1 YoeV
e€d(v)
> ome>1 VS C V,|S] is odd (*)
e€E(S,V\S)
e > 0 Vee E

Q: How can we check if all constraints in (*) are satisfied?



Theorem (General Perfect Matching Polytope Theorem)

Papw is the set of vectors x € R satisfying the following
inequalities:

> ze=1 VoeV
e€d(v)
> ome>1 VS C V, |9 is odd
e€E(S,V\S)
e > 0 Vee E

Q: How can we check if all constraints in (*) are satisfied?

A: Use the Gomory-Hu Tree structure.



Theorem (General Perfect Matching Polytope Theorem)
Papu is the set of vectors x € R¥ satisfying the following
inequalities:

> ze=1 YoeV
e€d(v)
doome>1 VS C V, |9 is odd (*)
e€E(S,V\S)
e > 0 Vee E

Q: How can we check if all constraints in (*) are satisfied?

A: Use the Gomory-Hu Tree structure.

@ inequality in (*) can be replaced by >~ ) 7 < _|S\2—1

@ more convenient to obtain general matching polytope



e Given a graph G = (V, E)
® Pam = conv ({x™ : M C E is a matching in G})
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General Matching Polytope
e Given a graph G = (V, E)
@ Pgy := conv ({XM : M C E is a matching in G})

Theorem (General Matching Polytope Theorem) Pgy; is the
set of vectors € R¥ satisfying the following inequalities:

Z Te <1 YveV
e€d(v)
— 1l
> oz < % VS CV,|Sisodd (1)
e€E(S)

e >0 Vee E



Remark |

@ For all the polytopes, we identified a set of linear inequalities
that are sufficient to define the polytope.

@ However, not all the constraints are facet-defining.

@ Only facet-defining constraints are necessarily; other
constraints could be removed. (We keep all the constraints.for
convenience of description.)




Remark

For all the polytopes, we identified a set of linear inequalities
that are sufficient to define the polytope.

However, not all the constraints are facet-defining.
Only facet-defining constraints are necessarily; other

constraints could be removed. (We keep all the constraints.for
convenience of description.)

Example: in spanning tree polytope, > g Ze < |S] —1is
not needed if (.S, E[S]) is disconnected, or contains a bridge.
In this case, the constraint does not define a facet.
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Recall Definition and Examples of Matroid

Def. A (finite) matroid M is a pair (E,Z), where E is a finite
set (called the ground set) and Z is a family of subsets of
(called independent sets) with the following properties:

Q@ 0el
@ (downward-closed property) If B C A € Z, then B € T.

© (augmentation/exchange property) If A, B € 7 and |B| < |4],
then there exists e € A\ B such that BU {e} € 7.

Relationship between matroids

Laminar

Uniform —— Partition 4ransversal>'hnear

Graphic



Other Terminologies Related To a Matroid M = (E,T)
@ A subset of E that is not independent is dependent.
@ A maximal independent set is called a basis (plural: bases)

@ A minimal dependent set is called a circuit




Other Terminologies Related To a Matroid M = (E,T)
@ A subset of E that is not independent is dependent.
@ A maximal independent set is called a basis (plural: bases)

@ A minimal dependent set is called a circuit

@ Graphic matroid for a connected graph G = (V, E):
basis <= spanning tree circuit <= cycle

Lemma All bases of a matroid have the same size.

Proof.
@ Assume two A and A’ are both bases of M and |A| > |A'|
@ By exchange property: 3i € A\ A, A U{i} €Z

@ contradiction with that A’ is a basis




@ Recall: Matroid Rank Function:

Def. Given a matroid M = (E,Z), the rank of any A C E'is
defined as

rm(A) = max {|A'|: A C A /A e I}.

The function 7 : 2% — Zs is called the rank function of M.

@ 7q(A) is size of maximum independent subset of A

Trivial properties of 74
e ry(0)=0
o ryp(AU{i}) —ram(A) €{0,1} forevery ACE ic E\A

Theorem The rank function 7, of a matroid M = (E,Z) is
submodular.




Greedy algorithm finds max ind. subset of any given X C E:

1. S« 0

2: while Je € X'\ Ssit. SU{e} €7 do

3: let e be an arbitrary element satisfying the condition
4 S+ SuU{e}

5

- return S

Proof of Submodularity of r .




Greedy algorithm finds max ind. subset of any given X C E:

1. S« 0

2: while Je € X'\ Ssit. SU{e} €7 do

3: let e be an arbitrary element satisfying the condition
4 S+ SuU{e}

5

- return S

Proof of Submodularity of r .
@ Take AC E,i,j € E\ A,i# j, need to prove:
rm(AUA{e,5}) —ram(AU L)) < ram(AU{G}) —ram(A)




Greedy algorithm finds max ind. subset of any given X C E:

1. S« 0

2: while Je € X'\ Ssit. SU{e} €7 do

3: let e be an arbitrary element satisfying the condition
4 S+ SuU{e}

5

- return S

Proof of Submodularity of r .
@ Take AC E,i,j € E\ A,i# j, need to prove:

rm(AULE g} —rm(AU{i}) <rm(AU{G}) —rm(A)
@ if not, then LHS =1, RHS =0




Greedy algorithm finds max ind. subset of any given X C E:

1. S« 0

2: while Je € X'\ Ssit. SU{e} €7 do

3: let e be an arbitrary element satisfying the condition
4 S+ SuU{e}

5

- return S

Proof of Submodularity of r .
@ Take AC E,i,j € E\ A,i# j, need to prove:
rm(AU GG} —rm(AU{i}) S m(AU{G}) —rm(4)
e if not, then LHS =1, RHS =0
@ S: max ind. subset of A, S": max ind. subset of AU {i}
o |S| =rm(A),|S| =rm(AU{i}), S'=S8or S =SU{i}




Greedy algorithm finds max ind. subset of any given X C E:

1. S« 0

2: while Je € X'\ Ssit. SU{e} €7 do

3: let e be an arbitrary element satisfying the condition
4 S+ SuU{e}

5

- return S

Proof of Submodularity of r .

@ Take AC E,i,j € E\ A,i# j, need to prove:

rm(AU GG} —rm(AU{i}) S m(AU{G}) —rm(4)

if not, then LHS =1, RHS =0

S: max ind. subset of A, S": max ind. subset of AU {i}
|S| = ram(A), |S'| = rm(AU{i}), S'=S8or S =SU{i}
RHS=0 = SU{j} ¢Z,LHS=1 = S'u{j} el

contradiction ]




Lemma A function r : 2€ — R is the rank function of a matroid

if and only if

Qr(0)=0
@ r(AU{i}) —r(A) € {0,1} forall ACE,i ¢ E\ A

© 7 is submodular.
Proof.

o DefineZ={AC E:r(A) =|A|}.
e Claim: (E,Z) is a matroid and r is its rank function.
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if and only if

Qr(0)=0
@ r(AU{i}) —r(A) € {0,1} forall ACE,i ¢ E\ A

© 7 is submodular.

Proof.

o DefineZ={AC E:r(A) =|A|}.

e Claim: (E,Z) is a matroid and r is its rank function.
e (1), (2) = T is closed under taking subsets



Lemma A function r : 2€ — R is the rank function of a matroid
if and only if

Qr(0)=0

Q@ r(Au{i}) —r(4)e{0,1} foral ACE,i¢ E\ A

© 7 is submodular.

Proof.

o DefineZ={AC E:r(A) =|A|}.

e Claim: (E,Z) is a matroid and r is its rank function.
e (1), (2) = T is closed under taking subsets

o A,A :r(A) = |A|,r(A) = A, |A| < |4

o U:=AUA:r(U)>r(A") >r(A), ACU



Lemma A function r : 2€ — R is the rank function of a matroid

if and only if

Qr(0)=0

Q@ r(Au{i}) —r(A) € {0,1} forall ACE,i¢ E\ A
© r is submodular.

Proof.
o DefineZ={AC E:r(A) =|A|}.

e Claim: (E,Z) is a matroid and r is its rank function.

(1), Q) = T is closed under taking subsets
A, AT 1(4) = AL, r(A) = |41, 4] < |4
U:=AUA :r(U) >r(A4) >r(A4), ACU
B = FJNecU\A=A\A:r(AU{i}) > r(A)
i€ A\ Aand r(AU{i})=r(A)+1=|AU{i}|
so, AU{i} € Z = exchange property



Derivatives of Matroids

Def. Given a matroid M = (E,Z) and an element e € E, the
matroid obtained from M by removing e, denoted as M \ e, is
defined as follows:

M\e=(E\e,{ACE\e: AcTI}).




Derivatives of Matroids

Def. Given a matroid M = (E,Z) and an element e € E, the
matroid obtained from M by removing e, denoted as M \ e, is
defined as follows:

M\e=(E\e,{ACE\e: AcT}).
Def. Given a matroid M = (F,Z) and an element e € E, the

matroid obtained from M by contracting e, denoted as M /e, is
defined as follows:

MJe=(E\e,{ACE\e: AU{e} € T}).



Derivatives of Matroids

Def. Given a matroid M = (E,Z) and a subset £’ C F, the
matroid of M restricted to E’, denoted as M[E'], is defined as
follows:

MIE| = (E',{ACE :AcT))




Derivatives of Matroids

Def. Given a matroid M = (E,Z) and a subset £’ C F, the
matroid of M restricted to E’, denoted as M[E'], is defined as
follows:

MIE = (E,{ACE :AcT)).

Def. For a matroid M = (E,Z), the dual matroid
M* = (E,Z%) is defined so that the bases in M* are exactly the
complements of the bases in Z.

Theorem AM* is a matroid.
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Matroid Polytope
e Given a matroid M = (E,T)
@ The matroid polytope for M is defined as

Pu = conv({x*: A e 1}).

1 i€ A
@ Recall: x4 €{0,1}¥, &= {0 Z;A
i
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Matroid Polytope

e Given a matroid M = (E,T)

@ The matroid polytope for M is defined as
Pu = conv({x*: A e 1}).

1 i€ A
@ Recall: x4 €{0,1}¥, &= {0 Z;A
i

Theorem (Matroid Polytope Theorem) For a matroid
M = (E,I), we have

Prg = {x € [0,1]% : 2(S) < rpm(S), VS C E}’

where z(S) := >, ¢ x; for every S C E.




Proof of Matroid Polytope Theorem

e Q= {x e [0,1)7: > cam <rm(A),VAC E}
e 9N{0,1}F = {x*: A € I}; it suffices to prove Q is integral
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QNn{0,1}F = {x*: A € I}, it suffices to prove Q is integral

Focus on the counter example with the smallest |E|

assume some vertex x of Q is non-integral



Proof of Matroid Polytope Theorem

Q= {x € [0,1]F : ZieAzpi < rpm(A), VA C E}
e 9N{0,1}¥ = {x”: A € T}; it suffices to prove Q is integral

@ Focus on the counter example with the smallest |E|

@ assume some vertex x of Q is non-integral

o If z, =0 for some e € FE, removing e gives a smaller
counterexample

o If x, =1 for some e € FE, contracting e gives a smaller
counterexample

So, . € (0,1) for every e € E.



Proof of Matroid Polytope Theorem

Def. We say a set A C F is tight if 2(A) = ry(A). Let T be
the family of all tight subsets of F. J

Lemma If A,B € T, then both AUB and AN B arein 7T. |




Proof of Matroid Polytope Theorem

Def. We say a set A C F is tight if z(A) = rp(A). Let T be
the family of all tight subsets of F.

Lemma If A,B € T, then both AUB and AN B arein 7T.

Proof.
2(A) + z(B) = rm(A) + rm(B)
>rpm(AUB)+rpq(ANB) > 2(AUB) +x(AN B).

@ equality: A and B are tight

o first inequality: 7, is submodular

@ second inequality: z(S) < ra(S) for every SC E

But 2(A) + (B) = 2(AU B) + (AN B). So, both inequalities
hold with equality. ]



Proof of Matroid Polytope Theorem

Def. A chain is a sequence of subsets S; C Sy, C --- C S; of E. J

e We use span(S) for span({x° : S € S}), forany S C T.



Proof of Matroid Polytope Theorem

Def. A chain is a sequence of subsets S; C Sy, C --- C S; of E. J

e We use span(S) for span({x° : S € S}), forany S C T.

Lemma (Key Lemma) Let C be a longest chain of tight subsets
of E (i.e., subsets in 7). Then, we have span(C) = span(T). J




Proof of Matroid Polytope Theorem

Def. A chain is a sequence of subsets S; C Sy, C --- C S; of E.
e We use span(S) for span({x° : S € S}), forany S C T.

Lemma (Key Lemma) Let C be a longest chain of tight subsets
of E (i.e., subsets in 7). Then, we have span(C) = span(T).

Proof of Key Lemma |

@ We say two sets B and T conflict with each other, if B Z T
and T ¢ B.

@ Define 7(B) := {T € C : B conflicts with T'},VB
@ Assume span(C) C span(T)
@ Let B = arg minpger B¢span(c) IT(B)|



@ Let T € C be a set contradicting with B; @
@ We prove 7(BUT), 7(BNT) C 7(B).
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@ Let T € C be a set contradicting with B; @ ))
@ We prove 7(BUT), 7(BNT) C 7(B).

75/85
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@ Let T € C be a set contradicting with B; @
@ We prove 7(BUT), 7(BNT) C 7(B).
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Proof of Matroid Polytope Theorem

Proof of Key Lemma |
@ Let T € C be a set contradicting with B;

@ We prove 7(BUT), 7(BNT) C 7(B).

@ For 7(BUT) C 7(B):
e S CT: S does not conflict with BUT, and may conflict with B.
e S D T: S not conflict with B => S not conflict with BUT.
@ For 7(BNT) C 7(B):
e S CT: S not conflict with B = S not conflict with BNT.
e S D T: § does not conflict with BN T, and may conflict with B.

e "#" : B conflicts with 7', but BUT and BN T do not.




Proof of Matroid Polytope Theorem

Proof of Key Lemma
@ By our choice of B, we have xB“T, xB™T € span(C).

e However, as xZ = BT 4 BT — T and all the three vectors

are in span(7), contradiction with x” ¢ span(C). O
Recall the key lemma:

Lemma (Key Lemma) Let C be a longest chain of tight subsets
of E (i.e., subsets in 7). Then, we have span(C) = span(T).

@ Therefore, z € [0, 1] is defined by the system of linear
equations correspondent to C.

@ |C| = |E], the chain C is of full length.

@ The system gives an integer solution x. Contradiction. O]



What we proved:

Matroid Polytope

e Given a matroid M = (E,Z)

@ The matroid polytope for M is defined as
Py := conv({x?: A € T}).

Theorem (Matroid Polytope Theorem) For a matroid
M = (E,I), we have

Py = {g; e [0, 1]E 1 2(S) < rm(S),VS C E}’

where z(S) := >, ¢ x; for every S C E.
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Matroid Basis Polytope
e Given a matroid M = (E,T)
@ The matroid basis polytope for M is defined as
Prasis .= conv({x* : A € Z,ranky(A) = rank(E)}).

Theorem (Matroid Basis Polytope Theorem) For a matroid
M = (E,Z), we have

’PRZSiS _ {x c [0, 1]E : $(S> < TM(S),VS C E,T(E) = TM(E)}7

where z(S) ;=Y. _cx; for every S C E.

€S




Matroid Basis Polytope
e Given a matroid M = (E,T)
@ The matroid basis polytope for M is defined as
Phasis . — conv({x* : A € Z,ranky((A) = ranky(F)}).

Theorem (Matroid Basis Polytope Theorem) For a matroid
M = (E,Z), we have

,P'l/)\isis _ {x e [0, 1]E cx(S) <rpm(S),VS C E;x(FE) = TA/I(E)}7

where z(S) ;=Y. _cx; for every S C E.

€S

Proof.
e PRasis is a face (not necessarily a facet) of Ppy.
@ Py is integral = PSS is integral O




Recall: Spanning Tree Polytope

Spanning Tree Polytope
@ Given a connected graph G = (V, E)
@ Pgr := conv ({XT :T'C FE is a spanning tree of G})

Theorem (Spanning Tree Polytope Theorem) Pqr is the set
of vectors z € R¥ satisfying the following inequalities:

er:n—l

eclE
> oz <81 VSCV,2<|S|<n—1 (¥
e€E[S]

Te >0 Veec E



@ Graphic matroid:

e independent sets <> spanning forests
e bases <> spanning trees.



@ Graphic matroid:

e independent sets <> spanning forests
e bases <> spanning trees.

@ So, Pst is the set of = € [0, 1)¥ satisfying
2(E')<n—-CC(E"),VE'CE; z(E)=n-—1,

where CC(E’) is the number of connected components in
(V. EY).



@ Graphic matroid:

e independent sets <> spanning forests
e bases <> spanning trees.

@ So, Pst is the set of = € [0, 1)¥ satisfying
2(E')<n—-CC(E"),VE'CE; z(E)=n-—1,

where CC(E’) is the number of connected components in
(V. EY).

e It suffices to consider the case where £’ = E[S] for some
connected set S C V, in which case n — CC(E’') = |S| — 1.

@ — Spanning Tree Polytope Theorem.



Theorem (Matroid Intersection Polytope Theorem) Let
M, = (E,Z;) and My = (E,Z,) be two matroids with the
common ground set £. Then

conv({)(A cAel ﬂIQ}) = Prmy, NPy,
- {x € 0,11 : 2(S) < 1, (S), 2(S) < 744, (S), VS C E}




Theorem (Matroid Intersection Polytope Theorem) Let
M, = (E,Z;) and My = (E,Z,) be two matroids with the
common ground set £. Then

conv({)(A cAel ﬂIQ}) = Prmy, NPy,
- {x € 0,11 : 2(S) < 1, (S), 2(S) < 744, (S), VS C E}

@ We will not prove the theorem.

@ A similar theorem works if we require A to be a basis for the
matroid M or Mo:

conv({x" : A € T; N T, rank, (4) = rankuy, (E)})

o basis
- My ﬂ PMQ



Applications

Bipartite Matching Polytope
@ Given bipartite graph G = (LUR, E)
® Ppy = conv({x" : M is a matching in G})

Theorem 7Ppy; is the set of 2 € R¥ satisfying the following

constraints:
ergl,VveLUR; xe > 0,Ve € F.
e€d(v)




Applications

Bipartite Matching Polytope
@ Given bipartite graph G = (LUR, E)
® Ppy = conv({x" : M is a matching in G})

Theorem 7Ppy; is the set of 2 € R¥ satisfying the following
constraints:
Zajegl,VUELUR; ze > 0,Ve € E.
e€d(v)

@ A matching is an independent set of two partition matroids,
one for each side of the bipartite graph.

@ Matching polytope is intersection of two partition matroid
polytopes.



@ Given a directed graph G = (V, E), aroot r € V
® Pamo := conv({x? : E' is an arborescence of G rooted at r})
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Applications

Arborescence Polytope
@ Given a directed graph G = (V, E), aroot r € V
® Pamo := conv({x? : E' is an arborescence of G rooted at r})

@ We define two matroids:

e Graphic Matroid: we ignore the directions of G, and require E’ to
be a spanning forest

e Partition Matroid: we require every vertex other than r has
in-degree at most 1



Applications

Arborescence Polytope
@ Given a directed graph G = (V, E), aroot r € V
® Pamo := conv({x? : E' is an arborescence of G rooted at r})

@ We define two matroids:

e Graphic Matroid: we ignore the directions of G, and require E’ to
be a spanning forest

e Partition Matroid: we require every vertex other than r has
in-degree at most 1

@ F'is an arborescence if it is a basis of both polytopes.



Summary

@ linear programming, simplex method, interior point method,
ellipsoid method

@ Polytopes with totally-unimodular coefficient matrix:
e integral LP polytopes: bipartite matching polytope, s-t flow
polytope, weighted interval scheduling polytope



Summary

@ linear programming, simplex method, interior point method,
ellipsoid method

@ Polytopes with totally-unimodular coefficient matrix:
e integral LP polytopes: bipartite matching polytope, s-t flow
polytope, weighted interval scheduling polytope
e Matroid Polytope



	Linear Programming
	Introduction
	Methods for Solving Linear Programs

	Polytope with Polynomial Number of Facets
	Bipartite Matching Polytope
	Polytopes with Totally Unimodular Coefficient Matrices

	Polytopes with Efficient Separation Oracles
	s-t Cut Polytope
	Spanning Tree Polytope
	General Graph (Perfect) Matching Polytope

	Matroid, Matroid Basis and Matroid Intersection Polytopes *
	Preliminaries on Matroid Theory
	Matroid Polytope
	Matroid Basis and Matroid Intersection Polytope


