
Advanced Algorithms (Fall 2024)

Linear Programming

Lecturers: 尹一通，栗师，刘景铖

Nanjing University

2/85

Outline

1 Linear Programming
Introduction
Methods for Solving Linear Programs

2 Polytope with Polynomial Number of Facets
Bipartite Matching Polytope
Polytopes with Totally Unimodular Coefficient Matrices

3 Polytopes with Efficient Separation Oracles
s-t Cut Polytope
Spanning Tree Polytope
General Graph (Perfect) Matching Polytope

4 Matroid, Matroid Basis and Matroid Intersection Polytopes *
Preliminaries on Matroid Theory
Matroid Polytope
Matroid Basis and Matroid Intersection Polytope

3/85

Outline

1 Linear Programming
Introduction
Methods for Solving Linear Programs

2 Polytope with Polynomial Number of Facets
Bipartite Matching Polytope
Polytopes with Totally Unimodular Coefficient Matrices

3 Polytopes with Efficient Separation Oracles
s-t Cut Polytope
Spanning Tree Polytope
General Graph (Perfect) Matching Polytope

4 Matroid, Matroid Basis and Matroid Intersection Polytopes *
Preliminaries on Matroid Theory
Matroid Polytope
Matroid Basis and Matroid Intersection Polytope

4/85

Typical Combinatorial Optimizatiion Problem

Input: [n]: ground set

S: feasible sets: a family of subsets of U , often
implicitly given

wi, i ∈ [n]: values/costs of elements

Output: the set S ∈ S with the minimum/maximum
w(S) :=

∑
i∈S wi

Example:

Shortest Path, Minimum Spanning Tree

Maximum Independent Set, Maximum Matching, Knapsack
Packing

CO problem ⇐⇒ Integer Program (IP)
relax?
===⇒ Linear Program

(LP)

In general: Integer programming is NP-hard; linear
programming is in P

For some problems LP ≡ IP =⇒ exact algorithms

For some problems, LP ̸≡ IP
solve LP to obtain a fractional solution, round it to an integral
solution

=⇒ approximation algorithms

4/85

Typical Combinatorial Optimizatiion Problem

Input: [n]: ground set

S: feasible sets: a family of subsets of U , often
implicitly given

wi, i ∈ [n]: values/costs of elements

Output: the set S ∈ S with the minimum/maximum
w(S) :=

∑
i∈S wi

Example:

Shortest Path, Minimum Spanning Tree

Maximum Independent Set, Maximum Matching, Knapsack
Packing

CO problem ⇐⇒ Integer Program (IP)
relax?
===⇒ Linear Program

(LP)

In general: Integer programming is NP-hard; linear
programming is in P

For some problems LP ≡ IP =⇒ exact algorithms

For some problems, LP ̸≡ IP
solve LP to obtain a fractional solution, round it to an integral
solution

=⇒ approximation algorithms

4/85

Typical Combinatorial Optimizatiion Problem

Input: [n]: ground set

S: feasible sets: a family of subsets of U , often
implicitly given

wi, i ∈ [n]: values/costs of elements

Output: the set S ∈ S with the minimum/maximum
w(S) :=

∑
i∈S wi

Example:

Shortest Path, Minimum Spanning Tree

Maximum Independent Set, Maximum Matching, Knapsack
Packing

CO problem ⇐⇒ Integer Program (IP)
relax?
===⇒ Linear Program

(LP)

In general: Integer programming is NP-hard; linear
programming is in P

For some problems LP ≡ IP =⇒ exact algorithms

For some problems, LP ̸≡ IP
solve LP to obtain a fractional solution, round it to an integral
solution

=⇒ approximation algorithms

5/85

Linear Programming (LP), Linear Program (LP)

min 7x1 + 4x2

x1 + x2 ≥ 5

x1 + 2x2 ≥ 6

4x1 + x2 ≥ 8

x1, x2 ≥ 0

optimum solution:
x1 = 1, x2 = 4

optimum value =
7× 1 + 4× 4 = 23

0 1 2 3 4

1

2

3

4

5

6

x1

x2

7

8

5

Feasible Region

6

9

7

x1 + x2 ≥ 5

4x1 + x2 ≥ 8

x1 + 2x2 ≥ 6

5/85

Linear Programming (LP), Linear Program (LP)

min 7x1 + 4x2

x1 + x2 ≥ 5

x1 + 2x2 ≥ 6

4x1 + x2 ≥ 8

x1, x2 ≥ 0

optimum solution:
x1 = 1, x2 = 4

optimum value =
7× 1 + 4× 4 = 23

0 1 2 3 4

1

2

3

4

5

6

x1

x2

7

8

5

Feasible Region

6

9

7

x1 + x2 ≥ 5

4x1 + x2 ≥ 8

x1 + 2x2 ≥ 6

5/85

Linear Programming (LP), Linear Program (LP)

min 7x1 + 4x2

x1 + x2 ≥ 5

x1 + 2x2 ≥ 6

4x1 + x2 ≥ 8

x1, x2 ≥ 0

optimum solution:
x1 = 1, x2 = 4

optimum value =
7× 1 + 4× 4 = 23

0 1 2 3 4

1

2

3

4

5

6

x1

x2

7

8

5

Feasible Region

6

9

7

x1 + x2 ≥ 5

4x1 + x2 ≥ 8

x1 + 2x2 ≥ 6

5/85

Linear Programming (LP), Linear Program (LP)

min 7x1 + 4x2

x1 + x2 ≥ 5

x1 + 2x2 ≥ 6

4x1 + x2 ≥ 8

x1, x2 ≥ 0

optimum solution:
x1 = 1, x2 = 4

optimum value =
7× 1 + 4× 4 = 23

0 1 2 3 4

1

2

3

4

5

6

x1

x2

7

8

5

Feasible Region

6

9

7

x1 + x2 ≥ 5

4x1 + x2 ≥ 8

x1 + 2x2 ≥ 6

5/85

Linear Programming (LP), Linear Program (LP)

min 7x1 + 4x2

x1 + x2 ≥ 5

x1 + 2x2 ≥ 6

4x1 + x2 ≥ 8

x1, x2 ≥ 0

optimum solution:
x1 = 1, x2 = 4

optimum value =
7× 1 + 4× 4 = 23

0 1 2 3 4

1

2

3

4

5

6

x1

x2

7

8

5

Feasible Region

6

9

7

x1 + x2 ≥ 5

4x1 + x2 ≥ 8

x1 + 2x2 ≥ 6

5/85

Linear Programming (LP), Linear Program (LP)

min 7x1 + 4x2

x1 + x2 ≥ 5

x1 + 2x2 ≥ 6

4x1 + x2 ≥ 8

x1, x2 ≥ 0

optimum solution:
x1 = 1, x2 = 4

optimum value =
7× 1 + 4× 4 = 23 0 1 2 3 4

1

2

3

4

5

6

x1

x2

7

8

5

Feasible Region

6

9

7

x1 + x2 ≥ 5

4x1 + x2 ≥ 8

x1 + 2x2 ≥ 6

6/85

Standard Form of Linear Programs

min c1x1 + c2x2 + · · ·+ cnxn

a1,1x1 + a1,2x2 + · · ·+ a1,nxn ≥ b1

a2,1x1 + a2,2x2 + · · ·+ a2,nxn ≥ b2
...

...
...

...

am,1x1 + am,2x2 + · · ·+ am,nxn ≥ bm

x1, x2, · · · , xn ≥ 0

n: number of variables m: number of constraints

Other considerations: ≤ constraints? equlities?

variables can be negative? maximization problem?

6/85

Standard Form of Linear Programs

min c1x1 + c2x2 + · · ·+ cnxn

a1,1x1 + a1,2x2 + · · ·+ a1,nxn ≥ b1

a2,1x1 + a2,2x2 + · · ·+ a2,nxn ≥ b2
...

...
...

...

am,1x1 + am,2x2 + · · ·+ am,nxn ≥ bm

x1, x2, · · · , xn ≥ 0

n: number of variables m: number of constraints

Other considerations: ≤ constraints? equlities?

variables can be negative? maximization problem?

6/85

Standard Form of Linear Programs

min c1x1 + c2x2 + · · ·+ cnxn

a1,1x1 + a1,2x2 + · · ·+ a1,nxn ≥ b1

a2,1x1 + a2,2x2 + · · ·+ a2,nxn ≥ b2
...

...
...

...

am,1x1 + am,2x2 + · · ·+ am,nxn ≥ bm

x1, x2, · · · , xn ≥ 0

n: number of variables m: number of constraints

Other considerations: ≤ constraints? equlities?

variables can be negative? maximization problem?

7/85

Standard Form of Linear Programs

x :=


x1

x2
...
xn

 ∈ Rn, c :=


c1
c2
...
cn

 ∈ Rn,

A :=


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n
...

...
...

...
am,1 am,2 · · · am,n

 ∈ Rn×m, b :=


b1
b2
...
bm

 ∈ Rm.

8/85

min c1x1 + c2x2 + · · ·+ cnxn

a1,1x1 + a1,2x2 + · · ·+ a1,nxn ≥ b1

a2,1x1 + a2,2x2 + · · ·+ a2,nxn ≥ b2
...

...
...

...

am,1x1 + am,2x2 + · · ·+ am,nxn ≥ bm

x1, x2, · · · , xn ≥ 0

Standard Form of
Linear Program

min cTx

Ax ≥ b

x ≥ 0

≥: coordinate-wise less than or equal to

9/85

Preliminaries

feasible region: the set of x’s satisfying
Ax ≥ b, x ≥ 0

a polyhedron is the intersection of finite
number of closed half-spaces

so, feasible region is a polyhedron

if every coordinate has an upper and lower
bound in the polyhedron, then the
polyhedron is a polytope

Polyhedron

0 1 2 3 4

1

2

3

4

5

6

x1

x2

7

8

5

Feasible Region

6

9

7

x1 + x2 ≥ 5

4x1 + x2 ≥ 8

x1 + 2x2 ≥ 6

Feasible Region

9/85

Preliminaries

feasible region: the set of x’s satisfying
Ax ≥ b, x ≥ 0

a polyhedron is the intersection of finite
number of closed half-spaces

so, feasible region is a polyhedron

if every coordinate has an upper and lower
bound in the polyhedron, then the
polyhedron is a polytope

Polyhedron

0 1 2 3 4

1

2

3

4

5

6

x1

x2

7

8

5

Feasible Region

6

9

7

x1 + x2 ≥ 5

4x1 + x2 ≥ 8

x1 + 2x2 ≥ 6

Feasible Region

9/85

Preliminaries

feasible region: the set of x’s satisfying
Ax ≥ b, x ≥ 0

a polyhedron is the intersection of finite
number of closed half-spaces

so, feasible region is a polyhedron

if every coordinate has an upper and lower
bound in the polyhedron, then the
polyhedron is a polytope

Polyhedron Polytope

0 1 2 3 4

1

2

3

4

5

6

x1

x2

7

8

5

Feasible Region

6

9

7

x1 + x2 ≥ 5

4x1 + x2 ≥ 8

x1 + 2x2 ≥ 6

Feasible Region

10/85

Given a polytope P ⊆ Rn:

The dimension of P is n minus the maximum number of
linearly-independent equalities satisfied by all points in P .

Assume the linear inequality aTx ≤ b holds for every x ∈ P ,
and some x ∈ P satisfies aTx = b. Then {x ∈ P : aTx = b} is
said to be a face of P .
A face of P is also a polytope.

Assume the dimension of P is d. Then a face of P of
dimension d− 1 is said to be a facet of P .

dimension = 2

dimension = 3

10/85

Given a polytope P ⊆ Rn:

The dimension of P is n minus the maximum number of
linearly-independent equalities satisfied by all points in P .

Assume the linear inequality aTx ≤ b holds for every x ∈ P ,
and some x ∈ P satisfies aTx = b. Then {x ∈ P : aTx = b} is
said to be a face of P .
A face of P is also a polytope.

Assume the dimension of P is d. Then a face of P of
dimension d− 1 is said to be a facet of P .

dimension = 2

dimension = 3

10/85

Given a polytope P ⊆ Rn:

The dimension of P is n minus the maximum number of
linearly-independent equalities satisfied by all points in P .
Assume the linear inequality aTx ≤ b holds for every x ∈ P ,
and some x ∈ P satisfies aTx = b. Then {x ∈ P : aTx = b} is
said to be a face of P .

A face of P is also a polytope.

Assume the dimension of P is d. Then a face of P of
dimension d− 1 is said to be a facet of P .

dimension = 2

dimension = 3

10/85

Given a polytope P ⊆ Rn:

The dimension of P is n minus the maximum number of
linearly-independent equalities satisfied by all points in P .
Assume the linear inequality aTx ≤ b holds for every x ∈ P ,
and some x ∈ P satisfies aTx = b. Then {x ∈ P : aTx = b} is
said to be a face of P .

A face of P is also a polytope.

Assume the dimension of P is d. Then a face of P of
dimension d− 1 is said to be a facet of P .

a face
a face

dimension = 2

dimension = 3

10/85

Given a polytope P ⊆ Rn:

The dimension of P is n minus the maximum number of
linearly-independent equalities satisfied by all points in P .
Assume the linear inequality aTx ≤ b holds for every x ∈ P ,
and some x ∈ P satisfies aTx = b. Then {x ∈ P : aTx = b} is
said to be a face of P .

A face of P is also a polytope.

Assume the dimension of P is d. Then a face of P of
dimension d− 1 is said to be a facet of P .

a face
a face

a face a face

a face

dimension = 2

dimension = 3

10/85

Given a polytope P ⊆ Rn:

The dimension of P is n minus the maximum number of
linearly-independent equalities satisfied by all points in P .
Assume the linear inequality aTx ≤ b holds for every x ∈ P ,
and some x ∈ P satisfies aTx = b. Then {x ∈ P : aTx = b} is
said to be a face of P .
A face of P is also a polytope.

Assume the dimension of P is d. Then a face of P of
dimension d− 1 is said to be a facet of P .

a face
a face

a face a face

a face

dimension = 2

dimension = 3

10/85

Given a polytope P ⊆ Rn:

The dimension of P is n minus the maximum number of
linearly-independent equalities satisfied by all points in P .
Assume the linear inequality aTx ≤ b holds for every x ∈ P ,
and some x ∈ P satisfies aTx = b. Then {x ∈ P : aTx = b} is
said to be a face of P .
A face of P is also a polytope.

Assume the dimension of P is d. Then a face of P of
dimension d− 1 is said to be a facet of P .

a face
a face

a face a face

a face

dimension = 2

dimension = 3

10/85

Given a polytope P ⊆ Rn:

The dimension of P is n minus the maximum number of
linearly-independent equalities satisfied by all points in P .
Assume the linear inequality aTx ≤ b holds for every x ∈ P ,
and some x ∈ P satisfies aTx = b. Then {x ∈ P : aTx = b} is
said to be a face of P .
A face of P is also a polytope.

Assume the dimension of P is d. Then a face of P of
dimension d− 1 is said to be a facet of P .

a face
a face

a face a face

a face

a facet

a facet

dimension = 2

dimension = 3

11/85

Preliminaries

x is a convex combination of {x(1), x(2), · · · , x(t)} if the
following condition holds: there exist λ1, λ2, · · · , λt ∈ [0, 1]
such that

λ1 + λ2 + · · ·+ λt = 1, λ1x
(1) + λ2x

(2) + · · ·+ λtx
(t) = x

the convex hull of a set of S of points in Rn, denoted as
conv(S), is the set of convex combinations of S

x1 x2

11/85

Preliminaries

x is a convex combination of {x(1), x(2), · · · , x(t)} if the
following condition holds: there exist λ1, λ2, · · · , λt ∈ [0, 1]
such that

λ1 + λ2 + · · ·+ λt = 1, λ1x
(1) + λ2x

(2) + · · ·+ λtx
(t) = x

the convex hull of a set of S of points in Rn, denoted as
conv(S), is the set of convex combinations of S

x1 x2

11/85

Preliminaries

x is a convex combination of {x(1), x(2), · · · , x(t)} if the
following condition holds: there exist λ1, λ2, · · · , λt ∈ [0, 1]
such that

λ1 + λ2 + · · ·+ λt = 1, λ1x
(1) + λ2x

(2) + · · ·+ λtx
(t) = x

the convex hull of a set of S of points in Rn, denoted as
conv(S), is the set of convex combinations of S

x1 x2

2
3x

1 + 1
3x

2

11/85

Preliminaries

x is a convex combination of {x(1), x(2), · · · , x(t)} if the
following condition holds: there exist λ1, λ2, · · · , λt ∈ [0, 1]
such that

λ1 + λ2 + · · ·+ λt = 1, λ1x
(1) + λ2x

(2) + · · ·+ λtx
(t) = x

the convex hull of a set of S of points in Rn, denoted as
conv(S), is the set of convex combinations of S

x1 x2

2
3x

1 + 1
3x

2

x1

x2 x3

11/85

Preliminaries

x is a convex combination of {x(1), x(2), · · · , x(t)} if the
following condition holds: there exist λ1, λ2, · · · , λt ∈ [0, 1]
such that

λ1 + λ2 + · · ·+ λt = 1, λ1x
(1) + λ2x

(2) + · · ·+ λtx
(t) = x

the convex hull of a set of S of points in Rn, denoted as
conv(S), is the set of convex combinations of S

x1 x2

2
3x

1 + 1
3x

2

x1

x2 x3

0.3x1 + 0.6x2 + 0.1x3

11/85

Preliminaries

x is a convex combination of {x(1), x(2), · · · , x(t)} if the
following condition holds: there exist λ1, λ2, · · · , λt ∈ [0, 1]
such that

λ1 + λ2 + · · ·+ λt = 1, λ1x
(1) + λ2x

(2) + · · ·+ λtx
(t) = x

the convex hull of a set of S of points in Rn, denoted as
conv(S), is the set of convex combinations of S

x1 x2

2
3x

1 + 1
3x

2

x1

x2 x3

0.3x1 + 0.6x2 + 0.1x3

11/85

Preliminaries

x is a convex combination of {x(1), x(2), · · · , x(t)} if the
following condition holds: there exist λ1, λ2, · · · , λt ∈ [0, 1]
such that

λ1 + λ2 + · · ·+ λt = 1, λ1x
(1) + λ2x

(2) + · · ·+ λtx
(t) = x

the convex hull of a set of S of points in Rn, denoted as
conv(S), is the set of convex combinations of S

x1 x2

x1

x2 x3

conv({x1, x2})
conv({x1, x2, x3})

11/85

Preliminaries

x is a convex combination of {x(1), x(2), · · · , x(t)} if the
following condition holds: there exist λ1, λ2, · · · , λt ∈ [0, 1]
such that

λ1 + λ2 + · · ·+ λt = 1, λ1x
(1) + λ2x

(2) + · · ·+ λtx
(t) = x

the convex hull of a set of S of points in Rn, denoted as
conv(S), is the set of convex combinations of S

x1 x2

x1

x2 x3

conv({x1, x2})
conv({x1, x2, x3})

11/85

Preliminaries

x is a convex combination of {x(1), x(2), · · · , x(t)} if the
following condition holds: there exist λ1, λ2, · · · , λt ∈ [0, 1]
such that

λ1 + λ2 + · · ·+ λt = 1, λ1x
(1) + λ2x

(2) + · · ·+ λtx
(t) = x

the convex hull of a set of S of points in Rn, denoted as
conv(S), is the set of convex combinations of S

x1 x2

x1

x2 x3

conv({x1, x2})
conv({x1, x2, x3})

12/85

Terminology and Preliminaries

let P be polytope, x ∈ P . If there are no other points
x′, x′′ ∈ P such that x is a convex combination of x′ and x′′,
then x is called a vertex/extreme point of P

Lemma A polytope has finite number of vertices, and it is the
convex hull of the vertices.

P

12/85

Terminology and Preliminaries

let P be polytope, x ∈ P . If there are no other points
x′, x′′ ∈ P such that x is a convex combination of x′ and x′′,
then x is called a vertex/extreme point of P

Lemma A polytope has finite number of vertices, and it is the
convex hull of the vertices.

P

12/85

Terminology and Preliminaries

let P be polytope, x ∈ P . If there are no other points
x′, x′′ ∈ P such that x is a convex combination of x′ and x′′,
then x is called a vertex/extreme point of P

Lemma A polytope has finite number of vertices, and it is the
convex hull of the vertices.

P

12/85

Terminology and Preliminaries

let P be polytope, x ∈ P . If there are no other points
x′, x′′ ∈ P such that x is a convex combination of x′ and x′′,
then x is called a vertex/extreme point of P

Lemma A polytope has finite number of vertices, and it is the
convex hull of the vertices.

not a vertex

P

12/85

Terminology and Preliminaries

let P be polytope, x ∈ P . If there are no other points
x′, x′′ ∈ P such that x is a convex combination of x′ and x′′,
then x is called a vertex/extreme point of P

Lemma A polytope has finite number of vertices, and it is the
convex hull of the vertices.

not a vertex

P

12/85

Terminology and Preliminaries

let P be polytope, x ∈ P . If there are no other points
x′, x′′ ∈ P such that x is a convex combination of x′ and x′′,
then x is called a vertex/extreme point of P

Lemma A polytope has finite number of vertices, and it is the
convex hull of the vertices.

not a vertex

P

12/85

Terminology and Preliminaries

let P be polytope, x ∈ P . If there are no other points
x′, x′′ ∈ P such that x is a convex combination of x′ and x′′,
then x is called a vertex/extreme point of P

Lemma A polytope has finite number of vertices, and it is the
convex hull of the vertices.

not a vertex

not a vertex

P

12/85

Terminology and Preliminaries

let P be polytope, x ∈ P . If there are no other points
x′, x′′ ∈ P such that x is a convex combination of x′ and x′′,
then x is called a vertex/extreme point of P

Lemma A polytope has finite number of vertices, and it is the
convex hull of the vertices.

vertices

P

12/85

Terminology and Preliminaries

let P be polytope, x ∈ P . If there are no other points
x′, x′′ ∈ P such that x is a convex combination of x′ and x′′,
then x is called a vertex/extreme point of P

Lemma A polytope has finite number of vertices, and it is the
convex hull of the vertices.

vertices

P

12/85

Terminology and Preliminaries

let P be polytope, x ∈ P . If there are no other points
x′, x′′ ∈ P such that x is a convex combination of x′ and x′′,
then x is called a vertex/extreme point of P

Lemma A polytope has finite number of vertices, and it is the
convex hull of the vertices.

x1

x2

x3
x4

x5

P

P = conv({x1, x2, x3, x4, x5})

13/85

Terminology and Preliminaries

Lemma Let x ∈ Rn be a vertex of a
polytope. Then, there are n constraints
in the definition of the polytope, such
that x is the unique solution to the
linear system obtained from the n
constraints by replacing inequalities to
equalities.

x1

x2

Feasible Region
x1 + x2 ≥ 5

4x1 + x2 ≥ 8

x1 + 2x2 ≥ 6

x2 ≤ 9

x1 ≤ 7

x1 ≥ 0

x2 ≥ 0

Lemma If the feasible region of a linear program is a polytope,
then the opimum value can be attained at some vertex of the
polytope.

Special cases (for minimization linear programs):

if feasible region is empty, then its value is ∞
if the feasible region is unbounded, then its value can be −∞

13/85

Terminology and Preliminaries

Lemma Let x ∈ Rn be a vertex of a
polytope. Then, there are n constraints
in the definition of the polytope, such
that x is the unique solution to the
linear system obtained from the n
constraints by replacing inequalities to
equalities.

x1

x2

Feasible Region
x1 + x2 ≥ 5

4x1 + x2 ≥ 8

x1 + 2x2 ≥ 6

x2 ≤ 9

x1 ≤ 7

x1 ≥ 0

x2 ≥ 0

x1 = 0

4x1 + x2 = 8

Lemma If the feasible region of a linear program is a polytope,
then the opimum value can be attained at some vertex of the
polytope.

Special cases (for minimization linear programs):

if feasible region is empty, then its value is ∞
if the feasible region is unbounded, then its value can be −∞

13/85

Terminology and Preliminaries

Lemma Let x ∈ Rn be a vertex of a
polytope. Then, there are n constraints
in the definition of the polytope, such
that x is the unique solution to the
linear system obtained from the n
constraints by replacing inequalities to
equalities.

x1

x2

Feasible Region
x1 + x2 ≥ 5

4x1 + x2 ≥ 8

x1 + 2x2 ≥ 6

x2 ≤ 9

x1 ≤ 7

x1 ≥ 0

x2 ≥ 0

x1 = 0

4x1 + x2 = 8

x1 + x2 = 5
x1 + 2x2 = 6

Lemma If the feasible region of a linear program is a polytope,
then the opimum value can be attained at some vertex of the
polytope.

Special cases (for minimization linear programs):

if feasible region is empty, then its value is ∞
if the feasible region is unbounded, then its value can be −∞

13/85

Terminology and Preliminaries

Lemma Let x ∈ Rn be a vertex of a
polytope. Then, there are n constraints
in the definition of the polytope, such
that x is the unique solution to the
linear system obtained from the n
constraints by replacing inequalities to
equalities.

x1

x2

Feasible Region
x1 + x2 ≥ 5

4x1 + x2 ≥ 8

x1 + 2x2 ≥ 6

x2 ≤ 9

x1 ≤ 7

x1 ≥ 0

x2 ≥ 0

x1 = 0

4x1 + x2 = 8

x1 + x2 = 5
x1 + 2x2 = 6

Lemma If the feasible region of a linear program is a polytope,
then the opimum value can be attained at some vertex of the
polytope.

Special cases (for minimization linear programs):

if feasible region is empty, then its value is ∞
if the feasible region is unbounded, then its value can be −∞

13/85

Terminology and Preliminaries

Lemma Let x ∈ Rn be a vertex of a
polytope. Then, there are n constraints
in the definition of the polytope, such
that x is the unique solution to the
linear system obtained from the n
constraints by replacing inequalities to
equalities.

x1

x2

Feasible Region
x1 + x2 ≥ 5

4x1 + x2 ≥ 8

x1 + 2x2 ≥ 6

x2 ≤ 9

x1 ≤ 7

x1 ≥ 0

x2 ≥ 0

x1 = 0

4x1 + x2 = 8

x1 + x2 = 5
x1 + 2x2 = 6

Lemma If the feasible region of a linear program is a polytope,
then the opimum value can be attained at some vertex of the
polytope.

Special cases (for minimization linear programs):

if feasible region is empty, then its value is ∞
if the feasible region is unbounded, then its value can be −∞

14/85

Outline

1 Linear Programming
Introduction
Methods for Solving Linear Programs

2 Polytope with Polynomial Number of Facets
Bipartite Matching Polytope
Polytopes with Totally Unimodular Coefficient Matrices

3 Polytopes with Efficient Separation Oracles
s-t Cut Polytope
Spanning Tree Polytope
General Graph (Perfect) Matching Polytope

4 Matroid, Matroid Basis and Matroid Intersection Polytopes *
Preliminaries on Matroid Theory
Matroid Polytope
Matroid Basis and Matroid Intersection Polytope

15/85

Algorithms for Linear Programming

algorithm running time practice

Simplex Method exponential time fast

Ellipsoid Method polynomial time slow

Interior Point Method polynomial time fast

16/85

Simplex Method

[Dantzig, 1946]

move from one vertex to another, so
as to improve the objective

repeat until we reach an optimum
vertex

the number of iterations might be expoentially large; but
algorithm runs fast in practice

[Spielman-Teng,2002]: smoothed analysis

16/85

Simplex Method

[Dantzig, 1946]

move from one vertex to another, so
as to improve the objective

repeat until we reach an optimum
vertex

the number of iterations might be expoentially large; but
algorithm runs fast in practice

[Spielman-Teng,2002]: smoothed analysis

16/85

Simplex Method

[Dantzig, 1946]

move from one vertex to another, so
as to improve the objective

repeat until we reach an optimum
vertex

objective

improves

the number of iterations might be expoentially large; but
algorithm runs fast in practice

[Spielman-Teng,2002]: smoothed analysis

16/85

Simplex Method

[Dantzig, 1946]

move from one vertex to another, so
as to improve the objective

repeat until we reach an optimum
vertex

objective

improves

the number of iterations might be expoentially large; but
algorithm runs fast in practice

[Spielman-Teng,2002]: smoothed analysis

16/85

Simplex Method

[Dantzig, 1946]

move from one vertex to another, so
as to improve the objective

repeat until we reach an optimum
vertex

objective

improves

the number of iterations might be expoentially large; but
algorithm runs fast in practice

[Spielman-Teng,2002]: smoothed analysis

16/85

Simplex Method

[Dantzig, 1946]

move from one vertex to another, so
as to improve the objective

repeat until we reach an optimum
vertex

objective

improves

the number of iterations might be expoentially large; but
algorithm runs fast in practice

[Spielman-Teng,2002]: smoothed analysis

16/85

Simplex Method

[Dantzig, 1946]

move from one vertex to another, so
as to improve the objective

repeat until we reach an optimum
vertex

objective

improves

the number of iterations might be expoentially large; but
algorithm runs fast in practice

[Spielman-Teng,2002]: smoothed analysis

16/85

Simplex Method

[Dantzig, 1946]

move from one vertex to another, so
as to improve the objective

repeat until we reach an optimum
vertex

objective

improves

the number of iterations might be expoentially large; but
algorithm runs fast in practice

[Spielman-Teng,2002]: smoothed analysis

16/85

Simplex Method

[Dantzig, 1946]

move from one vertex to another, so
as to improve the objective

repeat until we reach an optimum
vertex

objective

improves

the number of iterations might be expoentially large; but
algorithm runs fast in practice

[Spielman-Teng,2002]: smoothed analysis

17/85

Interior Point Method

[Karmarkar, 1984]

keep the solution inside the
polytope

design penalty function so
that the solution is not too
close to the boundary

the final solution will be
arbitrarily close to the
optimum solution

polynomial time

17/85

Interior Point Method

[Karmarkar, 1984]

keep the solution inside the
polytope

design penalty function so
that the solution is not too
close to the boundary

the final solution will be
arbitrarily close to the
optimum solution

polynomial time

17/85

Interior Point Method

[Karmarkar, 1984]

keep the solution inside the
polytope

design penalty function so
that the solution is not too
close to the boundary

the final solution will be
arbitrarily close to the
optimum solution

polynomial time

17/85

Interior Point Method

[Karmarkar, 1984]

keep the solution inside the
polytope

design penalty function so
that the solution is not too
close to the boundary

the final solution will be
arbitrarily close to the
optimum solution

polynomial time

17/85

Interior Point Method

[Karmarkar, 1984]

keep the solution inside the
polytope

design penalty function so
that the solution is not too
close to the boundary

the final solution will be
arbitrarily close to the
optimum solution

polynomial time

17/85

Interior Point Method

[Karmarkar, 1984]

keep the solution inside the
polytope

design penalty function so
that the solution is not too
close to the boundary

the final solution will be
arbitrarily close to the
optimum solution

polynomial time

17/85

Interior Point Method

[Karmarkar, 1984]

keep the solution inside the
polytope

design penalty function so
that the solution is not too
close to the boundary

the final solution will be
arbitrarily close to the
optimum solution

polynomial time

17/85

Interior Point Method

[Karmarkar, 1984]

keep the solution inside the
polytope

design penalty function so
that the solution is not too
close to the boundary

the final solution will be
arbitrarily close to the
optimum solution

polynomial time

17/85

Interior Point Method

[Karmarkar, 1984]

keep the solution inside the
polytope

design penalty function so
that the solution is not too
close to the boundary

the final solution will be
arbitrarily close to the
optimum solution

polynomial time

18/85

Ellipsoid Method

[Khachiyan, 1979]

used to decide if the feasible region is empty or not

maintain an ellipsoid that contains
the feasible region

query a separation oracle if the
center of ellipsid is in the feasible
region:

yes: then the feasible region is not
empty
no: cut the elliposid in half, find
smaller ellipsoid to enclose the
half-ellipsoid, and repeat

P

polynomial time, but impractical

18/85

Ellipsoid Method

[Khachiyan, 1979]

used to decide if the feasible region is empty or not

maintain an ellipsoid that contains
the feasible region

query a separation oracle if the
center of ellipsid is in the feasible
region:

yes: then the feasible region is not
empty
no: cut the elliposid in half, find
smaller ellipsoid to enclose the
half-ellipsoid, and repeat

P

polynomial time, but impractical

18/85

Ellipsoid Method

[Khachiyan, 1979]

used to decide if the feasible region is empty or not

maintain an ellipsoid that contains
the feasible region

query a separation oracle if the
center of ellipsid is in the feasible
region:

yes: then the feasible region is not
empty
no: cut the elliposid in half, find
smaller ellipsoid to enclose the
half-ellipsoid, and repeat

P

polynomial time, but impractical

18/85

Ellipsoid Method

[Khachiyan, 1979]

used to decide if the feasible region is empty or not

maintain an ellipsoid that contains
the feasible region

query a separation oracle if the
center of ellipsid is in the feasible
region:

yes: then the feasible region is not
empty
no: cut the elliposid in half, find
smaller ellipsoid to enclose the
half-ellipsoid, and repeat

P

polynomial time, but impractical

18/85

Ellipsoid Method

[Khachiyan, 1979]

used to decide if the feasible region is empty or not

maintain an ellipsoid that contains
the feasible region

query a separation oracle if the
center of ellipsid is in the feasible
region:

yes: then the feasible region is not
empty
no: cut the elliposid in half, find
smaller ellipsoid to enclose the
half-ellipsoid, and repeat

P

polynomial time, but impractical

18/85

Ellipsoid Method

[Khachiyan, 1979]

used to decide if the feasible region is empty or not

maintain an ellipsoid that contains
the feasible region

query a separation oracle if the
center of ellipsid is in the feasible
region:

yes: then the feasible region is not
empty
no: cut the elliposid in half, find
smaller ellipsoid to enclose the
half-ellipsoid, and repeat

P

polynomial time, but impractical

18/85

Ellipsoid Method

[Khachiyan, 1979]

used to decide if the feasible region is empty or not

maintain an ellipsoid that contains
the feasible region

query a separation oracle if the
center of ellipsid is in the feasible
region:

yes: then the feasible region is not
empty
no: cut the elliposid in half, find
smaller ellipsoid to enclose the
half-ellipsoid, and repeat

P

polynomial time, but impractical

18/85

Ellipsoid Method

[Khachiyan, 1979]

used to decide if the feasible region is empty or not

maintain an ellipsoid that contains
the feasible region

query a separation oracle if the
center of ellipsid is in the feasible
region:

yes: then the feasible region is not
empty
no: cut the elliposid in half, find
smaller ellipsoid to enclose the
half-ellipsoid, and repeat

P

polynomial time, but impractical

18/85

Ellipsoid Method

[Khachiyan, 1979]

used to decide if the feasible region is empty or not

maintain an ellipsoid that contains
the feasible region

query a separation oracle if the
center of ellipsid is in the feasible
region:

yes: then the feasible region is not
empty
no: cut the elliposid in half, find
smaller ellipsoid to enclose the
half-ellipsoid, and repeat

P

polynomial time, but impractical

18/85

Ellipsoid Method

[Khachiyan, 1979]

used to decide if the feasible region is empty or not

maintain an ellipsoid that contains
the feasible region

query a separation oracle if the
center of ellipsid is in the feasible
region:

yes: then the feasible region is not
empty
no: cut the elliposid in half, find
smaller ellipsoid to enclose the
half-ellipsoid, and repeat

P

polynomial time, but impractical

18/85

Ellipsoid Method

[Khachiyan, 1979]

used to decide if the feasible region is empty or not

maintain an ellipsoid that contains
the feasible region

query a separation oracle if the
center of ellipsid is in the feasible
region:

yes: then the feasible region is not
empty
no: cut the elliposid in half, find
smaller ellipsoid to enclose the
half-ellipsoid, and repeat

P

polynomial time, but impractical

18/85

Ellipsoid Method

[Khachiyan, 1979]

used to decide if the feasible region is empty or not

maintain an ellipsoid that contains
the feasible region

query a separation oracle if the
center of ellipsid is in the feasible
region:

yes: then the feasible region is not
empty
no: cut the elliposid in half, find
smaller ellipsoid to enclose the
half-ellipsoid, and repeat

P

polynomial time, but impractical

18/85

Ellipsoid Method

[Khachiyan, 1979]

used to decide if the feasible region is empty or not

maintain an ellipsoid that contains
the feasible region

query a separation oracle if the
center of ellipsid is in the feasible
region:

yes: then the feasible region is not
empty
no: cut the elliposid in half, find
smaller ellipsoid to enclose the
half-ellipsoid, and repeat

P

polynomial time, but impractical

18/85

Ellipsoid Method

[Khachiyan, 1979]

used to decide if the feasible region is empty or not

maintain an ellipsoid that contains
the feasible region

query a separation oracle if the
center of ellipsid is in the feasible
region:

yes: then the feasible region is not
empty
no: cut the elliposid in half, find
smaller ellipsoid to enclose the
half-ellipsoid, and repeat

P

polynomial time, but impractical

18/85

Ellipsoid Method

[Khachiyan, 1979]

used to decide if the feasible region is empty or not

maintain an ellipsoid that contains
the feasible region

query a separation oracle if the
center of ellipsid is in the feasible
region:

yes: then the feasible region is not
empty
no: cut the elliposid in half, find
smaller ellipsoid to enclose the
half-ellipsoid, and repeat

P

polynomial time, but impractical

19/85

Q: The exact running time of these algorithms?

it depends on many parameters: #variables, #constraints,
#(non-zero coefficients), magnitude of integers

precision issue

Open Problem

Can linear programming be solved in strongly polynomial time
algorithm?

19/85

Q: The exact running time of these algorithms?

it depends on many parameters: #variables, #constraints,
#(non-zero coefficients), magnitude of integers

precision issue

Open Problem

Can linear programming be solved in strongly polynomial time
algorithm?

19/85

Q: The exact running time of these algorithms?

it depends on many parameters: #variables, #constraints,
#(non-zero coefficients), magnitude of integers

precision issue

Open Problem

Can linear programming be solved in strongly polynomial time
algorithm?

20/85

Applications of Linear Programming

domain: computer science, mathematics, operations research,
economics

types of problems: transportation, scheduling, clustering,
network routing, resource allocation, facility location

Research Directions

polynomial time exact algorithm

polynomial time approximation algorithm

sub-routines for the branch-and-bound metheod for integer
programming

other algorithmic models: online algorithm, distributed
algorithms, dynamic algorithms, fast algorithms

20/85

Applications of Linear Programming

domain: computer science, mathematics, operations research,
economics

types of problems: transportation, scheduling, clustering,
network routing, resource allocation, facility location

Research Directions

polynomial time exact algorithm

polynomial time approximation algorithm

sub-routines for the branch-and-bound metheod for integer
programming

other algorithmic models: online algorithm, distributed
algorithms, dynamic algorithms, fast algorithms

21/85

Typical Combinatorial Optimizatiion Problem

Input: [n]: ground set

S: feasible sets: a family of subsets of U , often
implicitly given

wi, i ∈ [n]: values/costs of elements

Output: the set S ∈ S with the minimum/maximum
w(S) :=

∑
i∈S wi

Def. For any S ⊆ [n], we use χS ∈ {0, 1}[n] to denote the
indicator vector for S:

χS
i =

{
0 if i /∈ S

1 if i ∈ S

polytope of interest: P = conv
(
{χS : S ∈ S}

)

22/85

Examples

Bipartite Matching Polytope

Given bipartite graph G = (L ∪R,E)

PBM := conv
(
{χM : M is a matching in G}

)
General Matching Polytope

Given a graph G = (V,E)

PGM := conv
({

χM : M ⊆ E is a matching in G
})

Spanning Tree Polytope

Given a connected graph G = (V,E)

PST := conv
({

χT : T ⊆ E is a spanning tree of G
})

22/85

Examples

Travelling Salesman Problem (TSP) Polytope

Given the complete graph G = (V,
(
V
2

)
)

PTSP := conv({χS, S ⊆
(
V
2

)
is a TSP tour of V})

23/85

polytope of interest: P = conv
(
{χS : S ∈ S}

)

Mechanic description of P :∑
i∈S

wixi ≤ max
S∈S

∑
i∈S

wi ∀w ∈ R[n]

However, the description is often useless; many constraints are
redundant

It is often interesting and important to find the facet-defining
constraints; those are the constraints that can not be removed

1 In some cases, P has polynomial number of facets

2 In some cases, P has exponential number of facets, but has an
efficient separation oracle.

3 In some cases, P does not have an efficient separation oracle,
unless P = NP.

23/85

polytope of interest: P = conv
(
{χS : S ∈ S}

)
Mechanic description of P :∑

i∈S

wixi ≤ max
S∈S

∑
i∈S

wi ∀w ∈ R[n]

However, the description is often useless; many constraints are
redundant

It is often interesting and important to find the facet-defining
constraints; those are the constraints that can not be removed

1 In some cases, P has polynomial number of facets

2 In some cases, P has exponential number of facets, but has an
efficient separation oracle.

3 In some cases, P does not have an efficient separation oracle,
unless P = NP.

23/85

polytope of interest: P = conv
(
{χS : S ∈ S}

)
Mechanic description of P :∑

i∈S

wixi ≤ max
S∈S

∑
i∈S

wi ∀w ∈ R[n]

However, the description is often useless; many constraints are
redundant

It is often interesting and important to find the facet-defining
constraints; those are the constraints that can not be removed

1 In some cases, P has polynomial number of facets

2 In some cases, P has exponential number of facets, but has an
efficient separation oracle.

3 In some cases, P does not have an efficient separation oracle,
unless P = NP.

23/85

polytope of interest: P = conv
(
{χS : S ∈ S}

)
Mechanic description of P :∑

i∈S

wixi ≤ max
S∈S

∑
i∈S

wi ∀w ∈ R[n]

However, the description is often useless; many constraints are
redundant

It is often interesting and important to find the facet-defining
constraints; those are the constraints that can not be removed

1 In some cases, P has polynomial number of facets

2 In some cases, P has exponential number of facets, but has an
efficient separation oracle.

3 In some cases, P does not have an efficient separation oracle,
unless P = NP.

24/85

polytope of interest: P = conv
(
{χS : S ∈ S}

)
Def. A polytope P ⊆ [0, 1]n is said to be integral, if all vertices
of P are in {0, 1}n.

Lemma For a Q ⊆ [0, 1]n, if Q∩ {0, 1}n = {χS : S ∈ S} and Q
is integral, then Q = P .

Proof.

P ⊆ Q, as every vertex of P is χS for some S ∈ S, and
χS ∈ Q.
Q ⊆ P : take some vertex x of Q
Q is integral =⇒ x is integral =⇒ x = χS for some S ⊆ [n]

As Q∩ {0, 1}n = {χS : S ∈ S}, x = χS for some S ∈ S
x ∈ P

24/85

polytope of interest: P = conv
(
{χS : S ∈ S}

)
Def. A polytope P ⊆ [0, 1]n is said to be integral, if all vertices
of P are in {0, 1}n.

Lemma For a Q ⊆ [0, 1]n, if Q∩ {0, 1}n = {χS : S ∈ S} and Q
is integral, then Q = P .

Proof.

P ⊆ Q, as every vertex of P is χS for some S ∈ S, and
χS ∈ Q.
Q ⊆ P : take some vertex x of Q
Q is integral =⇒ x is integral =⇒ x = χS for some S ⊆ [n]

As Q∩ {0, 1}n = {χS : S ∈ S}, x = χS for some S ∈ S
x ∈ P

25/85

polytope of interest: P = conv
(
{χS : S ∈ S}

)
Lemma For a Q ⊆ [0, 1]n, if Q∩ {0, 1}n = {χS : S ∈ S} and Q
is integral, then Q = P .

Often, it is easy to guarantee Q∩ {0, 1}n = {χS : S ∈ S}
The linear program that defines such a Q is often called a LP
relaxation for the problem.

The harder part is often to prove that Q is integral.

25/85

polytope of interest: P = conv
(
{χS : S ∈ S}

)
Lemma For a Q ⊆ [0, 1]n, if Q∩ {0, 1}n = {χS : S ∈ S} and Q
is integral, then Q = P .

Often, it is easy to guarantee Q∩ {0, 1}n = {χS : S ∈ S}
The linear program that defines such a Q is often called a LP
relaxation for the problem.

The harder part is often to prove that Q is integral.

25/85

polytope of interest: P = conv
(
{χS : S ∈ S}

)
Lemma For a Q ⊆ [0, 1]n, if Q∩ {0, 1}n = {χS : S ∈ S} and Q
is integral, then Q = P .

Often, it is easy to guarantee Q∩ {0, 1}n = {χS : S ∈ S}
The linear program that defines such a Q is often called a LP
relaxation for the problem.

The harder part is often to prove that Q is integral.

26/85

Outline

1 Linear Programming
Introduction
Methods for Solving Linear Programs

2 Polytope with Polynomial Number of Facets
Bipartite Matching Polytope
Polytopes with Totally Unimodular Coefficient Matrices

3 Polytopes with Efficient Separation Oracles
s-t Cut Polytope
Spanning Tree Polytope
General Graph (Perfect) Matching Polytope

4 Matroid, Matroid Basis and Matroid Intersection Polytopes *
Preliminaries on Matroid Theory
Matroid Polytope
Matroid Basis and Matroid Intersection Polytope

27/85

Outline

1 Linear Programming
Introduction
Methods for Solving Linear Programs

2 Polytope with Polynomial Number of Facets
Bipartite Matching Polytope
Polytopes with Totally Unimodular Coefficient Matrices

3 Polytopes with Efficient Separation Oracles
s-t Cut Polytope
Spanning Tree Polytope
General Graph (Perfect) Matching Polytope

4 Matroid, Matroid Basis and Matroid Intersection Polytopes *
Preliminaries on Matroid Theory
Matroid Polytope
Matroid Basis and Matroid Intersection Polytope

28/85

Bipartite Matching Polytope

Maximum Weight Bipartite Matching

Input: bipartite graph G = (L ⊎R,E)

edge weights w ∈ ZE
>0

Output: a matching M ⊆ E so as to
maximize

∑
e∈M we

5
3

4

Bipartite Matching Polytope

Given bipartite graph G = (L ∪R,E)

PBM := conv
(
{χM : M is a matching in G}

)

Theorem PBM is the set of x ∈ RE satisfying the following
constraints:∑

e∈δ(v)

xe ≤ 1,∀v ∈ L ∪R; xe ≥ 0, ∀e ∈ E.

28/85

Bipartite Matching Polytope

Maximum Weight Bipartite Matching

Input: bipartite graph G = (L ⊎R,E)

edge weights w ∈ ZE
>0

Output: a matching M ⊆ E so as to
maximize

∑
e∈M we

5
3

4

Bipartite Matching Polytope

Given bipartite graph G = (L ∪R,E)

PBM := conv
(
{χM : M is a matching in G}

)
Theorem PBM is the set of x ∈ RE satisfying the following
constraints:∑

e∈δ(v)

xe ≤ 1,∀v ∈ L ∪R; xe ≥ 0, ∀e ∈ E.

28/85

Bipartite Matching Polytope

Maximum Weight Bipartite Matching

Input: bipartite graph G = (L ⊎R,E)

edge weights w ∈ ZE
>0

Output: a matching M ⊆ E so as to
maximize

∑
e∈M we

xiji
j

Bipartite Matching Polytope

Given bipartite graph G = (L ∪R,E)

PBM := conv
(
{χM : M is a matching in G}

)
Theorem PBM is the set of x ∈ RE satisfying the following
constraints:∑

e∈δ(v)

xe ≤ 1,∀v ∈ L ∪R; xe ≥ 0, ∀e ∈ E.

28/85

Bipartite Matching Polytope

Maximum Weight Bipartite Matching

Input: bipartite graph G = (L ⊎R,E)

edge weights w ∈ ZE
>0

Output: a matching M ⊆ E so as to
maximize

∑
e∈M we

xiji
j

∑
j xij ≤ 1

∑
i xij ≤ 1

Bipartite Matching Polytope

Given bipartite graph G = (L ∪R,E)

PBM := conv
(
{χM : M is a matching in G}

)
Theorem PBM is the set of x ∈ RE satisfying the following
constraints:∑

e∈δ(v)

xe ≤ 1,∀v ∈ L ∪R; xe ≥ 0, ∀e ∈ E.

29/85

Theorem PBM is the set of x ∈ RE satisfying the following
constraints:∑

e∈δ(v)

xe ≤ 1,∀v ∈ L ∪R; xe ≥ 0, ∀e ∈ E.

Proof.

take any x that satisfies the constraints

prove: x non integral =⇒ x non-vertex

find x′, x′′ ∈ P : x′ ̸= x′′, x = 1
2
(x′ + x′′)

case 1: fractional edges contain a cycle

color edges in cycle blue and red
x′: +ϵ for blue edges, −ϵ for red edges
x′′: −ϵ for blue edges, +ϵ for red edges

case 2: fractional edges form a forest

color edges in leaf-leaf path blue and red
x′: +ϵ for blue edges, −ϵ for red edges
x′′: −ϵ for blue edges, +ϵ for red edges

1

1

29/85

Theorem PBM is the set of x ∈ RE satisfying the following
constraints:∑

e∈δ(v)

xe ≤ 1,∀v ∈ L ∪R; xe ≥ 0, ∀e ∈ E.

Proof.

take any x that satisfies the constraints

prove: x non integral =⇒ x non-vertex

find x′, x′′ ∈ P : x′ ̸= x′′, x = 1
2
(x′ + x′′)

case 1: fractional edges contain a cycle

color edges in cycle blue and red
x′: +ϵ for blue edges, −ϵ for red edges
x′′: −ϵ for blue edges, +ϵ for red edges

case 2: fractional edges form a forest

color edges in leaf-leaf path blue and red
x′: +ϵ for blue edges, −ϵ for red edges
x′′: −ϵ for blue edges, +ϵ for red edges

1

1

29/85

Theorem PBM is the set of x ∈ RE satisfying the following
constraints:∑

e∈δ(v)

xe ≤ 1,∀v ∈ L ∪R; xe ≥ 0, ∀e ∈ E.

Proof.

take any x that satisfies the constraints

prove: x non integral =⇒ x non-vertex

find x′, x′′ ∈ P : x′ ̸= x′′, x = 1
2
(x′ + x′′)

case 1: fractional edges contain a cycle

color edges in cycle blue and red
x′: +ϵ for blue edges, −ϵ for red edges
x′′: −ϵ for blue edges, +ϵ for red edges

case 2: fractional edges form a forest

color edges in leaf-leaf path blue and red
x′: +ϵ for blue edges, −ϵ for red edges
x′′: −ϵ for blue edges, +ϵ for red edges

1

1

29/85

Theorem PBM is the set of x ∈ RE satisfying the following
constraints:∑

e∈δ(v)

xe ≤ 1,∀v ∈ L ∪R; xe ≥ 0, ∀e ∈ E.

Proof.

take any x that satisfies the constraints

prove: x non integral =⇒ x non-vertex

find x′, x′′ ∈ P : x′ ̸= x′′, x = 1
2
(x′ + x′′)

case 1: fractional edges contain a cycle

color edges in cycle blue and red
x′: +ϵ for blue edges, −ϵ for red edges
x′′: −ϵ for blue edges, +ϵ for red edges

case 2: fractional edges form a forest

color edges in leaf-leaf path blue and red
x′: +ϵ for blue edges, −ϵ for red edges
x′′: −ϵ for blue edges, +ϵ for red edges

1

1

29/85

Theorem PBM is the set of x ∈ RE satisfying the following
constraints:∑

e∈δ(v)

xe ≤ 1,∀v ∈ L ∪R; xe ≥ 0, ∀e ∈ E.

Proof.

take any x that satisfies the constraints

prove: x non integral =⇒ x non-vertex

find x′, x′′ ∈ P : x′ ̸= x′′, x = 1
2
(x′ + x′′)

case 1: fractional edges contain a cycle

color edges in cycle blue and red
x′: +ϵ for blue edges, −ϵ for red edges
x′′: −ϵ for blue edges, +ϵ for red edges

case 2: fractional edges form a forest

color edges in leaf-leaf path blue and red
x′: +ϵ for blue edges, −ϵ for red edges
x′′: −ϵ for blue edges, +ϵ for red edges

1

1

29/85

Theorem PBM is the set of x ∈ RE satisfying the following
constraints:∑

e∈δ(v)

xe ≤ 1,∀v ∈ L ∪R; xe ≥ 0, ∀e ∈ E.

Proof.

take any x that satisfies the constraints

prove: x non integral =⇒ x non-vertex

find x′, x′′ ∈ P : x′ ̸= x′′, x = 1
2
(x′ + x′′)

case 1: fractional edges contain a cycle

color edges in cycle blue and red

x′: +ϵ for blue edges, −ϵ for red edges
x′′: −ϵ for blue edges, +ϵ for red edges

case 2: fractional edges form a forest

color edges in leaf-leaf path blue and red
x′: +ϵ for blue edges, −ϵ for red edges
x′′: −ϵ for blue edges, +ϵ for red edges

1

1

29/85

Theorem PBM is the set of x ∈ RE satisfying the following
constraints:∑

e∈δ(v)

xe ≤ 1,∀v ∈ L ∪R; xe ≥ 0, ∀e ∈ E.

Proof.

take any x that satisfies the constraints

prove: x non integral =⇒ x non-vertex

find x′, x′′ ∈ P : x′ ̸= x′′, x = 1
2
(x′ + x′′)

case 1: fractional edges contain a cycle

color edges in cycle blue and red
x′: +ϵ for blue edges, −ϵ for red edges
x′′: −ϵ for blue edges, +ϵ for red edges

case 2: fractional edges form a forest

color edges in leaf-leaf path blue and red
x′: +ϵ for blue edges, −ϵ for red edges
x′′: −ϵ for blue edges, +ϵ for red edges

1

1

±ϵ

±ϵ

±ϵ

∓ϵ

∓ϵ ∓ϵ

29/85

Theorem PBM is the set of x ∈ RE satisfying the following
constraints:∑

e∈δ(v)

xe ≤ 1,∀v ∈ L ∪R; xe ≥ 0, ∀e ∈ E.

Proof.

take any x that satisfies the constraints

prove: x non integral =⇒ x non-vertex

find x′, x′′ ∈ P : x′ ̸= x′′, x = 1
2
(x′ + x′′)

case 1: fractional edges contain a cycle

color edges in cycle blue and red
x′: +ϵ for blue edges, −ϵ for red edges
x′′: −ϵ for blue edges, +ϵ for red edges

case 2: fractional edges form a forest

color edges in leaf-leaf path blue and red
x′: +ϵ for blue edges, −ϵ for red edges
x′′: −ϵ for blue edges, +ϵ for red edges

1

1

29/85

Theorem PBM is the set of x ∈ RE satisfying the following
constraints:∑

e∈δ(v)

xe ≤ 1,∀v ∈ L ∪R; xe ≥ 0, ∀e ∈ E.

Proof.

take any x that satisfies the constraints

prove: x non integral =⇒ x non-vertex

find x′, x′′ ∈ P : x′ ̸= x′′, x = 1
2
(x′ + x′′)

case 1: fractional edges contain a cycle

color edges in cycle blue and red
x′: +ϵ for blue edges, −ϵ for red edges
x′′: −ϵ for blue edges, +ϵ for red edges

case 2: fractional edges form a forest

color edges in leaf-leaf path blue and red

x′: +ϵ for blue edges, −ϵ for red edges
x′′: −ϵ for blue edges, +ϵ for red edges

1

1

29/85

Theorem PBM is the set of x ∈ RE satisfying the following
constraints:∑

e∈δ(v)

xe ≤ 1,∀v ∈ L ∪R; xe ≥ 0, ∀e ∈ E.

Proof.

take any x that satisfies the constraints

prove: x non integral =⇒ x non-vertex

find x′, x′′ ∈ P : x′ ̸= x′′, x = 1
2
(x′ + x′′)

case 1: fractional edges contain a cycle

color edges in cycle blue and red
x′: +ϵ for blue edges, −ϵ for red edges
x′′: −ϵ for blue edges, +ϵ for red edges

case 2: fractional edges form a forest

color edges in leaf-leaf path blue and red
x′: +ϵ for blue edges, −ϵ for red edges
x′′: −ϵ for blue edges, +ϵ for red edges

1

1

∓ϵ

±ϵ

±ϵ

∓ϵ

30/85

Outline

1 Linear Programming
Introduction
Methods for Solving Linear Programs

2 Polytope with Polynomial Number of Facets
Bipartite Matching Polytope
Polytopes with Totally Unimodular Coefficient Matrices

3 Polytopes with Efficient Separation Oracles
s-t Cut Polytope
Spanning Tree Polytope
General Graph (Perfect) Matching Polytope

4 Matroid, Matroid Basis and Matroid Intersection Polytopes *
Preliminaries on Matroid Theory
Matroid Polytope
Matroid Basis and Matroid Intersection Polytope

31/85

Def. A matrix A ∈ Rm×n is said to be totally unimodular
(TUM), if every sub-square of A has determinant in {−1, 0, 1}.

Theorem If a polytope P is defined by Ax ≥ b, x ≥ 0 with a
totally unimodular matrix A and integral b, then P is integral.

Proof.

Every vertex x ∈ P is the unique solution to the linear system

(after permuting coordinates):

(
A′ 0
0 I

)
x =

(
b′

0

)
, where

A′ is a square submatrix of A with det(A′) = ±1, b′ is a
sub-vector of b,
and the rows for b′ are the same as the rows for A′.

Let x =

(
x1

x2

)
, so that A′x1 = b′ and x2 = 0.

Cramer’s rule: x1
i =

det(A′
i|b)

det(A′)
for every i =⇒ x1

i is integer

A′
i|b: the matrix of A′ with the i-th column replaced by b

31/85

Def. A matrix A ∈ Rm×n is said to be totally unimodular
(TUM), if every sub-square of A has determinant in {−1, 0, 1}.

Theorem If a polytope P is defined by Ax ≥ b, x ≥ 0 with a
totally unimodular matrix A and integral b, then P is integral.

Proof.

Every vertex x ∈ P is the unique solution to the linear system

(after permuting coordinates):

(
A′ 0
0 I

)
x =

(
b′

0

)
, where

A′ is a square submatrix of A with det(A′) = ±1, b′ is a
sub-vector of b,
and the rows for b′ are the same as the rows for A′.

Let x =

(
x1

x2

)
, so that A′x1 = b′ and x2 = 0.

Cramer’s rule: x1
i =

det(A′
i|b)

det(A′)
for every i =⇒ x1

i is integer

A′
i|b: the matrix of A′ with the i-th column replaced by b

31/85

Def. A matrix A ∈ Rm×n is said to be totally unimodular
(TUM), if every sub-square of A has determinant in {−1, 0, 1}.

Theorem If a polytope P is defined by Ax ≥ b, x ≥ 0 with a
totally unimodular matrix A and integral b, then P is integral.

Proof.

Every vertex x ∈ P is the unique solution to the linear system

(after permuting coordinates):

(
A′ 0
0 I

)
x =

(
b′

0

)
, where

A′ is a square submatrix of A with det(A′) = ±1, b′ is a
sub-vector of b,
and the rows for b′ are the same as the rows for A′.

Let x =

(
x1

x2

)
, so that A′x1 = b′ and x2 = 0.

Cramer’s rule: x1
i =

det(A′
i|b)

det(A′)
for every i =⇒ x1

i is integer

A′
i|b: the matrix of A′ with the i-th column replaced by b

31/85

Def. A matrix A ∈ Rm×n is said to be totally unimodular
(TUM), if every sub-square of A has determinant in {−1, 0, 1}.

Theorem If a polytope P is defined by Ax ≥ b, x ≥ 0 with a
totally unimodular matrix A and integral b, then P is integral.

Proof.

Every vertex x ∈ P is the unique solution to the linear system

(after permuting coordinates):

(
A′ 0
0 I

)
x =

(
b′

0

)
, where

A′ is a square submatrix of A with det(A′) = ±1, b′ is a
sub-vector of b,
and the rows for b′ are the same as the rows for A′.

Let x =

(
x1

x2

)
, so that A′x1 = b′ and x2 = 0.

Cramer’s rule: x1
i =

det(A′
i|b)

det(A′)
for every i =⇒ x1

i is integer

A′
i|b: the matrix of A′ with the i-th column replaced by b

32/85

Example for the Proof

a1,1 a1,2 a1,3 a1,4 a1,5
a2,1 a2,2 a2,3 a2,4 a2,5
a3,1 a3,2 a3,3 a3,4 a3,5



x1

x2

x3

x4

x5

 ≥
b1
b2
b3


x1, x2, x3, x4, x5 ≥ 0

The following equation system may give a vertex:
a1,1 a1,2 a1,3 a1,4 a1,5
a3,1 a3,2 a3,3 a3,4 a3,5
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1



x1

x2

x3

x4

x5

 =


b1
b3
0
0
0



32/85

Example for the Proof

a1,1 a1,2 a1,3 a1,4 a1,5
a2,1 a2,2 a2,3 a2,4 a2,5
a3,1 a3,2 a3,3 a3,4 a3,5



x1

x2

x3

x4

x5

 ≥
b1
b2
b3


x1, x2, x3, x4, x5 ≥ 0

The following equation system may give a vertex:
a1,1 a1,2 a1,3 a1,4 a1,5
a3,1 a3,2 a3,3 a3,4 a3,5
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1



x1

x2

x3

x4

x5

 =


b1
b3
0
0
0



33/85

Example for the Proof


a1,1 a1,2 a1,3 a1,4 a1,5
a3,1 a3,2 a3,3 a3,4 a3,5
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1



x1

x2

x3

x4

x5

 =


b1
b3
0
0
0



Equivalently, the vertex satisfies
a1,2 a1,3 0 0 0
a3,2 a3,3 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



x2

x3

x1

x4

x5

 =


b1
b3
0
0
0



33/85

Example for the Proof


a1,1 a1,2 a1,3 a1,4 a1,5
a3,1 a3,2 a3,3 a3,4 a3,5
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1



x1

x2

x3

x4

x5

 =


b1
b3
0
0
0


Equivalently, the vertex satisfies

a1,2 a1,3 0 0 0
a3,2 a3,3 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



x2

x3

x1

x4

x5

 =


b1
b3
0
0
0



34/85

Lemma Let A′ ∈ {0,±1}n×n such that every row of A′ contains
at most one 1 and one −1. Then det(A′) ∈ {0,±1}.

Proof.

wlog assume every row of A′ contains one 1 and one −1

otherwise, we can reduce the matrix

treat A′ as a directed graph: columns ≡ vertices, rows ≡ arcs

#edges = #vertices =⇒ underlying undirected graph
contains a cycle =⇒ det(A′) = 0

Lemma Let A ∈ {0,±1}m×n such that every row of A contains
at most one 1 and one −1. Then A is TUM.

Coro. In the LP for s-t network flow problem with integer
capacities, every vertex solution to the LP is integral.

34/85

Lemma Let A′ ∈ {0,±1}n×n such that every row of A′ contains
at most one 1 and one −1. Then det(A′) ∈ {0,±1}.

Proof.

wlog assume every row of A′ contains one 1 and one −1

otherwise, we can reduce the matrix

treat A′ as a directed graph: columns ≡ vertices, rows ≡ arcs

#edges = #vertices =⇒ underlying undirected graph
contains a cycle =⇒ det(A′) = 0

Lemma Let A ∈ {0,±1}m×n such that every row of A contains
at most one 1 and one −1. Then A is TUM.

Coro. In the LP for s-t network flow problem with integer
capacities, every vertex solution to the LP is integral.

34/85

Lemma Let A′ ∈ {0,±1}n×n such that every row of A′ contains
at most one 1 and one −1. Then det(A′) ∈ {0,±1}.

Proof.

wlog assume every row of A′ contains one 1 and one −1
otherwise, we can reduce the matrix

treat A′ as a directed graph: columns ≡ vertices, rows ≡ arcs

#edges = #vertices =⇒ underlying undirected graph
contains a cycle =⇒ det(A′) = 0

Lemma Let A ∈ {0,±1}m×n such that every row of A contains
at most one 1 and one −1. Then A is TUM.

Coro. In the LP for s-t network flow problem with integer
capacities, every vertex solution to the LP is integral.

34/85

Lemma Let A′ ∈ {0,±1}n×n such that every row of A′ contains
at most one 1 and one −1. Then det(A′) ∈ {0,±1}.

Proof.

wlog assume every row of A′ contains one 1 and one −1
otherwise, we can reduce the matrix

treat A′ as a directed graph: columns ≡ vertices, rows ≡ arcs

#edges = #vertices =⇒ underlying undirected graph
contains a cycle =⇒ det(A′) = 0

Lemma Let A ∈ {0,±1}m×n such that every row of A contains
at most one 1 and one −1. Then A is TUM.

Coro. In the LP for s-t network flow problem with integer
capacities, every vertex solution to the LP is integral.

34/85

Lemma Let A′ ∈ {0,±1}n×n such that every row of A′ contains
at most one 1 and one −1. Then det(A′) ∈ {0,±1}.

Proof.

wlog assume every row of A′ contains one 1 and one −1
otherwise, we can reduce the matrix

treat A′ as a directed graph: columns ≡ vertices, rows ≡ arcs

#edges = #vertices =⇒ underlying undirected graph
contains a cycle =⇒ det(A′) = 0

Lemma Let A ∈ {0,±1}m×n such that every row of A contains
at most one 1 and one −1. Then A is TUM.

Coro. In the LP for s-t network flow problem with integer
capacities, every vertex solution to the LP is integral.

34/85

Lemma Let A′ ∈ {0,±1}n×n such that every row of A′ contains
at most one 1 and one −1. Then det(A′) ∈ {0,±1}.

Proof.

wlog assume every row of A′ contains one 1 and one −1
otherwise, we can reduce the matrix

treat A′ as a directed graph: columns ≡ vertices, rows ≡ arcs

#edges = #vertices =⇒ underlying undirected graph
contains a cycle =⇒ det(A′) = 0

Lemma Let A ∈ {0,±1}m×n such that every row of A contains
at most one 1 and one −1. Then A is TUM.

Coro. In the LP for s-t network flow problem with integer
capacities, every vertex solution to the LP is integral.

34/85

Lemma Let A′ ∈ {0,±1}n×n such that every row of A′ contains
at most one 1 and one −1. Then det(A′) ∈ {0,±1}.

Proof.

wlog assume every row of A′ contains one 1 and one −1
otherwise, we can reduce the matrix

treat A′ as a directed graph: columns ≡ vertices, rows ≡ arcs

#edges = #vertices =⇒ underlying undirected graph
contains a cycle =⇒ det(A′) = 0

Lemma Let A ∈ {0,±1}m×n such that every row of A contains
at most one 1 and one −1. Then A is TUM.

Coro. In the LP for s-t network flow problem with integer
capacities, every vertex solution to the LP is integral.

35/85

Example for the Proof

1 −1 0 0 0 0 0
0 −1 0 1 0 0 0
0 0 1 0 0 0 0
0 0 0 1 −1 0 0
0 0 −1 0 0 1 0
0 0 0 0 −1 0 1
1 0 0 0 −1 0 0



1

2

3

4
5

+ (1 −1 0 0 0)
− (0 −1 1 0 0)
+ (0 0 1 −1 0)
− (1 0 0 −1 0)

= (0 0 0 0 0)

35/85

Example for the Proof

1 −1 0 0 0 0 0
0 −1 0 1 0 0 0
0 0 1 0 0 0 0
0 0 0 1 −1 0 0
0 0 −1 0 0 1 0
0 0 0 0 −1 0 1
1 0 0 0 −1 0 0



1

2

3

4
5

+ (1 −1 0 0 0)
− (0 −1 1 0 0)
+ (0 0 1 −1 0)
− (1 0 0 −1 0)

= (0 0 0 0 0)

35/85

Example for the Proof


1 −1 0 0 0 0
0 −1 1 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 0
0 0 0 −1 0 1
1 0 0 −1 0 0



1

2

3

4
5

+ (1 −1 0 0 0)
− (0 −1 1 0 0)
+ (0 0 1 −1 0)
− (1 0 0 −1 0)

= (0 0 0 0 0)

35/85

Example for the Proof


1 −1 0 0 0 0
0 −1 1 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 0
0 0 0 −1 0 1
1 0 0 −1 0 0



1

2

3

4
5

+ (1 −1 0 0 0)
− (0 −1 1 0 0)
+ (0 0 1 −1 0)
− (1 0 0 −1 0)

= (0 0 0 0 0)

35/85

Example for the Proof


1 −1 0 0 0
0 −1 1 0 0
0 0 1 −1 0
0 0 0 −1 1
1 0 0 −1 0



1

2

3

4
5

+ (1 −1 0 0 0)
− (0 −1 1 0 0)
+ (0 0 1 −1 0)
− (1 0 0 −1 0)

= (0 0 0 0 0)

35/85

Example for the Proof


1 −1 0 0 0
0 −1 1 0 0
0 0 1 −1 0
0 0 0 −1 1
1 0 0 −1 0


1

2

3

4
5

+ (1 −1 0 0 0)
− (0 −1 1 0 0)
+ (0 0 1 −1 0)
− (1 0 0 −1 0)

= (0 0 0 0 0)

35/85

Example for the Proof


1 −1 0 0 0
0 −1 1 0 0
0 0 1 −1 0
0 0 0 −1 1
1 0 0 −1 0


1

2

3

4
5

+ (1 −1 0 0 0)
− (0 −1 1 0 0)
+ (0 0 1 −1 0)
− (1 0 0 −1 0)

= (0 0 0 0 0)

35/85

Example for the Proof


1 −1 0 0 0
0 −1 1 0 0
0 0 1 −1 0
0 0 0 −1 1
1 0 0 −1 0


1

2

3

4
5

+ (1 −1 0 0 0)
− (0 −1 1 0 0)
+ (0 0 1 −1 0)
− (1 0 0 −1 0)

= (0 0 0 0 0)

36/85

Lemma A matrix A ∈ {0, 1}m×n where the 1’s on every row
form an interval is TUM.

Proof.

take any square submatrix A′ of A,

the 1’s on every row of A′ form an interval.

A′M is a matrix satisfying condition of first lemma, where

M =


1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
...

...
...

0 0 · · · 1 −1
0 0 · · · 0 1

. det(M) = 1.

det(A′M) ∈ {0,±1} =⇒ det(A′) ∈ {0,±1}.

36/85

Lemma A matrix A ∈ {0, 1}m×n where the 1’s on every row
form an interval is TUM.

Proof.

take any square submatrix A′ of A,

the 1’s on every row of A′ form an interval.

A′M is a matrix satisfying condition of first lemma, where

M =


1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
...

...
...

0 0 · · · 1 −1
0 0 · · · 0 1

. det(M) = 1.

det(A′M) ∈ {0,±1} =⇒ det(A′) ∈ {0,±1}.

36/85

Lemma A matrix A ∈ {0, 1}m×n where the 1’s on every row
form an interval is TUM.

Proof.

take any square submatrix A′ of A,

the 1’s on every row of A′ form an interval.

A′M is a matrix satisfying condition of first lemma, where

M =


1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
...

...
...

0 0 · · · 1 −1
0 0 · · · 0 1

. det(M) = 1.

det(A′M) ∈ {0,±1} =⇒ det(A′) ∈ {0,±1}.

36/85

Lemma A matrix A ∈ {0, 1}m×n where the 1’s on every row
form an interval is TUM.

Proof.

take any square submatrix A′ of A,

the 1’s on every row of A′ form an interval.

A′M is a matrix satisfying condition of first lemma, where

M =


1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
...

...
...

0 0 · · · 1 −1
0 0 · · · 0 1

. det(M) = 1.

det(A′M) ∈ {0,±1} =⇒ det(A′) ∈ {0,±1}.

36/85

Lemma A matrix A ∈ {0, 1}m×n where the 1’s on every row
form an interval is TUM.

Proof.

take any square submatrix A′ of A,

the 1’s on every row of A′ form an interval.

A′M is a matrix satisfying condition of first lemma, where

M =


1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
...

...
...

0 0 · · · 1 −1
0 0 · · · 0 1

. det(M) = 1.

det(A′M) ∈ {0,±1} =⇒ det(A′) ∈ {0,±1}.

37/85

Example for the Proof


0 1 1 1 0 0
1 1 1 1 0 0
0 0 1 1 1 1
0 0 0 0 1 1
0 0 0 1 1 0
0 1 1 1 1 0



=⇒


0 1 0 0 −1
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0



(col 1, col 2− col 1, col 3− col 2, col 4− col 3, col 5− col 4)

every row has at most one 1, at most one −1

37/85

Example for the Proof


0 1 1 1 0 0
1 1 1 1 0 0
0 0 1 1 1 1
0 0 0 0 1 1
0 0 0 1 1 0
0 1 1 1 1 0



=⇒


0 1 0 0 −1
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0



(col 1, col 2− col 1, col 3− col 2, col 4− col 3, col 5− col 4)

every row has at most one 1, at most one −1

37/85

Example for the Proof


0 1 1 1 0
1 1 1 1 0
0 0 1 1 1
0 0 0 1 1
0 1 1 1 1



=⇒


0 1 0 0 −1
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0


(col 1, col 2− col 1, col 3− col 2, col 4− col 3, col 5− col 4)

every row has at most one 1, at most one −1

37/85

Example for the Proof


0 1 1 1 0
1 1 1 1 0
0 0 1 1 1
0 0 0 1 1
0 1 1 1 1



=⇒


0 1 0 0 −1
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0



(col 1, col 2− col 1, col 3− col 2, col 4− col 3, col 5− col 4)

every row has at most one 1, at most one −1

37/85

Example for the Proof


0 1 1 1 0
1 1 1 1 0
0 0 1 1 1
0 0 0 1 1
0 1 1 1 1

 =⇒


0 1 0 0 −1
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0


(col 1, col 2− col 1, col 3− col 2, col 4− col 3, col 5− col 4)

every row has at most one 1, at most one −1

37/85

Example for the Proof


0 1 1 1 0
1 1 1 1 0
0 0 1 1 1
0 0 0 1 1
0 1 1 1 1

 =⇒


0 1 0 0 −1
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0


(col 1, col 2− col 1, col 3− col 2, col 4− col 3, col 5− col 4)

every row has at most one 1, at most one −1

38/85

Weighted Interval Scheduling Problem

Input: n activities, activity i starts at time si, finishes at time
fi, and has weight wi > 0

i and j can be scheduled together iff [si, fi) and
[sj, fj) are disjoint

Output: maximum weight subset of jobs that can be scheduled

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

optimum value= 220

Classic Problem for Dynamic Programming

38/85

Weighted Interval Scheduling Problem

Input: n activities, activity i starts at time si, finishes at time
fi, and has weight wi > 0

i and j can be scheduled together iff [si, fi) and
[sj, fj) are disjoint

Output: maximum weight subset of jobs that can be scheduled

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

optimum value= 220

Classic Problem for Dynamic Programming

39/85

Weighted Interval Scheduling Problem

Linear Program

max
∑
j∈[n]

xjwj∑
j∈[n]:t∈[sj ,fj)

xj ≤ 1 ∀t ∈ [T]

xj ≥ 0 ∀j ∈ [n]

The polytope is integral as
the 1’s in every column are
consecutive.

39/85

Weighted Interval Scheduling Problem

Linear Program

max
∑
j∈[n]

xjwj∑
j∈[n]:t∈[sj ,fj)

xj ≤ 1 ∀t ∈ [T]

xj ≥ 0 ∀j ∈ [n]

The polytope is integral as
the 1’s in every column are
consecutive.

39/85

Weighted Interval Scheduling Problem

Linear Program

max
∑
j∈[n]

xjwj∑
j∈[n]:t∈[sj ,fj)

xj ≤ 1 ∀t ∈ [T]

xj ≥ 0 ∀j ∈ [n]

The polytope is integral as
the 1’s in every column are
consecutive.

40/85

Lemma The edge-vertex incidence matrix A of a bipartite graph
is totally-unimodular.

Proof.

G = (L ⊎R,E): the bipartite graph

A′: obtained from A by negating columns correspondent to R

each row of A′ has exactly one +1, and exactly one −1
=⇒ A′ is TUM ⇐⇒ A is TUM

Example

1

2

3

4

5

6


1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1
0 1 0 1 0 0
0 1 0 0 0 1
0 0 1 0 1 0



40/85

Lemma The edge-vertex incidence matrix A of a bipartite graph
is totally-unimodular.

Proof.

G = (L ⊎R,E): the bipartite graph

A′: obtained from A by negating columns correspondent to R

each row of A′ has exactly one +1, and exactly one −1
=⇒ A′ is TUM ⇐⇒ A is TUM

Example

1

2

3

4

5

6


1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1
0 1 0 1 0 0
0 1 0 0 0 1
0 0 1 0 1 0



40/85

Lemma The edge-vertex incidence matrix A of a bipartite graph
is totally-unimodular.

Proof.

G = (L ⊎R,E): the bipartite graph

A′: obtained from A by negating columns correspondent to R

each row of A′ has exactly one +1, and exactly one −1
=⇒ A′ is TUM ⇐⇒ A is TUM

Example

1

2

3

4

5

6


1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1
0 1 0 1 0 0
0 1 0 0 0 1
0 0 1 0 1 0



40/85

Lemma The edge-vertex incidence matrix A of a bipartite graph
is totally-unimodular.

Proof.

G = (L ⊎R,E): the bipartite graph

A′: obtained from A by negating columns correspondent to R

each row of A′ has exactly one +1, and exactly one −1

=⇒ A′ is TUM ⇐⇒ A is TUM

Example

1

2

3

4

5

6


1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1
0 1 0 1 0 0
0 1 0 0 0 1
0 0 1 0 1 0



40/85

Lemma The edge-vertex incidence matrix A of a bipartite graph
is totally-unimodular.

Proof.

G = (L ⊎R,E): the bipartite graph

A′: obtained from A by negating columns correspondent to R

each row of A′ has exactly one +1, and exactly one −1
=⇒ A′ is TUM ⇐⇒ A is TUM

Example

1

2

3

4

5

6


1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1
0 1 0 1 0 0
0 1 0 0 0 1
0 0 1 0 1 0



40/85

Lemma The edge-vertex incidence matrix A of a bipartite graph
is totally-unimodular.

Proof.

G = (L ⊎R,E): the bipartite graph

A′: obtained from A by negating columns correspondent to R

each row of A′ has exactly one +1, and exactly one −1
=⇒ A′ is TUM ⇐⇒ A is TUM

Example

1

2

3

4

5

6


1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1
0 1 0 1 0 0
0 1 0 0 0 1
0 0 1 0 1 0



40/85

Lemma The edge-vertex incidence matrix A of a bipartite graph
is totally-unimodular.

Proof.

G = (L ⊎R,E): the bipartite graph

A′: obtained from A by negating columns correspondent to R

each row of A′ has exactly one +1, and exactly one −1
=⇒ A′ is TUM ⇐⇒ A is TUM

Example

1

2

3

4

5

6


1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1
0 1 0 1 0 0
0 1 0 0 0 1
0 0 1 0 1 0



40/85

Lemma The edge-vertex incidence matrix A of a bipartite graph
is totally-unimodular.

Proof.

G = (L ⊎R,E): the bipartite graph

A′: obtained from A by negating columns correspondent to R

each row of A′ has exactly one +1, and exactly one −1
=⇒ A′ is TUM ⇐⇒ A is TUM

Example

1

2

3

4

5

6


1 0 0 −1 0 0
1 0 0 0 −1 0
1 0 0 0 0 −1
0 1 0 −1 0 0
0 1 0 0 0 −1
0 0 1 0 −1 0



41/85

A different proof for the theorem we proved:

Theorem PBM is the set of x ∈ RE satisfying the following
constraints:∑

e∈δ(v)

xe ≤ 1,∀v ∈ L ∪R; xe ≥ 0, ∀e ∈ E.

Proof.

The coefficient matrix for the constraints∑
e∈δ(v) xe ≤ 1,∀v ∈ L ∪R is the vertex-edge incidence matrix of

the graph G. Therefore, the polytope is integral.

remark: bipartiteness is needed. The edge-vertex incidence

matrix

0 1 1
1 0 1
1 1 0

 of a triangle has determinent 2.

41/85

A different proof for the theorem we proved:

Theorem PBM is the set of x ∈ RE satisfying the following
constraints:∑

e∈δ(v)

xe ≤ 1,∀v ∈ L ∪R; xe ≥ 0, ∀e ∈ E.

Proof.

The coefficient matrix for the constraints∑
e∈δ(v) xe ≤ 1,∀v ∈ L ∪R is the vertex-edge incidence matrix of

the graph G. Therefore, the polytope is integral.

remark: bipartiteness is needed. The edge-vertex incidence

matrix

0 1 1
1 0 1
1 1 0

 of a triangle has determinent 2.

41/85

A different proof for the theorem we proved:

Theorem PBM is the set of x ∈ RE satisfying the following
constraints:∑

e∈δ(v)

xe ≤ 1,∀v ∈ L ∪R; xe ≥ 0, ∀e ∈ E.

Proof.

The coefficient matrix for the constraints∑
e∈δ(v) xe ≤ 1,∀v ∈ L ∪R is the vertex-edge incidence matrix of

the graph G. Therefore, the polytope is integral.

remark: bipartiteness is needed. The edge-vertex incidence

matrix

0 1 1
1 0 1
1 1 0

 of a triangle has determinent 2.

42/85

Outline

1 Linear Programming
Introduction
Methods for Solving Linear Programs

2 Polytope with Polynomial Number of Facets
Bipartite Matching Polytope
Polytopes with Totally Unimodular Coefficient Matrices

3 Polytopes with Efficient Separation Oracles
s-t Cut Polytope
Spanning Tree Polytope
General Graph (Perfect) Matching Polytope

4 Matroid, Matroid Basis and Matroid Intersection Polytopes *
Preliminaries on Matroid Theory
Matroid Polytope
Matroid Basis and Matroid Intersection Polytope

43/85

Def. A separation oracle for a polytope P ⊆ Rn is an algorithm
that, given some x∗ ∈ Rn,

either correctly claims that x ∈ P ,
or outputs a linear constraint aTx ≤ b that separating x∗ from
P : every x ∈ P satisfies aTx ≤ b, but aTx∗ > b. We say
aTx ≤ b is a separation plane for x∗.

The separation oracle is efficient if its running time is polynomial
in the size of the instance plus the size of x

Clearly, if P ⊆ Rn can be described using a polynomial-size
LP, then it has an efficient separation oracle.

However, there are cases where P ⊆ Rn has exponential
number of facets, but still admits an efficient separation oracle.

43/85

Def. A separation oracle for a polytope P ⊆ Rn is an algorithm
that, given some x∗ ∈ Rn,

either correctly claims that x ∈ P ,
or outputs a linear constraint aTx ≤ b that separating x∗ from
P : every x ∈ P satisfies aTx ≤ b, but aTx∗ > b. We say
aTx ≤ b is a separation plane for x∗.

The separation oracle is efficient if its running time is polynomial
in the size of the instance plus the size of x

Clearly, if P ⊆ Rn can be described using a polynomial-size
LP, then it has an efficient separation oracle.

However, there are cases where P ⊆ Rn has exponential
number of facets, but still admits an efficient separation oracle.

44/85

We can use ellipsoid method to solve the LP
min /maxwTx, x ∈ P , when P has an efficient separation
oracle, using the ellipsoid method.

Ellipsoid Method

maintain an ellipsoid that contains
the feasible region

query a separation oracle if the
center of ellipsid is in the feasible
region:

yes: then the feasible region is not
empty
no: cut the elliposid in half, find
smaller ellipsoid to enclose the
half-ellipsoid, and repeat

P

44/85

We can use ellipsoid method to solve the LP
min /maxwTx, x ∈ P , when P has an efficient separation
oracle, using the ellipsoid method.

Ellipsoid Method

maintain an ellipsoid that contains
the feasible region

query a separation oracle if the
center of ellipsid is in the feasible
region:

yes: then the feasible region is not
empty
no: cut the elliposid in half, find
smaller ellipsoid to enclose the
half-ellipsoid, and repeat

P

44/85

We can use ellipsoid method to solve the LP
min /maxwTx, x ∈ P , when P has an efficient separation
oracle, using the ellipsoid method.

Ellipsoid Method

maintain an ellipsoid that contains
the feasible region

query a separation oracle if the
center of ellipsid is in the feasible
region:

yes: then the feasible region is not
empty
no: cut the elliposid in half, find
smaller ellipsoid to enclose the
half-ellipsoid, and repeat

P

44/85

We can use ellipsoid method to solve the LP
min /maxwTx, x ∈ P , when P has an efficient separation
oracle, using the ellipsoid method.

Ellipsoid Method

maintain an ellipsoid that contains
the feasible region

query a separation oracle if the
center of ellipsid is in the feasible
region:

yes: then the feasible region is not
empty
no: cut the elliposid in half, find
smaller ellipsoid to enclose the
half-ellipsoid, and repeat

P

44/85

We can use ellipsoid method to solve the LP
min /maxwTx, x ∈ P , when P has an efficient separation
oracle, using the ellipsoid method.

Ellipsoid Method

maintain an ellipsoid that contains
the feasible region

query a separation oracle if the
center of ellipsid is in the feasible
region:

yes: then the feasible region is not
empty
no: cut the elliposid in half, find
smaller ellipsoid to enclose the
half-ellipsoid, and repeat

P

44/85

We can use ellipsoid method to solve the LP
min /maxwTx, x ∈ P , when P has an efficient separation
oracle, using the ellipsoid method.

Ellipsoid Method

maintain an ellipsoid that contains
the feasible region

query a separation oracle if the
center of ellipsid is in the feasible
region:

yes: then the feasible region is not
empty
no: cut the elliposid in half, find
smaller ellipsoid to enclose the
half-ellipsoid, and repeat

P

44/85

We can use ellipsoid method to solve the LP
min /maxwTx, x ∈ P , when P has an efficient separation
oracle, using the ellipsoid method.

Ellipsoid Method

maintain an ellipsoid that contains
the feasible region

query a separation oracle if the
center of ellipsid is in the feasible
region:

yes: then the feasible region is not
empty
no: cut the elliposid in half, find
smaller ellipsoid to enclose the
half-ellipsoid, and repeat

P

44/85

We can use ellipsoid method to solve the LP
min /maxwTx, x ∈ P , when P has an efficient separation
oracle, using the ellipsoid method.

Ellipsoid Method

maintain an ellipsoid that contains
the feasible region

query a separation oracle if the
center of ellipsid is in the feasible
region:

yes: then the feasible region is not
empty
no: cut the elliposid in half, find
smaller ellipsoid to enclose the
half-ellipsoid, and repeat

P

44/85

We can use ellipsoid method to solve the LP
min /maxwTx, x ∈ P , when P has an efficient separation
oracle, using the ellipsoid method.

Ellipsoid Method

maintain an ellipsoid that contains
the feasible region

query a separation oracle if the
center of ellipsid is in the feasible
region:

yes: then the feasible region is not
empty
no: cut the elliposid in half, find
smaller ellipsoid to enclose the
half-ellipsoid, and repeat

P

44/85

We can use ellipsoid method to solve the LP
min /maxwTx, x ∈ P , when P has an efficient separation
oracle, using the ellipsoid method.

Ellipsoid Method

maintain an ellipsoid that contains
the feasible region

query a separation oracle if the
center of ellipsid is in the feasible
region:

yes: then the feasible region is not
empty
no: cut the elliposid in half, find
smaller ellipsoid to enclose the
half-ellipsoid, and repeat

P

45/85

Outline

1 Linear Programming
Introduction
Methods for Solving Linear Programs

2 Polytope with Polynomial Number of Facets
Bipartite Matching Polytope
Polytopes with Totally Unimodular Coefficient Matrices

3 Polytopes with Efficient Separation Oracles
s-t Cut Polytope
Spanning Tree Polytope
General Graph (Perfect) Matching Polytope

4 Matroid, Matroid Basis and Matroid Intersection Polytopes *
Preliminaries on Matroid Theory
Matroid Polytope
Matroid Basis and Matroid Intersection Polytope

46/85

s-t Cut Polytope

Def. Given a digraph G = (V,E), C is a s-t cut in G, if s and t
are disconnected in (V,E \ C).

Pmin−cut := conv
(
{χC : C is a s-t cut in G}

)
Theorem Pmin−cut is the set of vectors x ∈ RE satisfying the
following inequalities:∑

e∈P

xe ≥ 1 ∀ simple s-t path P (*)

xe ∈ [0, 1] ∀e ∈ E

Q: Given x ∈ [0, 1]E, how can we check if x satisfies all
constraints in (*)?

A: Use shortest path algorithm with weights (xe)e∈E.

46/85

s-t Cut Polytope

Def. Given a digraph G = (V,E), C is a s-t cut in G, if s and t
are disconnected in (V,E \ C).

Pmin−cut := conv
(
{χC : C is a s-t cut in G}

)
Theorem Pmin−cut is the set of vectors x ∈ RE satisfying the
following inequalities:∑

e∈P

xe ≥ 1 ∀ simple s-t path P (*)

xe ∈ [0, 1] ∀e ∈ E

Q: Given x ∈ [0, 1]E, how can we check if x satisfies all
constraints in (*)?

A: Use shortest path algorithm with weights (xe)e∈E.

46/85

s-t Cut Polytope

Def. Given a digraph G = (V,E), C is a s-t cut in G, if s and t
are disconnected in (V,E \ C).

Pmin−cut := conv
(
{χC : C is a s-t cut in G}

)
Theorem Pmin−cut is the set of vectors x ∈ RE satisfying the
following inequalities:∑

e∈P

xe ≥ 1 ∀ simple s-t path P (*)

xe ∈ [0, 1] ∀e ∈ E

Q: Given x ∈ [0, 1]E, how can we check if x satisfies all
constraints in (*)?

A: Use shortest path algorithm with weights (xe)e∈E.

47/85

Theorem Pmin−cut is the set of vectors x ∈ RE satisfying the
following inequalities:∑

e∈P

xe ≥ 1 ∀ simple s-t path P (*)

xe ∈ [0, 1] ∀e ∈ E

Proof of Lemma.

Given x ∈ [0, 1]E satisfying (*)

dx(v), v ∈ V : length of shortest path from s to v, with x
being the weights; so dx(s) = 0 and dx(t) ≥ 1

randomly choose a real θ ∈ (0, 1)

S := {v ∈ V : dx(v) ≤ θ}, T := V \ S = {v ∈ V : dx(v) > θ}
C := E(S, T)

47/85

Theorem Pmin−cut is the set of vectors x ∈ RE satisfying the
following inequalities:∑

e∈P

xe ≥ 1 ∀ simple s-t path P (*)

xe ∈ [0, 1] ∀e ∈ E

Proof of Lemma.

Given x ∈ [0, 1]E satisfying (*)

dx(v), v ∈ V : length of shortest path from s to v, with x
being the weights; so dx(s) = 0 and dx(t) ≥ 1

randomly choose a real θ ∈ (0, 1)

S := {v ∈ V : dx(v) ≤ θ}, T := V \ S = {v ∈ V : dx(v) > θ}
C := E(S, T)

48/85

Claim For an edge (u, v) ∈ E, we have

Pr[(u, v) ∈ C] ≤ max{dx(v)− dx(u), 0}.

Proof.

(u, v) ∈ C happens only if dx(u) < θ ≤ dx(v).

This happens with probability at most
max{dx(v)− dx(u), 0} ≤ x(u,v).

Proof of Lemma, Continued

Eθ[χ
C] ≤ x

We can define a random set C ′ so that C ′ ⊇ C happens with
probability 1, and Eθ[χ

C′
] = x.

So x ∈ conv({χC′
: C ′ is a s-t cut in G})

49/85

Outline

1 Linear Programming
Introduction
Methods for Solving Linear Programs

2 Polytope with Polynomial Number of Facets
Bipartite Matching Polytope
Polytopes with Totally Unimodular Coefficient Matrices

3 Polytopes with Efficient Separation Oracles
s-t Cut Polytope
Spanning Tree Polytope
General Graph (Perfect) Matching Polytope

4 Matroid, Matroid Basis and Matroid Intersection Polytopes *
Preliminaries on Matroid Theory
Matroid Polytope
Matroid Basis and Matroid Intersection Polytope

50/85

Spanning Tree Polytope

Given a connected graph G = (V,E)

PST := conv
({

χT : T ⊆ E is a spanning tree of G
})

Theorem (Spanning Tree Polytope Theorem) PST is the set
of vectors x ∈ RE satisfying the following inequalities:∑

e∈E

xe = n− 1∑
e∈E[S]

xe ≤ |S| − 1 ∀S ⊆ V, 2 ≤ |S| ≤ n− 1 (*)

xe ≥ 0 ∀e ∈ E

Spanning trees correspond to bases of graphic matroid for G

Later we prove a more general theorem on matroid polytopes

51/85

Theorem (Spanning Tree Polytope Theorem) PST is the set
of vectors x ∈ RE satisfying the following inequalities:∑

e∈E

xe = n− 1∑
e∈E[S]

xe ≤ |S| − 1 ∀S ⊆ V, 2 ≤ |S| ≤ n− 1 (*)

xe ≥ 0 ∀e ∈ E

Q: How can we check if all constraints in (*) are satisfied?

A:
reduce−−−→ densest sub-graph

reduce−−−→ maximum flow

51/85

Theorem (Spanning Tree Polytope Theorem) PST is the set
of vectors x ∈ RE satisfying the following inequalities:∑

e∈E

xe = n− 1∑
e∈E[S]

xe ≤ |S| − 1 ∀S ⊆ V, 2 ≤ |S| ≤ n− 1 (*)

xe ≥ 0 ∀e ∈ E

Q: How can we check if all constraints in (*) are satisfied?

A:
reduce−−−→ densest sub-graph

reduce−−−→ maximum flow

52/85

Checking if
∑

e∈E[S] xe ≤ |S| − 1,∀S ⊆ V

We need to check if ∃S ⊆ V,
∑

e∈E[S] xe

|S|−1
> 1:

Guess a vertex v ∈ S; set wv = 0 and wu = 1 for every
u ∈ V \ {v}

The problem becomes to check if ∃S ⊆ V,
∑

e∈E[S] xe∑
u∈S wu

> 1

This is a (weighted) densest subgraph problem

Exercise: It can be solved using maximum flow

52/85

Checking if
∑

e∈E[S] xe ≤ |S| − 1,∀S ⊆ V

We need to check if ∃S ⊆ V,
∑

e∈E[S] xe

|S|−1
> 1:

Guess a vertex v ∈ S; set wv = 0 and wu = 1 for every
u ∈ V \ {v}

The problem becomes to check if ∃S ⊆ V,
∑

e∈E[S] xe∑
u∈S wu

> 1

This is a (weighted) densest subgraph problem

Exercise: It can be solved using maximum flow

52/85

Checking if
∑

e∈E[S] xe ≤ |S| − 1,∀S ⊆ V

We need to check if ∃S ⊆ V,
∑

e∈E[S] xe

|S|−1
> 1:

Guess a vertex v ∈ S; set wv = 0 and wu = 1 for every
u ∈ V \ {v}

The problem becomes to check if ∃S ⊆ V,
∑

e∈E[S] xe∑
u∈S wu

> 1

This is a (weighted) densest subgraph problem

Exercise: It can be solved using maximum flow

53/85

Outline

1 Linear Programming
Introduction
Methods for Solving Linear Programs

2 Polytope with Polynomial Number of Facets
Bipartite Matching Polytope
Polytopes with Totally Unimodular Coefficient Matrices

3 Polytopes with Efficient Separation Oracles
s-t Cut Polytope
Spanning Tree Polytope
General Graph (Perfect) Matching Polytope

4 Matroid, Matroid Basis and Matroid Intersection Polytopes *
Preliminaries on Matroid Theory
Matroid Polytope
Matroid Basis and Matroid Intersection Polytope

54/85

General Graph Perfect Matching Polytope

General Perfect Matching Polytope

Given a graph G = (V,E), where |V | is even
PGPM := conv

({
χM : M ⊆ E is a perfect matching in G

})

Theorem (General Perfect Matching Polytope Theorem)
PGPM is the set of vectors x ∈ RE satisfying the following
inequalities: ∑

e∈δ(v)

xe = 1 ∀v ∈ V

∑
e∈E(S,V \S)

xe ≥ 1 ∀S ⊆ V, |S| is odd (*)

xe ≥ 0 ∀e ∈ E

54/85

General Graph Perfect Matching Polytope

General Perfect Matching Polytope

Given a graph G = (V,E), where |V | is even
PGPM := conv

({
χM : M ⊆ E is a perfect matching in G

})
Theorem (General Perfect Matching Polytope Theorem)
PGPM is the set of vectors x ∈ RE satisfying the following
inequalities: ∑

e∈δ(v)

xe = 1 ∀v ∈ V

∑
e∈E(S,V \S)

xe ≥ 1 ∀S ⊆ V, |S| is odd (*)

xe ≥ 0 ∀e ∈ E

55/85

Theorem (General Perfect Matching Polytope Theorem)
PGPM is the set of vectors x ∈ RE satisfying the following
inequalities: ∑

e∈δ(v)

xe = 1 ∀v ∈ V

∑
e∈E(S,V \S)

xe ≥ 1 ∀S ⊆ V, |S| is odd (*)

xe ≥ 0 ∀e ∈ E

Proof of General Perfect Matching Polytope Theorem

Clearly, every x ∈ PGPM satisfies all the LP constraints

We prove the LP polytope is integral; this implies lemma

We choose the counter-example G with the smallest |V |+ |E|,
and focus on a non-integral vertex x of the LP polytope

56/85

Proof of General Perfect Matching Polytope Theorem

xe = 0 for some e ∈ E: e could be removed.

xe = 1 for some e ∈ E: e and its 2 end vertices could be
removed.

So xe ∈ (0, 1) for every e ∈ E.

Every v ∈ V has degree at least 2.

Every v ∈ V has degree exactly 2: G is union of disjoint
cycles, x would not be a vertex of LP polytope.

Assume some v ∈ V has degree at least 3; |E| ≥ |V |+ 1.

x is the unique solution to a system ot n linear equations from
the LP.

So, some linear equation is∑
e∈E(S,V \S)

xe = 1 for some S ⊆ V with |S| ≥ 3, |V \ S| ≥ 3

57/85

S V \ S

∑
e xe = 1

Proof of General Perfect
Matching Polytope Theorem

Consider two instances:
(G/V, x′), (G/(V \ S), x′′)

Both x′ and x′′ satisfy the LP
constraints for their
respective graphs.

By the minimality assumption:

x′ ∈ conv({χM : M is a perfect matching in G/S})
x′′ ∈ conv({χM : M is a perfect matching in G/(V \ S)})

Decompose x′ and x′′ into a convex combinations of matchings

Each e ∈ E(S, V \ S) has the same fraction in combinations

“Concatenate” two convex combinations into one convex
combinations of matching in G. So x can not be a vertex.

57/85

S V \ S

∑
e xe = 1

S V \ S∑
e xe = 1 ∑

e xe = 1

Proof of General Perfect
Matching Polytope Theorem

Consider two instances:
(G/V, x′), (G/(V \ S), x′′)

Both x′ and x′′ satisfy the LP
constraints for their
respective graphs.

By the minimality assumption:

x′ ∈ conv({χM : M is a perfect matching in G/S})
x′′ ∈ conv({χM : M is a perfect matching in G/(V \ S)})

Decompose x′ and x′′ into a convex combinations of matchings

Each e ∈ E(S, V \ S) has the same fraction in combinations

“Concatenate” two convex combinations into one convex
combinations of matching in G. So x can not be a vertex.

57/85

S V \ S

∑
e xe = 1

S V \ S∑
e xe = 1 ∑

e xe = 1

Proof of General Perfect
Matching Polytope Theorem

Consider two instances:
(G/V, x′), (G/(V \ S), x′′)

Both x′ and x′′ satisfy the LP
constraints for their
respective graphs.

By the minimality assumption:

x′ ∈ conv({χM : M is a perfect matching in G/S})
x′′ ∈ conv({χM : M is a perfect matching in G/(V \ S)})

Decompose x′ and x′′ into a convex combinations of matchings

Each e ∈ E(S, V \ S) has the same fraction in combinations

“Concatenate” two convex combinations into one convex
combinations of matching in G. So x can not be a vertex.

57/85

S V \ S

∑
e xe = 1

S V \ S∑
e xe = 1 ∑

e xe = 1

Proof of General Perfect
Matching Polytope Theorem

Consider two instances:
(G/V, x′), (G/(V \ S), x′′)

Both x′ and x′′ satisfy the LP
constraints for their
respective graphs.

By the minimality assumption:

x′ ∈ conv({χM : M is a perfect matching in G/S})
x′′ ∈ conv({χM : M is a perfect matching in G/(V \ S)})

Decompose x′ and x′′ into a convex combinations of matchings

Each e ∈ E(S, V \ S) has the same fraction in combinations

“Concatenate” two convex combinations into one convex
combinations of matching in G. So x can not be a vertex.

57/85

S V \ S

∑
e xe = 1

S V \ S∑
e xe = 1 ∑

e xe = 1

Proof of General Perfect
Matching Polytope Theorem

Consider two instances:
(G/V, x′), (G/(V \ S), x′′)

Both x′ and x′′ satisfy the LP
constraints for their
respective graphs.

By the minimality assumption:

x′ ∈ conv({χM : M is a perfect matching in G/S})
x′′ ∈ conv({χM : M is a perfect matching in G/(V \ S)})

Decompose x′ and x′′ into a convex combinations of matchings

Each e ∈ E(S, V \ S) has the same fraction in combinations

“Concatenate” two convex combinations into one convex
combinations of matching in G. So x can not be a vertex.

57/85

S V \ S

∑
e xe = 1

S V \ S∑
e xe = 1 ∑

e xe = 1

Proof of General Perfect
Matching Polytope Theorem

Consider two instances:
(G/V, x′), (G/(V \ S), x′′)

Both x′ and x′′ satisfy the LP
constraints for their
respective graphs.

By the minimality assumption:

x′ ∈ conv({χM : M is a perfect matching in G/S})
x′′ ∈ conv({χM : M is a perfect matching in G/(V \ S)})

Decompose x′ and x′′ into a convex combinations of matchings

Each e ∈ E(S, V \ S) has the same fraction in combinations

“Concatenate” two convex combinations into one convex
combinations of matching in G. So x can not be a vertex.

57/85

S V \ S

∑
e xe = 1

S V \ S∑
e xe = 1 ∑

e xe = 1

Proof of General Perfect
Matching Polytope Theorem

Consider two instances:
(G/V, x′), (G/(V \ S), x′′)

Both x′ and x′′ satisfy the LP
constraints for their
respective graphs.

By the minimality assumption:

x′ ∈ conv({χM : M is a perfect matching in G/S})
x′′ ∈ conv({χM : M is a perfect matching in G/(V \ S)})

Decompose x′ and x′′ into a convex combinations of matchings

Each e ∈ E(S, V \ S) has the same fraction in combinations

“Concatenate” two convex combinations into one convex
combinations of matching in G. So x can not be a vertex.

58/85

Theorem (General Perfect Matching Polytope Theorem)
PGPM is the set of vectors x ∈ RE satisfying the following
inequalities: ∑

e∈δ(v)

xe = 1 ∀v ∈ V

∑
e∈E(S,V \S)

xe ≥ 1 ∀S ⊆ V, |S| is odd (*)

xe ≥ 0 ∀e ∈ E

Q: How can we check if all constraints in (*) are satisfied?

A: Use the Gomory-Hu Tree structure.

inequality in (*) can be replaced by
∑

e∈E[S] xe ≤ |S|−1
2

more convenient to obtain general matching polytope

58/85

Theorem (General Perfect Matching Polytope Theorem)
PGPM is the set of vectors x ∈ RE satisfying the following
inequalities: ∑

e∈δ(v)

xe = 1 ∀v ∈ V

∑
e∈E(S,V \S)

xe ≥ 1 ∀S ⊆ V, |S| is odd (*)

xe ≥ 0 ∀e ∈ E

Q: How can we check if all constraints in (*) are satisfied?

A: Use the Gomory-Hu Tree structure.

inequality in (*) can be replaced by
∑

e∈E[S] xe ≤ |S|−1
2

more convenient to obtain general matching polytope

58/85

Theorem (General Perfect Matching Polytope Theorem)
PGPM is the set of vectors x ∈ RE satisfying the following
inequalities: ∑

e∈δ(v)

xe = 1 ∀v ∈ V

∑
e∈E(S,V \S)

xe ≥ 1 ∀S ⊆ V, |S| is odd (*)

xe ≥ 0 ∀e ∈ E

Q: How can we check if all constraints in (*) are satisfied?

A: Use the Gomory-Hu Tree structure.

inequality in (*) can be replaced by
∑

e∈E[S] xe ≤ |S|−1
2

more convenient to obtain general matching polytope

59/85

General Matching Polytope

Given a graph G = (V,E)

PGM := conv
({

χM : M ⊆ E is a matching in G
})

Theorem (General Matching Polytope Theorem) PGM is the
set of vectors x ∈ RE satisfying the following inequalities:∑

e∈δ(v)

xe ≤ 1 ∀v ∈ V

∑
e∈E(S)

xe ≤
|S| − 1

2
∀S ⊆ V, |S| is odd (1)

xe ≥ 0 ∀e ∈ E

59/85

General Matching Polytope

Given a graph G = (V,E)

PGM := conv
({

χM : M ⊆ E is a matching in G
})

Theorem (General Matching Polytope Theorem) PGM is the
set of vectors x ∈ RE satisfying the following inequalities:∑

e∈δ(v)

xe ≤ 1 ∀v ∈ V

∑
e∈E(S)

xe ≤
|S| − 1

2
∀S ⊆ V, |S| is odd (1)

xe ≥ 0 ∀e ∈ E

60/85

Remark

For all the polytopes, we identified a set of linear inequalities
that are sufficient to define the polytope.

However, not all the constraints are facet-defining.

Only facet-defining constraints are necessarily; other
constraints could be removed. (We keep all the constraints.for
convenience of description.)

Example: in spanning tree polytope,
∑

e∈E[S] xe ≤ |S| − 1 is

not needed if (S,E[S]) is disconnected, or contains a bridge.
In this case, the constraint does not define a facet.

60/85

Remark

For all the polytopes, we identified a set of linear inequalities
that are sufficient to define the polytope.

However, not all the constraints are facet-defining.

Only facet-defining constraints are necessarily; other
constraints could be removed. (We keep all the constraints.for
convenience of description.)

Example: in spanning tree polytope,
∑

e∈E[S] xe ≤ |S| − 1 is

not needed if (S,E[S]) is disconnected, or contains a bridge.
In this case, the constraint does not define a facet.

61/85

Outline

1 Linear Programming
Introduction
Methods for Solving Linear Programs

2 Polytope with Polynomial Number of Facets
Bipartite Matching Polytope
Polytopes with Totally Unimodular Coefficient Matrices

3 Polytopes with Efficient Separation Oracles
s-t Cut Polytope
Spanning Tree Polytope
General Graph (Perfect) Matching Polytope

4 Matroid, Matroid Basis and Matroid Intersection Polytopes *
Preliminaries on Matroid Theory
Matroid Polytope
Matroid Basis and Matroid Intersection Polytope

62/85

Outline

1 Linear Programming
Introduction
Methods for Solving Linear Programs

2 Polytope with Polynomial Number of Facets
Bipartite Matching Polytope
Polytopes with Totally Unimodular Coefficient Matrices

3 Polytopes with Efficient Separation Oracles
s-t Cut Polytope
Spanning Tree Polytope
General Graph (Perfect) Matching Polytope

4 Matroid, Matroid Basis and Matroid Intersection Polytopes *
Preliminaries on Matroid Theory
Matroid Polytope
Matroid Basis and Matroid Intersection Polytope

63/85

Recall Definition and Examples of Matroid

Def. A (finite) matroidM is a pair (E, I), where E is a finite
set (called the ground set) and I is a family of subsets of E
(called independent sets) with the following properties:

1 ∅ ∈ I.
2 (downward-closed property) If B ⊊ A ∈ I, then B ∈ I.
3 (augmentation/exchange property) If A,B ∈ I and |B| < |A|,

then there exists e ∈ A \B such that B ∪ {e} ∈ I.

Relationship between matroids

Uniform Partition Linear

Laminar

Transversal

Graphic

64/85

Other Terminologies Related To a MatroidM = (E, I)
A subset of E that is not independent is dependent.

A maximal independent set is called a basis (plural: bases)

A minimal dependent set is called a circuit

Graphic matroid for a connected graph G = (V,E):

basis ⇐⇒ spanning tree circuit ⇐⇒ cycle

Lemma All bases of a matroid have the same size.

Proof.

Assume two A and A′ are both bases ofM and |A| > |A′|
By exchange property: ∃i ∈ A \ A′, A′ ∪ {i} ∈ I
contradiction with that A′ is a basis

64/85

Other Terminologies Related To a MatroidM = (E, I)
A subset of E that is not independent is dependent.

A maximal independent set is called a basis (plural: bases)

A minimal dependent set is called a circuit

Graphic matroid for a connected graph G = (V,E):

basis ⇐⇒ spanning tree circuit ⇐⇒ cycle

Lemma All bases of a matroid have the same size.

Proof.

Assume two A and A′ are both bases ofM and |A| > |A′|
By exchange property: ∃i ∈ A \ A′, A′ ∪ {i} ∈ I
contradiction with that A′ is a basis

65/85

Recall: Matroid Rank Function:

Def. Given a matroidM = (E, I), the rank of any A ⊆ E is
defined as

rM(A) = max
{
|A′| : A′ ⊆ A,A′ ∈ I

}
.

The function rM : 2E → Z≥0 is called the rank function ofM.

rM(A) is size of maximum independent subset of A

Trivial properties of rM

rM(∅) = 0

rM(A ∪ {i})− rM(A) ∈ {0, 1} for every A ⊆ E, i ∈ E \ A

Theorem The rank function rM of a matroidM = (E, I) is
submodular.

66/85

Greedy algorithm finds max ind. subset of any given X ⊆ E:

1: S ← ∅
2: while ∃e ∈ X \ S s.t. S ∪ {e} ∈ I do
3: let e be an arbitrary element satisfying the condition
4: S ← S ∪ {e}
5: return S

Proof of Submodularity of rM.

Take A ⊊ E, i, j ∈ E \ A, i ̸= j, need to prove:
rM(A ∪ {i, j})− rM(A ∪ {i}) ≤ rM(A ∪ {j})− rM(A)

if not, then LHS = 1, RHS = 0

S: max ind. subset of A, S ′: max ind. subset of A ∪ {i}
|S| = rM(A), |S ′| = rM(A ∪ {i}), S ′ = S or S ′ = S ∪ {i}
RHS = 0 =⇒ S ∪ {j} /∈ I, LHS = 1 =⇒ S ′ ∪ {j} ∈ I
contradiction

66/85

Greedy algorithm finds max ind. subset of any given X ⊆ E:

1: S ← ∅
2: while ∃e ∈ X \ S s.t. S ∪ {e} ∈ I do
3: let e be an arbitrary element satisfying the condition
4: S ← S ∪ {e}
5: return S

Proof of Submodularity of rM.

Take A ⊊ E, i, j ∈ E \ A, i ̸= j, need to prove:
rM(A ∪ {i, j})− rM(A ∪ {i}) ≤ rM(A ∪ {j})− rM(A)

if not, then LHS = 1, RHS = 0

S: max ind. subset of A, S ′: max ind. subset of A ∪ {i}
|S| = rM(A), |S ′| = rM(A ∪ {i}), S ′ = S or S ′ = S ∪ {i}
RHS = 0 =⇒ S ∪ {j} /∈ I, LHS = 1 =⇒ S ′ ∪ {j} ∈ I
contradiction

66/85

Greedy algorithm finds max ind. subset of any given X ⊆ E:

1: S ← ∅
2: while ∃e ∈ X \ S s.t. S ∪ {e} ∈ I do
3: let e be an arbitrary element satisfying the condition
4: S ← S ∪ {e}
5: return S

Proof of Submodularity of rM.

Take A ⊊ E, i, j ∈ E \ A, i ̸= j, need to prove:
rM(A ∪ {i, j})− rM(A ∪ {i}) ≤ rM(A ∪ {j})− rM(A)

if not, then LHS = 1, RHS = 0

S: max ind. subset of A, S ′: max ind. subset of A ∪ {i}
|S| = rM(A), |S ′| = rM(A ∪ {i}), S ′ = S or S ′ = S ∪ {i}
RHS = 0 =⇒ S ∪ {j} /∈ I, LHS = 1 =⇒ S ′ ∪ {j} ∈ I
contradiction

66/85

Greedy algorithm finds max ind. subset of any given X ⊆ E:

1: S ← ∅
2: while ∃e ∈ X \ S s.t. S ∪ {e} ∈ I do
3: let e be an arbitrary element satisfying the condition
4: S ← S ∪ {e}
5: return S

Proof of Submodularity of rM.

Take A ⊊ E, i, j ∈ E \ A, i ̸= j, need to prove:
rM(A ∪ {i, j})− rM(A ∪ {i}) ≤ rM(A ∪ {j})− rM(A)

if not, then LHS = 1, RHS = 0

S: max ind. subset of A, S ′: max ind. subset of A ∪ {i}
|S| = rM(A), |S ′| = rM(A ∪ {i}), S ′ = S or S ′ = S ∪ {i}

RHS = 0 =⇒ S ∪ {j} /∈ I, LHS = 1 =⇒ S ′ ∪ {j} ∈ I
contradiction

66/85

Greedy algorithm finds max ind. subset of any given X ⊆ E:

1: S ← ∅
2: while ∃e ∈ X \ S s.t. S ∪ {e} ∈ I do
3: let e be an arbitrary element satisfying the condition
4: S ← S ∪ {e}
5: return S

Proof of Submodularity of rM.

Take A ⊊ E, i, j ∈ E \ A, i ̸= j, need to prove:
rM(A ∪ {i, j})− rM(A ∪ {i}) ≤ rM(A ∪ {j})− rM(A)

if not, then LHS = 1, RHS = 0

S: max ind. subset of A, S ′: max ind. subset of A ∪ {i}
|S| = rM(A), |S ′| = rM(A ∪ {i}), S ′ = S or S ′ = S ∪ {i}
RHS = 0 =⇒ S ∪ {j} /∈ I, LHS = 1 =⇒ S ′ ∪ {j} ∈ I
contradiction

67/85

Lemma A function r : 2E → R is the rank function of a matroid
if and only if

1 r(∅) = 0

2 r(A ∪ {i})− r(A) ∈ {0, 1} for all A ⊆ E, i /∈ E \ A
3 r is submodular.

Proof.

Define I =
{
A ⊆ E : r(A) = |A|

}
.

Claim: (E, I) is a matroid and r is its rank function.

1 , 2 =⇒ I is closed under taking subsets

A,A′ : r(A) = |A|, r(A′) = |A′|, |A| < |A′|
U := A ∪ A′ : r(U) ≥ r(A′) > r(A), A ⊊ U

3 =⇒ ∃i ∈ U \ A = A′ \ A : r(A ∪ {i}) > r(A)

i ∈ A′ \ A and r(A ∪ {i}) = r(A) + 1 = |A ∪ {i}|
so, A ∪ {i} ∈ I =⇒ exchange property

67/85

Lemma A function r : 2E → R is the rank function of a matroid
if and only if

1 r(∅) = 0

2 r(A ∪ {i})− r(A) ∈ {0, 1} for all A ⊆ E, i /∈ E \ A
3 r is submodular.

Proof.

Define I =
{
A ⊆ E : r(A) = |A|

}
.

Claim: (E, I) is a matroid and r is its rank function.

1 , 2 =⇒ I is closed under taking subsets

A,A′ : r(A) = |A|, r(A′) = |A′|, |A| < |A′|
U := A ∪ A′ : r(U) ≥ r(A′) > r(A), A ⊊ U

3 =⇒ ∃i ∈ U \ A = A′ \ A : r(A ∪ {i}) > r(A)

i ∈ A′ \ A and r(A ∪ {i}) = r(A) + 1 = |A ∪ {i}|
so, A ∪ {i} ∈ I =⇒ exchange property

67/85

Lemma A function r : 2E → R is the rank function of a matroid
if and only if

1 r(∅) = 0

2 r(A ∪ {i})− r(A) ∈ {0, 1} for all A ⊆ E, i /∈ E \ A
3 r is submodular.

Proof.

Define I =
{
A ⊆ E : r(A) = |A|

}
.

Claim: (E, I) is a matroid and r is its rank function.

1 , 2 =⇒ I is closed under taking subsets

A,A′ : r(A) = |A|, r(A′) = |A′|, |A| < |A′|
U := A ∪ A′ : r(U) ≥ r(A′) > r(A), A ⊊ U

3 =⇒ ∃i ∈ U \ A = A′ \ A : r(A ∪ {i}) > r(A)

i ∈ A′ \ A and r(A ∪ {i}) = r(A) + 1 = |A ∪ {i}|
so, A ∪ {i} ∈ I =⇒ exchange property

67/85

Lemma A function r : 2E → R is the rank function of a matroid
if and only if

1 r(∅) = 0

2 r(A ∪ {i})− r(A) ∈ {0, 1} for all A ⊆ E, i /∈ E \ A
3 r is submodular.

Proof.

Define I =
{
A ⊆ E : r(A) = |A|

}
.

Claim: (E, I) is a matroid and r is its rank function.

1 , 2 =⇒ I is closed under taking subsets

A,A′ : r(A) = |A|, r(A′) = |A′|, |A| < |A′|
U := A ∪ A′ : r(U) ≥ r(A′) > r(A), A ⊊ U

3 =⇒ ∃i ∈ U \ A = A′ \ A : r(A ∪ {i}) > r(A)

i ∈ A′ \ A and r(A ∪ {i}) = r(A) + 1 = |A ∪ {i}|
so, A ∪ {i} ∈ I =⇒ exchange property

68/85

Derivatives of Matroids

Def. Given a matroidM = (E, I) and an element e ∈ E, the
matroid obtained fromM by removing e, denoted asM\ e, is
defined as follows:

M\ e = (E \ e, {A ⊆ E \ e : A ∈ I}).

Def. Given a matroidM = (E, I) and an element e ∈ E, the
matroid obtained fromM by contracting e, denoted asM/e, is
defined as follows:

M/e = (E \ e, {A ⊆ E \ e : A ∪ {e} ∈ I}).

68/85

Derivatives of Matroids

Def. Given a matroidM = (E, I) and an element e ∈ E, the
matroid obtained fromM by removing e, denoted asM\ e, is
defined as follows:

M\ e = (E \ e, {A ⊆ E \ e : A ∈ I}).

Def. Given a matroidM = (E, I) and an element e ∈ E, the
matroid obtained fromM by contracting e, denoted asM/e, is
defined as follows:

M/e = (E \ e, {A ⊆ E \ e : A ∪ {e} ∈ I}).

69/85

Derivatives of Matroids

Def. Given a matroidM = (E, I) and a subset E ′ ⊆ E, the
matroid ofM restricted to E ′, denoted asM[E ′], is defined as
follows:

M[E ′] = (E ′, {A ⊆ E ′ : A ∈ I}).

Def. For a matroidM = (E, I), the dual matroid
M∗ = (E, I∗) is defined so that the bases inM∗ are exactly the
complements of the bases in I.

Theorem M∗ is a matroid.

69/85

Derivatives of Matroids

Def. Given a matroidM = (E, I) and a subset E ′ ⊆ E, the
matroid ofM restricted to E ′, denoted asM[E ′], is defined as
follows:

M[E ′] = (E ′, {A ⊆ E ′ : A ∈ I}).

Def. For a matroidM = (E, I), the dual matroid
M∗ = (E, I∗) is defined so that the bases inM∗ are exactly the
complements of the bases in I.

Theorem M∗ is a matroid.

70/85

Outline

1 Linear Programming
Introduction
Methods for Solving Linear Programs

2 Polytope with Polynomial Number of Facets
Bipartite Matching Polytope
Polytopes with Totally Unimodular Coefficient Matrices

3 Polytopes with Efficient Separation Oracles
s-t Cut Polytope
Spanning Tree Polytope
General Graph (Perfect) Matching Polytope

4 Matroid, Matroid Basis and Matroid Intersection Polytopes *
Preliminaries on Matroid Theory
Matroid Polytope
Matroid Basis and Matroid Intersection Polytope

71/85

Matroid Polytope

Given a matroidM = (E, I)
The matroid polytope forM is defined as

PM := conv({χA : A ∈ I}).

Recall: χA ∈ {0, 1}E, χA
i =

{
1 i ∈ A

0 i /∈ A

Theorem (Matroid Polytope Theorem) For a matroid
M = (E, I), we have

PM =
{
x ∈ [0, 1]E : x(S) ≤ rM(S),∀S ⊆ E

}
,

where x(S) :=
∑

i∈S xi for every S ⊆ E.

71/85

Matroid Polytope

Given a matroidM = (E, I)
The matroid polytope forM is defined as

PM := conv({χA : A ∈ I}).

Recall: χA ∈ {0, 1}E, χA
i =

{
1 i ∈ A

0 i /∈ A

Theorem (Matroid Polytope Theorem) For a matroid
M = (E, I), we have

PM =
{
x ∈ [0, 1]E : x(S) ≤ rM(S),∀S ⊆ E

}
,

where x(S) :=
∑

i∈S xi for every S ⊆ E.

72/85

Proof of Matroid Polytope Theorem

Q :=
{
x ∈ [0, 1]E :

∑
i∈A xi ≤ rM(A), ∀A ⊆ E

}
Q∩ {0, 1}E = {χA : A ∈ I}; it suffices to prove Q is integral

Focus on the counter example with the smallest |E|
assume some vertex x of Q is non-integral

If xe = 0 for some e ∈ E, removing e gives a smaller
counterexample

If xe = 1 for some e ∈ E, contracting e gives a smaller
counterexample

So, xe ∈ (0, 1) for every e ∈ E.

72/85

Proof of Matroid Polytope Theorem

Q :=
{
x ∈ [0, 1]E :

∑
i∈A xi ≤ rM(A), ∀A ⊆ E

}
Q∩ {0, 1}E = {χA : A ∈ I}; it suffices to prove Q is integral

Focus on the counter example with the smallest |E|
assume some vertex x of Q is non-integral

If xe = 0 for some e ∈ E, removing e gives a smaller
counterexample

If xe = 1 for some e ∈ E, contracting e gives a smaller
counterexample

So, xe ∈ (0, 1) for every e ∈ E.

72/85

Proof of Matroid Polytope Theorem

Q :=
{
x ∈ [0, 1]E :

∑
i∈A xi ≤ rM(A), ∀A ⊆ E

}
Q∩ {0, 1}E = {χA : A ∈ I}; it suffices to prove Q is integral

Focus on the counter example with the smallest |E|
assume some vertex x of Q is non-integral

If xe = 0 for some e ∈ E, removing e gives a smaller
counterexample

If xe = 1 for some e ∈ E, contracting e gives a smaller
counterexample

So, xe ∈ (0, 1) for every e ∈ E.

73/85

Proof of Matroid Polytope Theorem

Def. We say a set A ⊆ E is tight if x(A) = rM(A). Let T be
the family of all tight subsets of E.

Lemma If A,B ∈ T , then both A ∪B and A ∩B are in T .

Proof.
x(A) + x(B) = rM(A) + rM(B)

≥ rM(A ∪B) + rM(A ∩B) ≥ x(A ∪B) + x(A ∩B).

equality: A and B are tight

first inequality: rM is submodular

second inequality: x(S) ≤ rM(S) for every S ⊆ E

But x(A) + x(B) = x(A ∪B) + x(A ∩B). So, both inequalities
hold with equality.

73/85

Proof of Matroid Polytope Theorem

Def. We say a set A ⊆ E is tight if x(A) = rM(A). Let T be
the family of all tight subsets of E.

Lemma If A,B ∈ T , then both A ∪B and A ∩B are in T .

Proof.
x(A) + x(B) = rM(A) + rM(B)

≥ rM(A ∪B) + rM(A ∩B) ≥ x(A ∪B) + x(A ∩B).

equality: A and B are tight

first inequality: rM is submodular

second inequality: x(S) ≤ rM(S) for every S ⊆ E

But x(A) + x(B) = x(A ∪B) + x(A ∩B). So, both inequalities
hold with equality.

74/85

Proof of Matroid Polytope Theorem

Def. A chain is a sequence of subsets S1 ⊊ S2 ⊊ · · · ⊊ St of E.

We use span(S) for span({χS : S ∈ S}), for any S ⊆ T .

Lemma (Key Lemma) Let C be a longest chain of tight subsets
of E (i.e., subsets in T). Then, we have span(C) = span(T).

Proof of Key Lemma

We say two sets B and T conflict with each other, if B ̸⊆ T
and T ̸⊆ B.

Define τ(B) := {T ∈ C : B conflicts with T}, ∀B
Assume span(C) ⊊ span(T)
Let B = argminB∈T ,χB /∈span(C) |τ(B)|

74/85

Proof of Matroid Polytope Theorem

Def. A chain is a sequence of subsets S1 ⊊ S2 ⊊ · · · ⊊ St of E.

We use span(S) for span({χS : S ∈ S}), for any S ⊆ T .

Lemma (Key Lemma) Let C be a longest chain of tight subsets
of E (i.e., subsets in T). Then, we have span(C) = span(T).

Proof of Key Lemma

We say two sets B and T conflict with each other, if B ̸⊆ T
and T ̸⊆ B.

Define τ(B) := {T ∈ C : B conflicts with T}, ∀B
Assume span(C) ⊊ span(T)
Let B = argminB∈T ,χB /∈span(C) |τ(B)|

74/85

Proof of Matroid Polytope Theorem

Def. A chain is a sequence of subsets S1 ⊊ S2 ⊊ · · · ⊊ St of E.

We use span(S) for span({χS : S ∈ S}), for any S ⊆ T .

Lemma (Key Lemma) Let C be a longest chain of tight subsets
of E (i.e., subsets in T). Then, we have span(C) = span(T).

Proof of Key Lemma

We say two sets B and T conflict with each other, if B ̸⊆ T
and T ̸⊆ B.

Define τ(B) := {T ∈ C : B conflicts with T}, ∀B
Assume span(C) ⊊ span(T)
Let B = argminB∈T ,χB /∈span(C) |τ(B)|

75/85

Proof of Matroid Polytope Theorem

Proof of Key Lemma

Let T ∈ C be a set contradicting with B;

We prove τ(B ∪ T), τ(B ∩ T) ⊊ τ(B).

C

For τ(B ∪ T) ⊆ τ(B):

S ⊊ T : S does not conflict with B ∪ T , and may conflict with B.
S ⊋ T : S not conflict with B =⇒ S not conflict with B ∪ T .

For τ(B ∩ T) ⊆ τ(B):

S ⊊ T : S not conflict with B =⇒ S not conflict with B ∩ T .
S ⊋ T : S does not conflict with B ∩ T , and may conflict with B.

“̸=” : B conflicts with T , but B ∪ T and B ∩ T do not.

75/85

Proof of Matroid Polytope Theorem

Proof of Key Lemma

Let T ∈ C be a set contradicting with B;

We prove τ(B ∪ T), τ(B ∩ T) ⊊ τ(B).

C

B

T

For τ(B ∪ T) ⊆ τ(B):

S ⊊ T : S does not conflict with B ∪ T , and may conflict with B.
S ⊋ T : S not conflict with B =⇒ S not conflict with B ∪ T .

For τ(B ∩ T) ⊆ τ(B):

S ⊊ T : S not conflict with B =⇒ S not conflict with B ∩ T .
S ⊋ T : S does not conflict with B ∩ T , and may conflict with B.

“̸=” : B conflicts with T , but B ∪ T and B ∩ T do not.

75/85

Proof of Matroid Polytope Theorem

Proof of Key Lemma

Let T ∈ C be a set contradicting with B;

We prove τ(B ∪ T), τ(B ∩ T) ⊊ τ(B).

C

B ∪ T

For τ(B ∪ T) ⊆ τ(B):

S ⊊ T : S does not conflict with B ∪ T , and may conflict with B.
S ⊋ T : S not conflict with B =⇒ S not conflict with B ∪ T .

For τ(B ∩ T) ⊆ τ(B):

S ⊊ T : S not conflict with B =⇒ S not conflict with B ∩ T .
S ⊋ T : S does not conflict with B ∩ T , and may conflict with B.

“̸=” : B conflicts with T , but B ∪ T and B ∩ T do not.

75/85

Proof of Matroid Polytope Theorem

Proof of Key Lemma

Let T ∈ C be a set contradicting with B;

We prove τ(B ∪ T), τ(B ∩ T) ⊊ τ(B).

C

B ∩ T

For τ(B ∪ T) ⊆ τ(B):

S ⊊ T : S does not conflict with B ∪ T , and may conflict with B.
S ⊋ T : S not conflict with B =⇒ S not conflict with B ∪ T .

For τ(B ∩ T) ⊆ τ(B):

S ⊊ T : S not conflict with B =⇒ S not conflict with B ∩ T .
S ⊋ T : S does not conflict with B ∩ T , and may conflict with B.

“̸=” : B conflicts with T , but B ∪ T and B ∩ T do not.

75/85

Proof of Matroid Polytope Theorem

Proof of Key Lemma

Let T ∈ C be a set contradicting with B;

We prove τ(B ∪ T), τ(B ∩ T) ⊊ τ(B).

C

B ∩ T

For τ(B ∪ T) ⊆ τ(B):

S ⊊ T : S does not conflict with B ∪ T , and may conflict with B.
S ⊋ T : S not conflict with B =⇒ S not conflict with B ∪ T .

For τ(B ∩ T) ⊆ τ(B):

S ⊊ T : S not conflict with B =⇒ S not conflict with B ∩ T .
S ⊋ T : S does not conflict with B ∩ T , and may conflict with B.

“̸=” : B conflicts with T , but B ∪ T and B ∩ T do not.

76/85

Proof of Matroid Polytope Theorem

Proof of Key Lemma

By our choice of B, we have χB∪T , χB∩T ∈ span(C).
However, as χB = χB∪T + χB∩T − χT and all the three vectors
are in span(T), contradiction with χB /∈ span(C).

Recall the key lemma:

Lemma (Key Lemma) Let C be a longest chain of tight subsets
of E (i.e., subsets in T). Then, we have span(C) = span(T).

Therefore, x ∈ [0, 1]E is defined by the system of linear
equations correspondent to C.
|C| = |E|, the chain C is of full length.

The system gives an integer solution x. Contradiction.

77/85

What we proved:

Matroid Polytope

Given a matroidM = (E, I)
The matroid polytope forM is defined as

PM := conv({χA : A ∈ I}).

Theorem (Matroid Polytope Theorem) For a matroid
M = (E, I), we have

PM =
{
x ∈ [0, 1]E : x(S) ≤ rM(S),∀S ⊆ E

}
,

where x(S) :=
∑

i∈S xi for every S ⊆ E.

78/85

Outline

1 Linear Programming
Introduction
Methods for Solving Linear Programs

2 Polytope with Polynomial Number of Facets
Bipartite Matching Polytope
Polytopes with Totally Unimodular Coefficient Matrices

3 Polytopes with Efficient Separation Oracles
s-t Cut Polytope
Spanning Tree Polytope
General Graph (Perfect) Matching Polytope

4 Matroid, Matroid Basis and Matroid Intersection Polytopes *
Preliminaries on Matroid Theory
Matroid Polytope
Matroid Basis and Matroid Intersection Polytope

79/85

Matroid Basis Polytope

Given a matroidM = (E, I)
The matroid basis polytope forM is defined as

Pbasis
M := conv({χA : A ∈ I, rankM(A) = rankM(E)}).

Theorem (Matroid Basis Polytope Theorem) For a matroid
M = (E, I), we have

Pbasis
M =

{
x ∈ [0, 1]E : x(S) ≤ rM(S),∀S ⊆ E;x(E) = rM(E)

}
,

where x(S) :=
∑

i∈S xi for every S ⊆ E.

Proof.

Pbasis
M is a face (not necessarily a facet) of PM.

PM is integral =⇒ Pbasis
M is integral

79/85

Matroid Basis Polytope

Given a matroidM = (E, I)
The matroid basis polytope forM is defined as

Pbasis
M := conv({χA : A ∈ I, rankM(A) = rankM(E)}).

Theorem (Matroid Basis Polytope Theorem) For a matroid
M = (E, I), we have

Pbasis
M =

{
x ∈ [0, 1]E : x(S) ≤ rM(S),∀S ⊆ E;x(E) = rM(E)

}
,

where x(S) :=
∑

i∈S xi for every S ⊆ E.

Proof.

Pbasis
M is a face (not necessarily a facet) of PM.

PM is integral =⇒ Pbasis
M is integral

80/85

Recall: Spanning Tree Polytope

Spanning Tree Polytope

Given a connected graph G = (V,E)

PST := conv
({

χT : T ⊆ E is a spanning tree of G
})

Theorem (Spanning Tree Polytope Theorem) PST is the set
of vectors x ∈ RE satisfying the following inequalities:∑

e∈E

xe = n− 1∑
e∈E[S]

xe ≤ |S| − 1 ∀S ⊆ V, 2 ≤ |S| ≤ n− 1 (*)

xe ≥ 0 ∀e ∈ E

81/85

Graphic matroid:

independent sets ↔ spanning forests
bases ↔ spanning trees.

So, PST is the set of x ∈ [0, 1]E satisfying

x(E ′) ≤ n− CC(E ′),∀E ′ ⊆ E; x(E) = n− 1,

where CC(E ′) is the number of connected components in
(V,E ′).

It suffices to consider the case where E ′ = E[S] for some
connected set S ⊆ V , in which case n− CC(E ′) = |S| − 1.

=⇒ Spanning Tree Polytope Theorem.

81/85

Graphic matroid:

independent sets ↔ spanning forests
bases ↔ spanning trees.

So, PST is the set of x ∈ [0, 1]E satisfying

x(E ′) ≤ n− CC(E ′),∀E ′ ⊆ E; x(E) = n− 1,

where CC(E ′) is the number of connected components in
(V,E ′).

It suffices to consider the case where E ′ = E[S] for some
connected set S ⊆ V , in which case n− CC(E ′) = |S| − 1.

=⇒ Spanning Tree Polytope Theorem.

81/85

Graphic matroid:

independent sets ↔ spanning forests
bases ↔ spanning trees.

So, PST is the set of x ∈ [0, 1]E satisfying

x(E ′) ≤ n− CC(E ′),∀E ′ ⊆ E; x(E) = n− 1,

where CC(E ′) is the number of connected components in
(V,E ′).

It suffices to consider the case where E ′ = E[S] for some
connected set S ⊆ V , in which case n− CC(E ′) = |S| − 1.

=⇒ Spanning Tree Polytope Theorem.

82/85

Theorem (Matroid Intersection Polytope Theorem) Let
M1 = (E, I1) andM2 = (E, I2) be two matroids with the
common ground set E. Then

conv
(
{χA : A ∈ I1 ∩ I2}

)
= PM1 ∩ PM2

=
{
x ∈ [0, 1]E : x(S) ≤ rM1(S), x(S) ≤ rM2(S),∀S ⊆ E

}
.

We will not prove the theorem.

A similar theorem works if we require A to be a basis for the
matroidM1 orM2:

conv
(
{χA : A ∈ I1 ∩ I2, rankM1(A) = rankM1(E)}

)
= Pbasis

M1
∩ PM2

82/85

Theorem (Matroid Intersection Polytope Theorem) Let
M1 = (E, I1) andM2 = (E, I2) be two matroids with the
common ground set E. Then

conv
(
{χA : A ∈ I1 ∩ I2}

)
= PM1 ∩ PM2

=
{
x ∈ [0, 1]E : x(S) ≤ rM1(S), x(S) ≤ rM2(S),∀S ⊆ E

}
.

We will not prove the theorem.

A similar theorem works if we require A to be a basis for the
matroidM1 orM2:

conv
(
{χA : A ∈ I1 ∩ I2, rankM1(A) = rankM1(E)}

)
= Pbasis

M1
∩ PM2

83/85

Applications

Bipartite Matching Polytope

Given bipartite graph G = (L ∪R,E)

PBM := conv
(
{χM : M is a matching in G}

)
Theorem PBM is the set of x ∈ RE satisfying the following
constraints:∑

e∈δ(v)

xe ≤ 1,∀v ∈ L ∪R; xe ≥ 0, ∀e ∈ E.

A matching is an independent set of two partition matroids,
one for each side of the bipartite graph.

Matching polytope is intersection of two partition matroid
polytopes.

83/85

Applications

Bipartite Matching Polytope

Given bipartite graph G = (L ∪R,E)

PBM := conv
(
{χM : M is a matching in G}

)
Theorem PBM is the set of x ∈ RE satisfying the following
constraints:∑

e∈δ(v)

xe ≤ 1,∀v ∈ L ∪R; xe ≥ 0, ∀e ∈ E.

A matching is an independent set of two partition matroids,
one for each side of the bipartite graph.

Matching polytope is intersection of two partition matroid
polytopes.

84/85

Applications

Arborescence Polytope

Given a directed graph G = (V,E), a root r ∈ V

PArbo := conv({χE′
: E ′ is an arborescence of G rooted at r})

We define two matroids:

Graphic Matroid: we ignore the directions of G, and require E′ to
be a spanning forest
Partition Matroid: we require every vertex other than r has
in-degree at most 1

E ′ is an arborescence if it is a basis of both polytopes.

84/85

Applications

Arborescence Polytope

Given a directed graph G = (V,E), a root r ∈ V

PArbo := conv({χE′
: E ′ is an arborescence of G rooted at r})

We define two matroids:

Graphic Matroid: we ignore the directions of G, and require E′ to
be a spanning forest
Partition Matroid: we require every vertex other than r has
in-degree at most 1

E ′ is an arborescence if it is a basis of both polytopes.

84/85

Applications

Arborescence Polytope

Given a directed graph G = (V,E), a root r ∈ V

PArbo := conv({χE′
: E ′ is an arborescence of G rooted at r})

We define two matroids:

Graphic Matroid: we ignore the directions of G, and require E′ to
be a spanning forest
Partition Matroid: we require every vertex other than r has
in-degree at most 1

E ′ is an arborescence if it is a basis of both polytopes.

85/85

Summary

linear programming, simplex method, interior point method,
ellipsoid method

Polytopes with totally-unimodular coefficient matrix:

integral LP polytopes: bipartite matching polytope, s-t flow
polytope, weighted interval scheduling polytope

Matroid Polytope

85/85

Summary

linear programming, simplex method, interior point method,
ellipsoid method

Polytopes with totally-unimodular coefficient matrix:

integral LP polytopes: bipartite matching polytope, s-t flow
polytope, weighted interval scheduling polytope

Matroid Polytope

	Linear Programming
	Introduction
	Methods for Solving Linear Programs

	Polytope with Polynomial Number of Facets
	Bipartite Matching Polytope
	Polytopes with Totally Unimodular Coefficient Matrices

	Polytopes with Efficient Separation Oracles
	s-t Cut Polytope
	Spanning Tree Polytope
	General Graph (Perfect) Matching Polytope

	Matroid, Matroid Basis and Matroid Intersection Polytopes *
	Preliminaries on Matroid Theory
	Matroid Polytope
	Matroid Basis and Matroid Intersection Polytope

