Lecturers: F—if, Z20l, X550

Nanjing University

@ Focus of this lecture: learning with experts online

e how to dynamically choose from among a set of “experts” in a way
that compares favorably to the best expert

@ Use it to solve 0-sum game and linear programs approximately

© Online Learning with Experts
@ Two-outcome case
@ A more general setting

© Multiplicative Weight Update Algorithm to Solve 0-Sum Game

© Approximate LP feasibility using Multiplicative Weights

3/27

© Online Learning with Experts
@ Two-outcome case
@ A more general setting

© Multiplicative Weight Update Algorithm to Solve 0-Sum Game

© Approximate LP feasibility using Multiplicative Weights

4/27

Learning with Experts Online

@ m experts, indexed by [m]

@ a two-outcome event on each of following 7" days: up or down
e Example: stock goes up or down? rain or not?

Learning with Experts Online

@ m experts, indexed by [m]

@ a two-outcome event on each of following 7" days: up or down

Example: stock goes up or down? rain or not?

@ on each day t:

m experts make predictions about day ¢

algorithm makes a prediction, knowing the predictions of the m
experts

the outcome of day t reveals

Learning with Experts Online

@ m experts, indexed by [m]

@ a two-outcome event on each of following 7" days: up or down
e Example: stock goes up or down? rain or not?

@ on each day t:

e m experts make predictions about day ¢

e algorithm makes a prediction, knowing the predictions of the m
experts

e the outcome of day ¢ reveals

@ Goal: minimize the number of mistakes

e lIdeally, not too bad compared to the best expert.

When There Is a Perfect Expert

Lemma There is an algorithm that makes at most [log, m|
mistakes, assuming there is a perfect expert, i.e., an expert that
makes no mistakes.

When There Is a Perfect Expert

Lemma There is an algorithm that makes at most [log, m|
mistakes, assuming there is a perfect expert, i.e., an expert that
makes no mistakes.

Proof. |
@ The algorithm: only keep the experts who made no mistakes

so far.
@ Among all the experts, follow the majority.

@ observation: when we made a mistake on a day, at least half of
the remaining experts made a mistake on that day. O]

@ What if there is no perfect expert?

7/27

General Case

@ What if there is no perfect expert?

@ Weighted majority: give weights to experts. When an expert
made a mistake, halve his weight. In each step, follow the
weighted majority.

General Case

@ What if there is no perfect expert?

@ Weighted majority: give weights to experts. When an expert
made a mistake, halve his weight. In each step, follow the
weighted majority.

Weighted Majority
1w« 1, Vi € [m)]
2. fort=1,2,---,T do
if Zz’:predicts up w;?*l 2 Ei:predicts down wgil then
predict “up”
else
predict “down”

for every expert i do

t w; 1
i 2

© N gk w

if i make a mistake then w else w! < w!~

o =37 wy.

e M! €{0,1},i € [m],t € [T]: whether expert i made a mistake
on day t

e M'e€ {0,1},t € [T]: whether our algorithm made a mistake

8,27

Analysis

t.__ m t
o O':=3 ", wi.

o M! €{0,1},i € [m],t € [T]: whether expert i made a mistake
on day t

e M'"e {0,1},t € [T]: whether our algorithm made a mistake

Obs. If M? =1 for some t, we have

(I)t—l _ §<Dt71

Pr < P —
- 4 4

Analysis

t.__ m t
o O':=3 ", wi.

o M! €{0,1},i € [m],t € [T]: whether expert i made a mistake
on day t

e M'"e {0,1},t € [T]: whether our algorithm made a mistake

Obs. If M? =1 for some t, we have

Analysis

t._ Nt
o O':=3 ", wi.

o M! €{0,1},i € [m],t € [T]: whether expert i made a mistake
on day t

e M'"e {0,1},t € [T]: whether our algorithm made a mistake

Obs. If M? =1 for some t, we have

(I)t—l _ §<Dt—1

Pr < P —
- 4 4

@ So, ¢ < (%)ZL M@, = (%)Zle M
@ On the other hand, let £ be the best expert

m ZT= Mt
V=Yl zal = (5)
=1

In2 Inm
< M}
- 1n4/3; kTt In4/3

<241 M} +34TInm

t=1

By taking logarithm

T T
> M'<241) M| +347Inm

t=1 t=1

Make the first constant arbitrarily close to 2
@ when expert i makes a mistake on day ¢: w! < w!™' - (1 —¢)
@ when algorithm makes a mistake on day t: ®" < ®~1.(1—%)

Or < (1—¢/2)Z=1 M .y

o O > (1 —)Xt M

t < €) . t Inm
ZM—1H1—6/2)ZMk_ In(1 —€/2)

t=1

= (24 O(e) iM,§+O< >lnm
t=1

Lemma For any constant ¢ > 0 and any function f(m), no
deterministic algorithm can achieve a multiplicative factor of 2 — ¢
and additive factor of f(m).

Lemma For any constant ¢ > 0 and any function f(m), no
deterministic algorithm can achieve a multiplicative factor of 2 — ¢
and additive factor of f(m).

Proof.
e Each day 3 experts predict “up”, % experts predict “down”.
@ Our algorithm always makes a mistake.

@ Our algorithm made T mistakes, and the best expert makes at
most T'/2.

If T>> f(m), we have T > (2 —¢) - L + f(m). O

2

Lemma For any constant ¢ > 0 and any function f(m), no
deterministic algorithm can achieve a multiplicative factor of 2 — ¢
and additive factor of f(m).

Proof.
e Each day 3 experts predict “up”, % experts predict “down”.
@ Our algorithm always makes a mistake.

@ Our algorithm made T mistakes, and the best expert makes at
most T'/2.

If T>> f(m), we have T > (2 —¢€) - L + f(m). O

@ However, if randomness is allowed, we can make multiplicative
factor 1 + e.

© Online Learning with Experts
@ Two-outcome case
@ A more general setting

© Multiplicative Weight Update Algorithm to Solve 0-Sum Game

© Approximate LP feasibility using Multiplicative Weights

12/27

@ no predictions: experts pay penalties

@ algorithm chooses to follow experts

13/27

A more general setting

@ no predictions: experts pay penalties

@ algorithm chooses to follow experts

@ with randomness: follow a distribution over experts

@ algorithm pays the weighted average penalty of experts

A more general setting

@ no predictions: experts pay penalties

algorithm chooses to follow experts

with randomness: follow a distribution over experts
algorithm pays the weighted average penalty of experts

goal: compare to the best expert

A more general setting

@ no predictions: experts pay penalties
@ algorithm chooses to follow experts

@ with randomness: follow a distribution over experts

@ algorithm pays the weighted average penalty of experts
°

goal: compare to the best expert

The General Setting
1: fort < 1,2,--- T do

2: algorithm chooses a distribution p' = (p},ph,--- , p) over
experts

3: the penalty vector M* € [—1,1]™ is revealed

4: each expert i pays penalty M}

5 algorithm pays penalty (p, M*) = >~ ptM!

A more general setting

@ no predictions: experts pay penalties

@ algorithm chooses to follow experts

@ with randomness: follow a distribution over experts

@ algorithm pays the weighted average penalty of experts
°

goal: compare to the best expert

The General Setting
1: fort < 1,2,--- T do

2: algorithm chooses a distribution p' = (p},ph,--- , p) over
experts

3: the penalty vector M* € [—1,1]™ is revealed

4: each expert i pays penalty M}

5 algorithm pays penalty (p, M*) = >~ ptM!

@ Note: penalty can be negative: negative penalty = reward

Theorem Letec (0,1]. f T > h;—zm then there is an algorithm
that satisfies:

T

1

sz MY < ZMt—I—QEVZG[m]
t=1

t=1

Theorem Letec (0,1]. f T > h;—zm then there is an algorithm
that satisfies:

T

1

sz MY < ZMt—I—ZGVZG[m].
t=1

t=1

Algorithm for the General Setting

1: w?%lforeveryie[]
2: fort « 1,2,--- T do
3: choose pt W
the penalty vector M* € [—1,1]™ is revealed
each expert i pays penalty M}

algorithm pays penalty (p*, M*) = >~ ptM!

c — t
for every i € [m] do: w! < w! ™' . e~<M

N u s

t—1 t =1 —e-M?
@ the strategy: p' = Tty w; =w; ~-e T

15/27

t—1 — —e- Mt
@ the strategy: p' = i wt = w!t e M

o let O := |w'|y = > wi forall t € [0, 7]

15/27

Analysis of Algorithm

t—1 — e t
@ the strategy: p' = T wt = w!t e M

o let &' := |w'|y = D" wi forall t € [0,T]

Pl = iwf = zm: e M w! ™
i=1 i=1
<30 e M+ (e M) -
i=1
ase” <1l+z+a2° Vo e [-1,1]
§i(1—6-]\/[f+62)-wf_1 as [M!| <1
i=1
= (1+¢€%) f:wf_l e (w™t, MY
i=1

— (1 4 62)(1)th —€- (I)tfl . <pt7Mt> as (I)tfl .pt — wtfl

Analysis of Algorithm

xp (—e- (p' Mt>+62)-¢>t’1 asl—z<e™

Ve € R

MH

@Tgexp(—e (', Mt>+Te)'CI>O

o~
Il
—

T
@Tgexp(—e Zp M?) —i—Te)'CI)O
t=1

T
@ For any expert i € [m], ®* > w] = exp (- eZMf)
=1

T
@Tgexp(—e Zp M?) —i—Te)'CI)O
t=1

T
e For any expert i € [m], ®* > w] = exp(—eZMf).

t=1

@ So, for every i € [m], we have (note that ®° = m)

1
T

t=1
T

T

t

—€- E M,
t=1

T

2

t=1

(', M")

(', M")

<

IN

T
Zp MY +Te* +1Inm

r Inm
ZM;+T6+

t=1 €

1 T Inm
— Mt —
T; i tet

1 T
t=1

Theorem Letec (0,1]. If T > 112_2m then there is an algorithm
that satisfies

T T
Zp MY < — ZMHQe,We[m].

*ﬂ |

Theorem Lete € (0,1]. If T > 12—2"“ then there is an algorithm
that satisfies:

T T
1 1
t=1 t=1

Coro. Suppose each penalty in the game is in [—pz, p] (instead of
[—1,1]) for some p > 0. Let € € (0,2p]. If T > 4"6#, then
there is an algorithm that satisfies

T
= MY ZMtJreVzE m].
t=1 =l

Theorem Lete € (0,1]. If T > 112_2m then there is an algorithm
that satisfies:

T T
1 1
=il t=1

Coro. Suppose each penalty in the game is in [—p2, p] (instead of
[—1,1]) for some p > 0. Let € € (0,2p]. If T > 4"6#, then
there is an algorithm that satisfies

T T
1 1
=1l t=1

Proof.
@ scale penalties by ;l) so that each penalty is in [—1, 1]

@ ¢ before scaling = +ﬁ after scaling

Theorem Lete € (0,1]. If T > 12—27” then there is an algorithm
that satisfies:

T T
1 1
=il t=1

Coro. Suppose each penalty in the game is in [—pz, p] (instead of
[—1,1]) for some p > 0. Let € € (0,2p]. If T > 4"6#, then
there is an algorithm that satisfies

T T
1 1
=1l t=1

Proof.
@ scale penalties by ;l) so that each penalty is in [—1, 1]

@ ¢ before scaling = +ﬁ after scaling

@ Need T > (61;12’52 = 4’)2612“’” and 2ip <1 <= <2 O

@ Online Learning with Experts
@ Two-outcome case
@ A more general setting

© Multiplicative Weight Update Algorithm to Solve 0-Sum Game

© Approximate LP feasibility using Multiplicative Weights

19/27

Recall:

0-Sum Game
Input: a payoff matrix M € R™*" m,n > 1,
two players: row player R, column player C
Output: R plays a row ¢ € [m], C plays a column j € [n]
payoff of game is M;;

R wants to minimize M;;, C wants to maximize M;;

Recall:
0-Sum Game
Input: a payoff matrix M € R™*" m,n > 1,
two players: row player R, column player C
Output: R plays a row ¢ € [m], C plays a column j € [n]
payoff of game is M;;
R wants to minimize M;;, C wants to maximize M;;

Rock-Scissor-Paper Game
payoff ‘ R S P
R 0 -1 1
S 1 0 -1
P -1 10

@ By scaling, we assume M € [—1, 1™,

player objective | game term | number | distribution
row player minimize expert m Y
column player | maximize event n x

@ By scaling, we assume M € [—1, 1™,

player objective | game term | number | distribution
row player minimize expert m Y
column player | maximize event n x

Multiplicative weight update for O-sum games

1: let w? = 1 for every i € [m]
2: for t + 1to T, where T = [412] do

3: algorithm chooses distribution y* = h
4: let j* be the j € [n] that maximizes M (y', j)
5: event j¢ happens:
expert ¢ € [m] pays penalty M (i, j;)
algorithm pays penalty M(y', j;)
6: wh +— wit - e MEI)/2 for every i € [m)]

t—1

player objective | game term | number | distribution
row player minimize expert m Y
column player | maximize event n x
@ Since T > 416“2’”, we have
lXT:M(pt i < mianT:M(i i)+ e
T ’ icm] T ’

player objective | game term | number | distribution
row player minimize expert m Y
column player | maximize event n x
e Since T’ > 111
1 1 «
—N M@ < min=Y M) +e
T; (', 5) min > M(i, ')

o {: the t € [T] with minimum M (y?, j*)

player objective | game term | number | distribution

row player minimize expert m Y

column player | maximize event n x

° SlnceT>4
1 1 &
T; ¥, < %%T; (i,5") +e

t: the t € [T] with minimum M (3¢, j%) g =yt
#: uniform distribution over multi-set {5, 72, -, 77}

(]
(]
T

. .\ f 1 .
max M (g, j) = M(5,j') < 7 > M @', ")
t=1

T
1
gmiin?ZM(i,jt)+e:miin]\/[(z',:i')—i—e

t=1

player objective | game term | number | distribution
row player minimize expert m Y
column player | maximize event n x
max M (¢, j) < min M (i, %) + €
7

J

player objective | game term | number | distribution
row player minimize expert m Y
column player | maximize event n x
max M (¢, j) < min M (i, %) + €
7

J

@ *: value of game

player objective | game term | number | distribution
row player minimize expert m Y
column player | maximize event n x
max M (¢, j) < min M (i, %) + €
7

J

@ *: value of game

AN <max M(y,j) <min M(i,2) + e < X" + ¢
j i

player objective | game term | number | distribution
row player minimize expert m Y
column player | maximize event n x
max M (¢, j) < min M (i, %) + €
7

J

@ *: value of game

AN <max M(y,j) <min M(i,2) + e < X" + ¢
j i

@ Therefore y and & are approximately the optimum strategies
for the row and column players.

@ Online Learning with Experts
@ Two-outcome case
@ A more general setting

© Multiplicative Weight Update Algorithm to Solve 0-Sum Game

© Approximate LP feasibility using Multiplicative Weights

24/27

Linear Program: Exact Version
Input: An “easy” polytope K C R" (e.g., K =[0,1]")
normal linear constraints Az > b, A€ R™" heR™
Output: decide if {z € K : Az > b} =0,
if not, then output z € K with Ax > b

Linear Program: Exact Version
Input: An “easy” polytope K C R" (e.g., K =[0,1]")
normal linear constraints Az > b, A€ R™" heR™
Output: decide if {z € K : Az > b} =0,
if not, then output z € K with Ax > b

Linear Program: Approximate Version
Input: An “easy” polytope K C R" (e.g., K = [0, 1]")
normal linear constraints Az > b, A€ R™"™ heR™
Output: either claim {z € K : Az > b} =0,
or output x € K with Az >b—¢-1

Linear Program: Exact Version
Input: An “easy” polytope K C R" (e.g., K =[0,1]")
normal linear constraints Az > b, A€ R™" heR™
Output: decide if {z € K : Az > b} =0,
if not, then output z € K with Ax > b

Linear Program: Approximate Version
Input: An “easy” polytope K C R" (e.g., K = [0, 1]")
normal linear constraints Az > b, A€ R™"™ heR™
Output: either claim {z € K : Az > b} =0,
or output x € K with Az >b—¢-1

@ Note: in case there is no exact solution, but an approximate
solution, algorithm can respond either way.

Approximate LP Solver using MWU

row of A | constraint | expert | dual solution y | m

column of A ‘ variable ‘ ‘ primal solution x ‘ n

@ event = a point in K

Approximate LP Solver using MWU

row of A | constraint | expert | dual solution y | m

column of A ‘ variable ‘ ‘ primal solution x ‘ n

@ event = a point in K

10:

1
2
3
4
5:
6:
7
8
9

. w) < 1 for every i € [m]
: for t + 1 to T, for some 1" to be decided later do

wt—1
?J<—‘

wt— 1|

if 32' € K st (y', Ax) > (y',b) then > event z' happens

for every i € [m] do
expert i gets penalty A;z' — b;
w — wt 1 75-(Aixt7bi)/2
our algorithm gets penalty (y', Ax' — b)
else return “empty”

A1 T t
return 2 = 5y

@ Counter-intuitive: the more satisfied a constraint is, the more
penalty it gets.

@ In every iteration, we only need to focus on one “aggregated”
linear constraint

e If algorithm returns “empty”, then the LP is not feasible

@ Counter-intuitive: the more satisfied a constraint is, the more
penalty it gets.

@ In every iteration, we only need to focus on one “aggregated”
linear constraint

o If algorithm returns “empty”, then the LP is not feasible

® p = SuUp, . max; |A;z — by, e € (0,2p] T := P@

Counter-intuitive: the more satisfied a constraint is, the more
penalty it gets.

In every iteration, we only need to focus on one “aggregated”
linear constraint

If algorithm returns “empty”, then the LP is not feasible

p = SUp,cp max; |[A;x — b, e€€(0,2p] T := P@—‘
Vi € [m]:

T T
1
0< Z(yt,Axt— Z i) +e=Az—b;+e
=1 =1

|

Counter-intuitive: the more satisfied a constraint is, the more
penalty it gets.

In every iteration, we only need to focus on one “aggregated”
linear constraint
If algorithm returns “empty”, then the LP is not feasible
p = SUp,cp max; |[A;x — b, e€€(0,2p] T := P@—‘
Vi € [m]:
T T

TZy,Axt— Z i) +e=AiZ —b; + e

Therefore, Ajz* > b, —e,Vi € [m] <— Az*>b—ec-1

	Online Learning with Experts
	Two-outcome case
	A more general setting

	Multiplicative Weight Update Algorithm to Solve 0-Sum Game
	Approximate LP feasibility using Multiplicative Weights

