
Advanced Algorithms (Fall 2024)

Multiplicative Weight Update

Lecturers: 尹一通，栗师，刘景铖

Nanjing University

2/27

Focus of this lecture: learning with experts online

how to dynamically choose from among a set of “experts” in a way
that compares favorably to the best expert

Use it to solve 0-sum game and linear programs approximately

3/27

Outline

1 Online Learning with Experts
Two-outcome case
A more general setting

2 Multiplicative Weight Update Algorithm to Solve 0-Sum Game

3 Approximate LP feasibility using Multiplicative Weights

4/27

Outline

1 Online Learning with Experts
Two-outcome case
A more general setting

2 Multiplicative Weight Update Algorithm to Solve 0-Sum Game

3 Approximate LP feasibility using Multiplicative Weights

5/27

Learning with Experts Online

m experts, indexed by [m]

a two-outcome event on each of following T days: up or down

Example: stock goes up or down? rain or not?

on each day t:

m experts make predictions about day t
algorithm makes a prediction, knowing the predictions of the m
experts
the outcome of day t reveals

Goal: minimize the number of mistakes

Ideally, not too bad compared to the best expert.

5/27

Learning with Experts Online

m experts, indexed by [m]

a two-outcome event on each of following T days: up or down

Example: stock goes up or down? rain or not?

on each day t:

m experts make predictions about day t
algorithm makes a prediction, knowing the predictions of the m
experts
the outcome of day t reveals

Goal: minimize the number of mistakes

Ideally, not too bad compared to the best expert.

5/27

Learning with Experts Online

m experts, indexed by [m]

a two-outcome event on each of following T days: up or down

Example: stock goes up or down? rain or not?

on each day t:

m experts make predictions about day t
algorithm makes a prediction, knowing the predictions of the m
experts
the outcome of day t reveals

Goal: minimize the number of mistakes

Ideally, not too bad compared to the best expert.

6/27

When There Is a Perfect Expert

Lemma There is an algorithm that makes at most ⌈log2m⌉
mistakes, assuming there is a perfect expert, i.e., an expert that
makes no mistakes.

Proof.

The algorithm: only keep the experts who made no mistakes
so far.

Among all the experts, follow the majority.

observation: when we made a mistake on a day, at least half of
the remaining experts made a mistake on that day.

6/27

When There Is a Perfect Expert

Lemma There is an algorithm that makes at most ⌈log2m⌉
mistakes, assuming there is a perfect expert, i.e., an expert that
makes no mistakes.

Proof.

The algorithm: only keep the experts who made no mistakes
so far.

Among all the experts, follow the majority.

observation: when we made a mistake on a day, at least half of
the remaining experts made a mistake on that day.

7/27

General Case

What if there is no perfect expert?

Weighted majority: give weights to experts. When an expert
made a mistake, halve his weight. In each step, follow the
weighted majority.

Weighted Majority

1: w0
i ← 1, ∀i ∈ [m]

2: for t = 1, 2, · · · , T do
3: if

∑
i:predicts upw

t−1
i ≥

∑
i:predicts down w

t−1
i then

4: predict “up”
5: else
6: predict “down”

7: for every expert i do

8: if i make a mistake then wt
i ←

wt−1
i

2
else wt

i ← wt−1
i

7/27

General Case

What if there is no perfect expert?

Weighted majority: give weights to experts. When an expert
made a mistake, halve his weight. In each step, follow the
weighted majority.

Weighted Majority

1: w0
i ← 1, ∀i ∈ [m]

2: for t = 1, 2, · · · , T do
3: if

∑
i:predicts upw

t−1
i ≥

∑
i:predicts down w

t−1
i then

4: predict “up”
5: else
6: predict “down”

7: for every expert i do

8: if i make a mistake then wt
i ←

wt−1
i

2
else wt

i ← wt−1
i

7/27

General Case

What if there is no perfect expert?

Weighted majority: give weights to experts. When an expert
made a mistake, halve his weight. In each step, follow the
weighted majority.

Weighted Majority

1: w0
i ← 1, ∀i ∈ [m]

2: for t = 1, 2, · · · , T do
3: if

∑
i:predicts upw

t−1
i ≥

∑
i:predicts down w

t−1
i then

4: predict “up”
5: else
6: predict “down”

7: for every expert i do

8: if i make a mistake then wt
i ←

wt−1
i

2
else wt

i ← wt−1
i

8/27

Analysis

Φt :=
∑m

i=1w
t
i .

M t
i ∈ {0, 1}, i ∈ [m], t ∈ [T]: whether expert i made a mistake

on day t

M t ∈ {0, 1}, t ∈ [T]: whether our algorithm made a mistake

Obs. If M t = 1 for some t, we have

Φt ≤ Φt−1 − Φt−1

4
=

3

4
Φt−1

So, ΦT ≤ (3
4
)
∑T

t=1 M
t
Φ0 = (3

4
)
∑T

t=1 M
t
m.

On the other hand, let k be the best expert

ΦT =
m∑
i=1

wT
i ≥ wT

k ≥
(1
2

)∑T
t=1 M

t
k

8/27

Analysis

Φt :=
∑m

i=1w
t
i .

M t
i ∈ {0, 1}, i ∈ [m], t ∈ [T]: whether expert i made a mistake

on day t

M t ∈ {0, 1}, t ∈ [T]: whether our algorithm made a mistake

Obs. If M t = 1 for some t, we have

Φt ≤ Φt−1 − Φt−1

4
=

3

4
Φt−1

So, ΦT ≤ (3
4
)
∑T

t=1 M
t
Φ0 = (3

4
)
∑T

t=1 M
t
m.

On the other hand, let k be the best expert

ΦT =
m∑
i=1

wT
i ≥ wT

k ≥
(1
2

)∑T
t=1 M

t
k

8/27

Analysis

Φt :=
∑m

i=1w
t
i .

M t
i ∈ {0, 1}, i ∈ [m], t ∈ [T]: whether expert i made a mistake

on day t

M t ∈ {0, 1}, t ∈ [T]: whether our algorithm made a mistake

Obs. If M t = 1 for some t, we have

Φt ≤ Φt−1 − Φt−1

4
=

3

4
Φt−1

So, ΦT ≤ (3
4
)
∑T

t=1 M
t
Φ0 = (3

4
)
∑T

t=1 M
t
m.

On the other hand, let k be the best expert

ΦT =
m∑
i=1

wT
i ≥ wT

k ≥
(1
2

)∑T
t=1 M

t
k

8/27

Analysis

Φt :=
∑m

i=1w
t
i .

M t
i ∈ {0, 1}, i ∈ [m], t ∈ [T]: whether expert i made a mistake

on day t

M t ∈ {0, 1}, t ∈ [T]: whether our algorithm made a mistake

Obs. If M t = 1 for some t, we have

Φt ≤ Φt−1 − Φt−1

4
=

3

4
Φt−1

So, ΦT ≤ (3
4
)
∑T

t=1 M
t
Φ0 = (3

4
)
∑T

t=1 M
t
m.

On the other hand, let k be the best expert

ΦT =
m∑
i=1

wT
i ≥ wT

k ≥
(1
2

)∑T
t=1 M

t
k

9/27

ΦT ≤ (
3

4
)
∑T

t=1 M
t

m ΦT ≥
(1
2

)∑T
i=1 M

t
k

(1
2

)∑T
i=1 M

t
i ≤ ΦT ≤

(3
4

)∑T
i=1 M

t

m

(− ln 2)
T∑
t=1

M t
i ≤ (− ln

4

3
)

T∑
t=1

M t + lnm By taking logarithm

T∑
t=1

M t ≤ ln 2

ln 4/3

T∑
t=1

M t
k +

lnm

ln 4/3

≤ 2.41
T∑
t=1

M t
k + 3.47 lnm

9/27

ΦT ≤ (
3

4
)
∑T

t=1 M
t

m ΦT ≥
(1
2

)∑T
i=1 M

t
k

(1
2

)∑T
i=1 M

t
i ≤ ΦT ≤

(3
4

)∑T
i=1 M

t

m

(− ln 2)
T∑
t=1

M t
i ≤ (− ln

4

3
)

T∑
t=1

M t + lnm By taking logarithm

T∑
t=1

M t ≤ ln 2

ln 4/3

T∑
t=1

M t
k +

lnm

ln 4/3

≤ 2.41
T∑
t=1

M t
k + 3.47 lnm

10/27

T∑
t=1

M t ≤ 2.41
T∑
t=1

M t
k + 3.47 lnm

Make the first constant arbitrarily close to 2

when expert i makes a mistake on day t: wt
i ← wt−1

i · (1− ϵ)

when algorithm makes a mistake on day t: Φt ≤ Φt−1 · (1− ϵ
2
)

ΦT ≤ (1− ϵ/2)
∑T

t=1 M
t ·m

ΦT ≥ (1− ϵ)
∑T

t=1 M
t
k

T∑
t=1

M t ≤ ln(1− ϵ)

ln(1− ϵ/2)

T∑
t=1

M t
k −

lnm

ln(1− ϵ/2)

= (2 +O(ϵ))
T∑
t=1

M t
k +O

(1
ϵ

)
lnm.

11/27

Lemma For any constant ϵ > 0 and any function f(m), no
deterministic algorithm can achieve a multiplicative factor of 2− ϵ
and additive factor of f(m).

Proof.

Each day m
2
experts predict “up”, m

2
experts predict “down”.

Our algorithm always makes a mistake.

Our algorithm made T mistakes, and the best expert makes at
most T/2.

If T ≫ f(m), we have T > (2− ϵ) · T
2
+ f(m).

However, if randomness is allowed, we can make multiplicative
factor 1 + ϵ.

11/27

Lemma For any constant ϵ > 0 and any function f(m), no
deterministic algorithm can achieve a multiplicative factor of 2− ϵ
and additive factor of f(m).

Proof.

Each day m
2
experts predict “up”, m

2
experts predict “down”.

Our algorithm always makes a mistake.

Our algorithm made T mistakes, and the best expert makes at
most T/2.

If T ≫ f(m), we have T > (2− ϵ) · T
2
+ f(m).

However, if randomness is allowed, we can make multiplicative
factor 1 + ϵ.

11/27

Lemma For any constant ϵ > 0 and any function f(m), no
deterministic algorithm can achieve a multiplicative factor of 2− ϵ
and additive factor of f(m).

Proof.

Each day m
2
experts predict “up”, m

2
experts predict “down”.

Our algorithm always makes a mistake.

Our algorithm made T mistakes, and the best expert makes at
most T/2.

If T ≫ f(m), we have T > (2− ϵ) · T
2
+ f(m).

However, if randomness is allowed, we can make multiplicative
factor 1 + ϵ.

12/27

Outline

1 Online Learning with Experts
Two-outcome case
A more general setting

2 Multiplicative Weight Update Algorithm to Solve 0-Sum Game

3 Approximate LP feasibility using Multiplicative Weights

13/27

A more general setting

no predictions: experts pay penalties

algorithm chooses to follow experts

with randomness: follow a distribution over experts

algorithm pays the weighted average penalty of experts

goal: compare to the best expert

The General Setting

1: for t← 1, 2, · · · , T do
2: algorithm chooses a distribution pt = (pt1, p

t
2, · · · , ptn) over

experts
3: the penalty vector M t ∈ [−1, 1]m is revealed
4: each expert i pays penalty M t

i

5: algorithm pays penalty ⟨pt,M t⟩ =
∑m

i=1 p
t
iM

t
i

Note: penalty can be negative: negative penalty = reward

13/27

A more general setting

no predictions: experts pay penalties

algorithm chooses to follow experts

with randomness: follow a distribution over experts

algorithm pays the weighted average penalty of experts

goal: compare to the best expert

The General Setting

1: for t← 1, 2, · · · , T do
2: algorithm chooses a distribution pt = (pt1, p

t
2, · · · , ptn) over

experts
3: the penalty vector M t ∈ [−1, 1]m is revealed
4: each expert i pays penalty M t

i

5: algorithm pays penalty ⟨pt,M t⟩ =
∑m

i=1 p
t
iM

t
i

Note: penalty can be negative: negative penalty = reward

13/27

A more general setting

no predictions: experts pay penalties

algorithm chooses to follow experts

with randomness: follow a distribution over experts

algorithm pays the weighted average penalty of experts

goal: compare to the best expert

The General Setting

1: for t← 1, 2, · · · , T do
2: algorithm chooses a distribution pt = (pt1, p

t
2, · · · , ptn) over

experts
3: the penalty vector M t ∈ [−1, 1]m is revealed
4: each expert i pays penalty M t

i

5: algorithm pays penalty ⟨pt,M t⟩ =
∑m

i=1 p
t
iM

t
i

Note: penalty can be negative: negative penalty = reward

13/27

A more general setting

no predictions: experts pay penalties

algorithm chooses to follow experts

with randomness: follow a distribution over experts

algorithm pays the weighted average penalty of experts

goal: compare to the best expert

The General Setting

1: for t← 1, 2, · · · , T do
2: algorithm chooses a distribution pt = (pt1, p

t
2, · · · , ptn) over

experts
3: the penalty vector M t ∈ [−1, 1]m is revealed
4: each expert i pays penalty M t

i

5: algorithm pays penalty ⟨pt,M t⟩ =
∑m

i=1 p
t
iM

t
i

Note: penalty can be negative: negative penalty = reward

13/27

A more general setting

no predictions: experts pay penalties

algorithm chooses to follow experts

with randomness: follow a distribution over experts

algorithm pays the weighted average penalty of experts

goal: compare to the best expert

The General Setting

1: for t← 1, 2, · · · , T do
2: algorithm chooses a distribution pt = (pt1, p

t
2, · · · , ptn) over

experts
3: the penalty vector M t ∈ [−1, 1]m is revealed
4: each expert i pays penalty M t

i

5: algorithm pays penalty ⟨pt,M t⟩ =
∑m

i=1 p
t
iM

t
i

Note: penalty can be negative: negative penalty = reward

14/27

Theorem Let ϵ ∈ (0, 1]. If T ≥ lnm
ϵ2

, then there is an algorithm
that satisfies:

1

T

T∑
t=1

⟨pt,M t⟩ ≤ 1

T

T∑
t=1

M t
i + 2ϵ,∀i ∈ [m].

Algorithm for the General Setting

1: w0
i ← 1 for every i ∈ [m]

2: for t← 1, 2, · · · , T do
3: choose pt ← wt−1

|wt−1|1
4: the penalty vector M t ∈ [−1, 1]m is revealed
5: each expert i pays penalty M t

i

6: algorithm pays penalty ⟨pt,M t⟩ =
∑m

i=1 p
t
iM

t
i

7: for every i ∈ [m] do: wt
i ← wt−1

i · e−ϵ·Mt
i

14/27

Theorem Let ϵ ∈ (0, 1]. If T ≥ lnm
ϵ2

, then there is an algorithm
that satisfies:

1

T

T∑
t=1

⟨pt,M t⟩ ≤ 1

T

T∑
t=1

M t
i + 2ϵ,∀i ∈ [m].

Algorithm for the General Setting

1: w0
i ← 1 for every i ∈ [m]

2: for t← 1, 2, · · · , T do
3: choose pt ← wt−1

|wt−1|1
4: the penalty vector M t ∈ [−1, 1]m is revealed
5: each expert i pays penalty M t

i

6: algorithm pays penalty ⟨pt,M t⟩ =
∑m

i=1 p
t
iM

t
i

7: for every i ∈ [m] do: wt
i ← wt−1

i · e−ϵ·Mt
i

15/27

Analysis of Algorithm

the strategy: pt = wt−1

|wt−1|1 wt
i = wt−1

i · e−ϵ·Mt
i

let Φt := |wt|1 =
∑m

i=1w
t
i for all t ∈ [0, T]

Φt =
m∑
i=1

wt
i =

m∑
i=1

e−ϵ·Mt
i · wt−1

i

≤
m∑
i=1

(1− ϵ ·M t
i + (ϵ ·M t

i)
2) · wt−1

i

as ex ≤ 1 + x+ x2,∀x ∈ [−1, 1]

≤
m∑
i=1

(1− ϵ ·M t
i + ϵ2) · wt−1

i as |M t
i | ≤ 1

= (1 + ϵ2)
m∑
i=1

wt−1
i − ϵ · ⟨wt−1,M t⟩

= (1 + ϵ2)Φt−1 − ϵ · Φt−1 · ⟨pt,M t⟩ as Φt−1 · pt = wt−1

15/27

Analysis of Algorithm

the strategy: pt = wt−1

|wt−1|1 wt
i = wt−1

i · e−ϵ·Mt
i

let Φt := |wt|1 =
∑m

i=1w
t
i for all t ∈ [0, T]

Φt =
m∑
i=1

wt
i =

m∑
i=1

e−ϵ·Mt
i · wt−1

i

≤
m∑
i=1

(1− ϵ ·M t
i + (ϵ ·M t

i)
2) · wt−1

i

as ex ≤ 1 + x+ x2,∀x ∈ [−1, 1]

≤
m∑
i=1

(1− ϵ ·M t
i + ϵ2) · wt−1

i as |M t
i | ≤ 1

= (1 + ϵ2)
m∑
i=1

wt−1
i − ϵ · ⟨wt−1,M t⟩

= (1 + ϵ2)Φt−1 − ϵ · Φt−1 · ⟨pt,M t⟩ as Φt−1 · pt = wt−1

15/27

Analysis of Algorithm

the strategy: pt = wt−1

|wt−1|1 wt
i = wt−1

i · e−ϵ·Mt
i

let Φt := |wt|1 =
∑m

i=1w
t
i for all t ∈ [0, T]

Φt =
m∑
i=1

wt
i =

m∑
i=1

e−ϵ·Mt
i · wt−1

i

≤
m∑
i=1

(1− ϵ ·M t
i + (ϵ ·M t

i)
2) · wt−1

i

as ex ≤ 1 + x+ x2,∀x ∈ [−1, 1]

≤
m∑
i=1

(1− ϵ ·M t
i + ϵ2) · wt−1

i as |M t
i | ≤ 1

= (1 + ϵ2)
m∑
i=1

wt−1
i − ϵ · ⟨wt−1,M t⟩

= (1 + ϵ2)Φt−1 − ϵ · Φt−1 · ⟨pt,M t⟩ as Φt−1 · pt = wt−1

16/27

Analysis of Algorithm

Φt ≤ (1 + ϵ2)Φt−1 − ϵ · Φt−1 · ⟨pt,M t⟩
=

(
1 + ϵ2 − ϵ · ⟨pt,M t⟩

)
· Φt−1

≤ exp
(
− ϵ · ⟨pt,M t⟩+ ϵ2

)
· Φt−1 as 1− x ≤ e−x,∀x ∈ R

ΦT ≤ exp
(T∑

t=1

(
− ϵ · ⟨pt,M t⟩+ ϵ2

))
· Φ0

= exp
(
− ϵ ·

T∑
t=1

⟨pt,M t⟩+ Tϵ2
)
· Φ0

17/27

ΦT ≤ exp
(
− ϵ ·

T∑
t=1

⟨pt,M t⟩+ Tϵ2
)
· Φ0

For any expert i ∈ [m], ΦT ≥ wT
i = exp

(
− ϵ

T∑
t=1

M t
i

)
.

So, for every i ∈ [m], we have (note that Φ0 = m)

−ϵ ·
T∑
t=1

M t
i ≤ −ϵ ·

T∑
t=1

⟨pt,M t⟩+ Tϵ2 + lnm

T∑
t=1

⟨pt,M t⟩ ≤
T∑
t=1

M t
i + Tϵ+

lnm

ϵ

1

T

T∑
t=1

⟨pt,M t⟩ ≤ 1

T

T∑
t=1

M t
i + ϵ+

lnm

Tϵ

≤ 1

T

T∑
t=1

M t
i + 2ϵ

[
T ≥ lnm

ϵ2

]

17/27

ΦT ≤ exp
(
− ϵ ·

T∑
t=1

⟨pt,M t⟩+ Tϵ2
)
· Φ0

For any expert i ∈ [m], ΦT ≥ wT
i = exp

(
− ϵ

T∑
t=1

M t
i

)
.

So, for every i ∈ [m], we have (note that Φ0 = m)

−ϵ ·
T∑
t=1

M t
i ≤ −ϵ ·

T∑
t=1

⟨pt,M t⟩+ Tϵ2 + lnm

T∑
t=1

⟨pt,M t⟩ ≤
T∑
t=1

M t
i + Tϵ+

lnm

ϵ

1

T

T∑
t=1

⟨pt,M t⟩ ≤ 1

T

T∑
t=1

M t
i + ϵ+

lnm

Tϵ

≤ 1

T

T∑
t=1

M t
i + 2ϵ

[
T ≥ lnm

ϵ2

]

17/27

ΦT ≤ exp
(
− ϵ ·

T∑
t=1

⟨pt,M t⟩+ Tϵ2
)
· Φ0

For any expert i ∈ [m], ΦT ≥ wT
i = exp

(
− ϵ

T∑
t=1

M t
i

)
.

So, for every i ∈ [m], we have (note that Φ0 = m)

−ϵ ·
T∑
t=1

M t
i ≤ −ϵ ·

T∑
t=1

⟨pt,M t⟩+ Tϵ2 + lnm

T∑
t=1

⟨pt,M t⟩ ≤
T∑
t=1

M t
i + Tϵ+

lnm

ϵ

1

T

T∑
t=1

⟨pt,M t⟩ ≤ 1

T

T∑
t=1

M t
i + ϵ+

lnm

Tϵ

≤ 1

T

T∑
t=1

M t
i + 2ϵ

[
T ≥ lnm

ϵ2

]

18/27

Theorem Let ϵ ∈ (0, 1]. If T ≥ lnm
ϵ2

, then there is an algorithm
that satisfies:

1

T

T∑
t=1

⟨pt,M t⟩ ≤ 1

T

T∑
t=1

M t
i + 2ϵ,∀i ∈ [m].

Coro. Suppose each penalty in the game is in [−ρ, ρ] (instead of

[−1, 1]) for some ρ > 0. Let ϵ ∈
(
0, 2ρ

]
. If T ≥ 4ρ2 lnm

ϵ2
, then

there is an algorithm that satisfies

1

T

T∑
t=1

⟨pt,M t⟩ ≤ 1

T

T∑
t=1

M t
i + ϵ,∀i ∈ [m].

Proof.

scale penalties by 1
ρ
so that each penalty is in [−1, 1]

+ϵ before scaling = + ϵ
ρ
after scaling

Need T ≥ lnm
(ϵ/2ρ)2

= 4ρ2 lnm
ϵ2

and ϵ
2ρ
≤ 1 ⇐⇒ ϵ ≤ 2ρ

18/27

Theorem Let ϵ ∈ (0, 1]. If T ≥ lnm
ϵ2

, then there is an algorithm
that satisfies:

1

T

T∑
t=1

⟨pt,M t⟩ ≤ 1

T

T∑
t=1

M t
i + 2ϵ,∀i ∈ [m].

Coro. Suppose each penalty in the game is in [−ρ, ρ] (instead of

[−1, 1]) for some ρ > 0. Let ϵ ∈
(
0, 2ρ

]
. If T ≥ 4ρ2 lnm

ϵ2
, then

there is an algorithm that satisfies

1

T

T∑
t=1

⟨pt,M t⟩ ≤ 1

T

T∑
t=1

M t
i + ϵ,∀i ∈ [m].

Proof.

scale penalties by 1
ρ
so that each penalty is in [−1, 1]

+ϵ before scaling = + ϵ
ρ
after scaling

Need T ≥ lnm
(ϵ/2ρ)2

= 4ρ2 lnm
ϵ2

and ϵ
2ρ
≤ 1 ⇐⇒ ϵ ≤ 2ρ

18/27

Theorem Let ϵ ∈ (0, 1]. If T ≥ lnm
ϵ2

, then there is an algorithm
that satisfies:

1

T

T∑
t=1

⟨pt,M t⟩ ≤ 1

T

T∑
t=1

M t
i + 2ϵ,∀i ∈ [m].

Coro. Suppose each penalty in the game is in [−ρ, ρ] (instead of

[−1, 1]) for some ρ > 0. Let ϵ ∈
(
0, 2ρ

]
. If T ≥ 4ρ2 lnm

ϵ2
, then

there is an algorithm that satisfies

1

T

T∑
t=1

⟨pt,M t⟩ ≤ 1

T

T∑
t=1

M t
i + ϵ,∀i ∈ [m].

Proof.

scale penalties by 1
ρ
so that each penalty is in [−1, 1]

+ϵ before scaling = + ϵ
ρ
after scaling

Need T ≥ lnm
(ϵ/2ρ)2

= 4ρ2 lnm
ϵ2

and ϵ
2ρ
≤ 1 ⇐⇒ ϵ ≤ 2ρ

18/27

Theorem Let ϵ ∈ (0, 1]. If T ≥ lnm
ϵ2

, then there is an algorithm
that satisfies:

1

T

T∑
t=1

⟨pt,M t⟩ ≤ 1

T

T∑
t=1

M t
i + 2ϵ,∀i ∈ [m].

Coro. Suppose each penalty in the game is in [−ρ, ρ] (instead of

[−1, 1]) for some ρ > 0. Let ϵ ∈
(
0, 2ρ

]
. If T ≥ 4ρ2 lnm

ϵ2
, then

there is an algorithm that satisfies

1

T

T∑
t=1

⟨pt,M t⟩ ≤ 1

T

T∑
t=1

M t
i + ϵ,∀i ∈ [m].

Proof.

scale penalties by 1
ρ
so that each penalty is in [−1, 1]

+ϵ before scaling = + ϵ
ρ
after scaling

Need T ≥ lnm
(ϵ/2ρ)2

= 4ρ2 lnm
ϵ2

and ϵ
2ρ
≤ 1 ⇐⇒ ϵ ≤ 2ρ

19/27

Outline

1 Online Learning with Experts
Two-outcome case
A more general setting

2 Multiplicative Weight Update Algorithm to Solve 0-Sum Game

3 Approximate LP feasibility using Multiplicative Weights

20/27

Recall:

0-Sum Game

Input: a payoff matrix M ∈ Rm×n,m, n ≥ 1,

two players: row player R, column player C

Output: R plays a row i ∈ [m], C plays a column j ∈ [n]

payoff of game is Mij

R wants to minimize Mij, C wants to maximize Mij

Rock-Scissor-Paper Game

payoff R S P
R 0 -1 1
S 1 0 -1
P -1 1 0

20/27

Recall:

0-Sum Game

Input: a payoff matrix M ∈ Rm×n,m, n ≥ 1,

two players: row player R, column player C

Output: R plays a row i ∈ [m], C plays a column j ∈ [n]

payoff of game is Mij

R wants to minimize Mij, C wants to maximize Mij

Rock-Scissor-Paper Game

payoff R S P
R 0 -1 1
S 1 0 -1
P -1 1 0

21/27

By scaling, we assume M ∈ [−1, 1]m×n.

player objective game term number distribution
row player minimize expert m y

column player maximize event n x

Multiplicative weight update for 0-sum games

1: let w0
i = 1 for every i ∈ [m]

2: for t← 1 to T , where T =
⌈
4 lnm
ϵ2

⌉
do

3: algorithm chooses distribution yt = wt−1

|wt−1|1
4: let jt be the j ∈ [n] that maximizes M(yt, j)
5: event jt happens:

expert i ∈ [m] pays penalty M(i, jt)
algorithm pays penalty M(yt, jt)

6: wt
i ← wt−1

i · e−ϵ·M(i,jt)/2 for every i ∈ [m]

21/27

By scaling, we assume M ∈ [−1, 1]m×n.

player objective game term number distribution
row player minimize expert m y

column player maximize event n x

Multiplicative weight update for 0-sum games

1: let w0
i = 1 for every i ∈ [m]

2: for t← 1 to T , where T =
⌈
4 lnm
ϵ2

⌉
do

3: algorithm chooses distribution yt = wt−1

|wt−1|1
4: let jt be the j ∈ [n] that maximizes M(yt, j)
5: event jt happens:

expert i ∈ [m] pays penalty M(i, jt)
algorithm pays penalty M(yt, jt)

6: wt
i ← wt−1

i · e−ϵ·M(i,jt)/2 for every i ∈ [m]

22/27

player objective game term number distribution
row player minimize expert m y

column player maximize event n x

Since T ≥ 4 lnm
ϵ2

, we have

1

T

T∑
t=1

M(pt, jt) ≤ min
i∈[m]

1

T

T∑
t=1

M(i, jt) + ϵ

t̂: the t ∈ [T] with minimum M(yt, jt) ŷ := yt̂

x̂: uniform distribution over multi-set {j1, j2, · · · , jT}

max
j

M(ŷ, j) = M(ŷ, j t̂) ≤ 1

T

T∑
t=1

M(pt, jt)

≤ min
i

1

T

T∑
t=1

M(i, jt) + ϵ = min
i

M(i, x̂) + ϵ

22/27

player objective game term number distribution
row player minimize expert m y

column player maximize event n x

Since T ≥ 4 lnm
ϵ2

, we have

1

T

T∑
t=1

M(pt, jt) ≤ min
i∈[m]

1

T

T∑
t=1

M(i, jt) + ϵ

t̂: the t ∈ [T] with minimum M(yt, jt) ŷ := yt̂

x̂: uniform distribution over multi-set {j1, j2, · · · , jT}

max
j

M(ŷ, j) = M(ŷ, j t̂) ≤ 1

T

T∑
t=1

M(pt, jt)

≤ min
i

1

T

T∑
t=1

M(i, jt) + ϵ = min
i

M(i, x̂) + ϵ

22/27

player objective game term number distribution
row player minimize expert m y

column player maximize event n x

Since T ≥ 4 lnm
ϵ2

, we have

1

T

T∑
t=1

M(pt, jt) ≤ min
i∈[m]

1

T

T∑
t=1

M(i, jt) + ϵ

t̂: the t ∈ [T] with minimum M(yt, jt) ŷ := yt̂

x̂: uniform distribution over multi-set {j1, j2, · · · , jT}

max
j

M(ŷ, j) = M(ŷ, j t̂) ≤ 1

T

T∑
t=1

M(pt, jt)

≤ min
i

1

T

T∑
t=1

M(i, jt) + ϵ = min
i

M(i, x̂) + ϵ

23/27

player objective game term number distribution
row player minimize expert m y

column player maximize event n x

max
j

M(ŷ, j) ≤ min
i

M(i, x̂) + ϵ

λ∗: value of game

λ∗ ≤ max
j

M(ŷ, j) ≤ min
i

M(i, x̂) + ϵ ≤ λ∗ + ϵ

Therefore ŷ and x̂ are approximately the optimum strategies
for the row and column players.

23/27

player objective game term number distribution
row player minimize expert m y

column player maximize event n x

max
j

M(ŷ, j) ≤ min
i

M(i, x̂) + ϵ

λ∗: value of game

λ∗ ≤ max
j

M(ŷ, j) ≤ min
i

M(i, x̂) + ϵ ≤ λ∗ + ϵ

Therefore ŷ and x̂ are approximately the optimum strategies
for the row and column players.

23/27

player objective game term number distribution
row player minimize expert m y

column player maximize event n x

max
j

M(ŷ, j) ≤ min
i

M(i, x̂) + ϵ

λ∗: value of game

λ∗ ≤ max
j

M(ŷ, j) ≤ min
i

M(i, x̂) + ϵ ≤ λ∗ + ϵ

Therefore ŷ and x̂ are approximately the optimum strategies
for the row and column players.

23/27

player objective game term number distribution
row player minimize expert m y

column player maximize event n x

max
j

M(ŷ, j) ≤ min
i

M(i, x̂) + ϵ

λ∗: value of game

λ∗ ≤ max
j

M(ŷ, j) ≤ min
i

M(i, x̂) + ϵ ≤ λ∗ + ϵ

Therefore ŷ and x̂ are approximately the optimum strategies
for the row and column players.

24/27

Outline

1 Online Learning with Experts
Two-outcome case
A more general setting

2 Multiplicative Weight Update Algorithm to Solve 0-Sum Game

3 Approximate LP feasibility using Multiplicative Weights

25/27

Linear Program: Exact Version

Input: An “easy” polytope K ⊆ Rn (e.g., K = [0, 1]n)

normal linear constraints Ax ≥ b, A ∈ Rm×n, b ∈ Rm

Output: decide if {x ∈ K : Ax ≥ b} = ∅,
if not, then output x ∈ K with Ax ≥ b

Linear Program: Approximate Version

Input: An “easy” polytope K ⊆ Rn (e.g., K = [0, 1]n)

normal linear constraints Ax ≥ b, A ∈ Rm×n, b ∈ Rm

Output: either claim {x ∈ K : Ax ≥ b} = ∅,
or output x ∈ K with Ax ≥ b− ϵ · 1

Note: in case there is no exact solution, but an approximate
solution, algorithm can respond either way.

25/27

Linear Program: Exact Version

Input: An “easy” polytope K ⊆ Rn (e.g., K = [0, 1]n)

normal linear constraints Ax ≥ b, A ∈ Rm×n, b ∈ Rm

Output: decide if {x ∈ K : Ax ≥ b} = ∅,
if not, then output x ∈ K with Ax ≥ b

Linear Program: Approximate Version

Input: An “easy” polytope K ⊆ Rn (e.g., K = [0, 1]n)

normal linear constraints Ax ≥ b, A ∈ Rm×n, b ∈ Rm

Output: either claim {x ∈ K : Ax ≥ b} = ∅,
or output x ∈ K with Ax ≥ b− ϵ · 1

Note: in case there is no exact solution, but an approximate
solution, algorithm can respond either way.

25/27

Linear Program: Exact Version

Input: An “easy” polytope K ⊆ Rn (e.g., K = [0, 1]n)

normal linear constraints Ax ≥ b, A ∈ Rm×n, b ∈ Rm

Output: decide if {x ∈ K : Ax ≥ b} = ∅,
if not, then output x ∈ K with Ax ≥ b

Linear Program: Approximate Version

Input: An “easy” polytope K ⊆ Rn (e.g., K = [0, 1]n)

normal linear constraints Ax ≥ b, A ∈ Rm×n, b ∈ Rm

Output: either claim {x ∈ K : Ax ≥ b} = ∅,
or output x ∈ K with Ax ≥ b− ϵ · 1

Note: in case there is no exact solution, but an approximate
solution, algorithm can respond either way.

26/27

Approximate LP Solver using MWU

row of A constraint expert dual solution y m
column of A variable primal solution x n

event = a point in K

1: w0
i ← 1 for every i ∈ [m]

2: for t← 1 to T , for some T to be decided later do
3: yt ← wt−1

|wt−1|
4: if ∃xt ∈ K s.t ⟨yt, Ax⟩ ≥ ⟨yt, b⟩ then ▷ event xt happens
5: for every i ∈ [m] do
6: expert i gets penalty Aix

t − bi
7: wt

i ← wt−1
i · e−ϵ·(Aix

t−bi)/2

8: our algorithm gets penalty ⟨yt, Axt − b⟩
9: else return “empty”

10: return x̂ = 1
T

∑T
i=1 x

t

26/27

Approximate LP Solver using MWU

row of A constraint expert dual solution y m
column of A variable primal solution x n

event = a point in K

1: w0
i ← 1 for every i ∈ [m]

2: for t← 1 to T , for some T to be decided later do
3: yt ← wt−1

|wt−1|
4: if ∃xt ∈ K s.t ⟨yt, Ax⟩ ≥ ⟨yt, b⟩ then ▷ event xt happens
5: for every i ∈ [m] do
6: expert i gets penalty Aix

t − bi
7: wt

i ← wt−1
i · e−ϵ·(Aix

t−bi)/2

8: our algorithm gets penalty ⟨yt, Axt − b⟩
9: else return “empty”

10: return x̂ = 1
T

∑T
i=1 x

t

27/27

Counter-intuitive: the more satisfied a constraint is, the more
penalty it gets.

In every iteration, we only need to focus on one “aggregated”
linear constraint

If algorithm returns “empty”, then the LP is not feasible

ρ := supx∈K maxi |Aix− bi|, ϵ ∈ (0, 2ρ] T :=
⌈
4ρ2 lnm

ϵ2

⌉
∀i ∈ [m]:

0 ≤ 1

T

T∑
t=1

⟨yt, Axt − b⟩ ≤ 1

T

T∑
t=1

(Aix
t − bi) + ϵ = Aix̂− bi + ϵ

Therefore, Aix
∗ ≥ bi − ϵ,∀i ∈ [m] ⇐⇒ Ax∗ ≥ b− ϵ · 1

27/27

Counter-intuitive: the more satisfied a constraint is, the more
penalty it gets.

In every iteration, we only need to focus on one “aggregated”
linear constraint

If algorithm returns “empty”, then the LP is not feasible

ρ := supx∈K maxi |Aix− bi|, ϵ ∈ (0, 2ρ] T :=
⌈
4ρ2 lnm

ϵ2

⌉

∀i ∈ [m]:

0 ≤ 1

T

T∑
t=1

⟨yt, Axt − b⟩ ≤ 1

T

T∑
t=1

(Aix
t − bi) + ϵ = Aix̂− bi + ϵ

Therefore, Aix
∗ ≥ bi − ϵ,∀i ∈ [m] ⇐⇒ Ax∗ ≥ b− ϵ · 1

27/27

Counter-intuitive: the more satisfied a constraint is, the more
penalty it gets.

In every iteration, we only need to focus on one “aggregated”
linear constraint

If algorithm returns “empty”, then the LP is not feasible

ρ := supx∈K maxi |Aix− bi|, ϵ ∈ (0, 2ρ] T :=
⌈
4ρ2 lnm

ϵ2

⌉
∀i ∈ [m]:

0 ≤ 1

T

T∑
t=1

⟨yt, Axt − b⟩ ≤ 1

T

T∑
t=1

(Aix
t − bi) + ϵ = Aix̂− bi + ϵ

Therefore, Aix
∗ ≥ bi − ϵ,∀i ∈ [m] ⇐⇒ Ax∗ ≥ b− ϵ · 1

27/27

Counter-intuitive: the more satisfied a constraint is, the more
penalty it gets.

In every iteration, we only need to focus on one “aggregated”
linear constraint

If algorithm returns “empty”, then the LP is not feasible

ρ := supx∈K maxi |Aix− bi|, ϵ ∈ (0, 2ρ] T :=
⌈
4ρ2 lnm

ϵ2

⌉
∀i ∈ [m]:

0 ≤ 1

T

T∑
t=1

⟨yt, Axt − b⟩ ≤ 1

T

T∑
t=1

(Aix
t − bi) + ϵ = Aix̂− bi + ϵ

Therefore, Aix
∗ ≥ bi − ϵ,∀i ∈ [m] ⇐⇒ Ax∗ ≥ b− ϵ · 1

	Online Learning with Experts
	Two-outcome case
	A more general setting

	Multiplicative Weight Update Algorithm to Solve 0-Sum Game
	Approximate LP feasibility using Multiplicative Weights

