
Advanced Algorithms (Fall 2024)

Primal-Dual Algorithms

Lecturers: 尹一通，栗师，刘景铖

Nanjing University



2/18

Outline

1 2-Approximation Algorithm for Weighted Vertex Cover Using
Primal-Dual

2 3-Approximation Algorithm for Uncapacitated Facility Location
Problem Using Primal Dual



3/18

Weighted Vertex Cover Problem

Input: graph G = (V,E), vertex weights w ∈ ZV
>0

Output: vertex cover S of G, to minimize
∑

v∈S wv



4/18

LP Relaxation

min
∑
v∈V

wvxv

xu + xv ≥ 1 ∀(u, v) ∈ E

xv ≥ 0 ∀v ∈ V

Dual LP

max
∑
e∈E

ye∑
e∈δ(v)

ye ≤ wv ∀v ∈ V

ye ≥ 0 ∀e ∈ E

Algorithm constructs integral primal solution x and dual
solution y simultaneously.



4/18

LP Relaxation

min
∑
v∈V

wvxv

xu + xv ≥ 1 ∀(u, v) ∈ E

xv ≥ 0 ∀v ∈ V

Dual LP

max
∑
e∈E

ye∑
e∈δ(v)

ye ≤ wv ∀v ∈ V

ye ≥ 0 ∀e ∈ E

Algorithm constructs integral primal solution x and dual
solution y simultaneously.



5/18

Primal-Dual Algorithm for Weighted Vertex Cover Problem

1: x← 0, y ← 0, all edges said to be uncovered
2: while there exists at least one uncovered edge do
3: take such an edge e arbitrarily
4: increasing ye until the dual constraint for one end-vertex v

of e becomes tight
5: xv ← 1, claim all edges incident to v are covered

6: return x

1

3

3

2

2 4

Lemma

1 x satisfies all primal constraints

2 y satisfies all dual constraints

3 P ≤ 2D ≤ 2D∗ ≤ 2 · opt
P :=

∑
v∈V xv: value of x

D :=
∑

e∈E ye: value of y

D∗ : dual LP value



5/18

Primal-Dual Algorithm for Weighted Vertex Cover Problem

1: x← 0, y ← 0, all edges said to be uncovered
2: while there exists at least one uncovered edge do
3: take such an edge e arbitrarily
4: increasing ye until the dual constraint for one end-vertex v

of e becomes tight
5: xv ← 1, claim all edges incident to v are covered

6: return x

1

3

3

2

2 4

1

Lemma

1 x satisfies all primal constraints

2 y satisfies all dual constraints

3 P ≤ 2D ≤ 2D∗ ≤ 2 · opt
P :=

∑
v∈V xv: value of x

D :=
∑

e∈E ye: value of y

D∗ : dual LP value



5/18

Primal-Dual Algorithm for Weighted Vertex Cover Problem

1: x← 0, y ← 0, all edges said to be uncovered
2: while there exists at least one uncovered edge do
3: take such an edge e arbitrarily
4: increasing ye until the dual constraint for one end-vertex v

of e becomes tight
5: xv ← 1, claim all edges incident to v are covered

6: return x

1

3

3

2

2 4

1

Lemma

1 x satisfies all primal constraints

2 y satisfies all dual constraints

3 P ≤ 2D ≤ 2D∗ ≤ 2 · opt
P :=

∑
v∈V xv: value of x

D :=
∑

e∈E ye: value of y

D∗ : dual LP value



5/18

Primal-Dual Algorithm for Weighted Vertex Cover Problem

1: x← 0, y ← 0, all edges said to be uncovered
2: while there exists at least one uncovered edge do
3: take such an edge e arbitrarily
4: increasing ye until the dual constraint for one end-vertex v

of e becomes tight
5: xv ← 1, claim all edges incident to v are covered

6: return x

1

3

3

2

2 4

1

2

Lemma

1 x satisfies all primal constraints

2 y satisfies all dual constraints

3 P ≤ 2D ≤ 2D∗ ≤ 2 · opt
P :=

∑
v∈V xv: value of x

D :=
∑

e∈E ye: value of y

D∗ : dual LP value



5/18

Primal-Dual Algorithm for Weighted Vertex Cover Problem

1: x← 0, y ← 0, all edges said to be uncovered
2: while there exists at least one uncovered edge do
3: take such an edge e arbitrarily
4: increasing ye until the dual constraint for one end-vertex v

of e becomes tight
5: xv ← 1, claim all edges incident to v are covered

6: return x

1

3

3

2

2 4

1

2

Lemma

1 x satisfies all primal constraints

2 y satisfies all dual constraints

3 P ≤ 2D ≤ 2D∗ ≤ 2 · opt
P :=

∑
v∈V xv: value of x

D :=
∑

e∈E ye: value of y

D∗ : dual LP value



5/18

Primal-Dual Algorithm for Weighted Vertex Cover Problem

1: x← 0, y ← 0, all edges said to be uncovered
2: while there exists at least one uncovered edge do
3: take such an edge e arbitrarily
4: increasing ye until the dual constraint for one end-vertex v

of e becomes tight
5: xv ← 1, claim all edges incident to v are covered

6: return x

1

3

3

2

2 4

1

2

1

Lemma

1 x satisfies all primal constraints

2 y satisfies all dual constraints

3 P ≤ 2D ≤ 2D∗ ≤ 2 · opt
P :=

∑
v∈V xv: value of x

D :=
∑

e∈E ye: value of y

D∗ : dual LP value



5/18

Primal-Dual Algorithm for Weighted Vertex Cover Problem

1: x← 0, y ← 0, all edges said to be uncovered
2: while there exists at least one uncovered edge do
3: take such an edge e arbitrarily
4: increasing ye until the dual constraint for one end-vertex v

of e becomes tight
5: xv ← 1, claim all edges incident to v are covered

6: return x

1

3

3

2

2 4

1

2

1

Lemma

1 x satisfies all primal constraints

2 y satisfies all dual constraints

3 P ≤ 2D ≤ 2D∗ ≤ 2 · opt
P :=

∑
v∈V xv: value of x

D :=
∑

e∈E ye: value of y

D∗ : dual LP value



5/18

Primal-Dual Algorithm for Weighted Vertex Cover Problem

1: x← 0, y ← 0, all edges said to be uncovered
2: while there exists at least one uncovered edge do
3: take such an edge e arbitrarily
4: increasing ye until the dual constraint for one end-vertex v

of e becomes tight
5: xv ← 1, claim all edges incident to v are covered

6: return x

1

3

3

2

2 4

1

2

1
1

Lemma

1 x satisfies all primal constraints

2 y satisfies all dual constraints

3 P ≤ 2D ≤ 2D∗ ≤ 2 · opt
P :=

∑
v∈V xv: value of x

D :=
∑

e∈E ye: value of y

D∗ : dual LP value



5/18

Primal-Dual Algorithm for Weighted Vertex Cover Problem

1: x← 0, y ← 0, all edges said to be uncovered
2: while there exists at least one uncovered edge do
3: take such an edge e arbitrarily
4: increasing ye until the dual constraint for one end-vertex v

of e becomes tight
5: xv ← 1, claim all edges incident to v are covered

6: return x

1

3

3

2

2 4

1

2

1
1

Lemma

1 x satisfies all primal constraints

2 y satisfies all dual constraints

3 P ≤ 2D ≤ 2D∗ ≤ 2 · opt
P :=

∑
v∈V xv: value of x

D :=
∑

e∈E ye: value of y

D∗ : dual LP value



5/18

Primal-Dual Algorithm for Weighted Vertex Cover Problem

1: x← 0, y ← 0, all edges said to be uncovered
2: while there exists at least one uncovered edge do
3: take such an edge e arbitrarily
4: increasing ye until the dual constraint for one end-vertex v

of e becomes tight
5: xv ← 1, claim all edges incident to v are covered

6: return x

1

3

3

2

2 4

1

2

1
1

Lemma

1 x satisfies all primal constraints

2 y satisfies all dual constraints

3 P ≤ 2D ≤ 2D∗ ≤ 2 · opt
P :=

∑
v∈V xv: value of x

D :=
∑

e∈E ye: value of y

D∗ : dual LP value



6/18

Proof of P ≤ 2D.

P =
∑
v∈V

wvxv ≤
∑
v∈V

xv

∑
e∈δ(v)

ye =
∑

(u,v)∈E

y(u,v)(xu + xv)

≤ 2
∑
e∈E

ye = 2D.

a more general framework: construct an arbitrary maximal dual
solution y; choose the vertices whose dual constraints are tight

y is maximal: increasing any coordinate ye makes y infeasible

primal-dual algorithms do not need to solve LPs

LPs are used in analysis only

faster than LP-rounding algorithm in general



6/18

Proof of P ≤ 2D.

P =
∑
v∈V

wvxv ≤
∑
v∈V

xv

∑
e∈δ(v)

ye =
∑

(u,v)∈E

y(u,v)(xu + xv)

≤ 2
∑
e∈E

ye = 2D.

a more general framework: construct an arbitrary maximal dual
solution y; choose the vertices whose dual constraints are tight

y is maximal: increasing any coordinate ye makes y infeasible

primal-dual algorithms do not need to solve LPs

LPs are used in analysis only

faster than LP-rounding algorithm in general



6/18

Proof of P ≤ 2D.

P =
∑
v∈V

wvxv ≤
∑
v∈V

xv

∑
e∈δ(v)

ye =
∑

(u,v)∈E

y(u,v)(xu + xv)

≤ 2
∑
e∈E

ye = 2D.

a more general framework: construct an arbitrary maximal dual
solution y; choose the vertices whose dual constraints are tight

y is maximal: increasing any coordinate ye makes y infeasible

primal-dual algorithms do not need to solve LPs

LPs are used in analysis only

faster than LP-rounding algorithm in general



7/18

Outline

1 2-Approximation Algorithm for Weighted Vertex Cover Using
Primal-Dual

2 3-Approximation Algorithm for Uncapacitated Facility Location
Problem Using Primal Dual



8/18

facilities

clients

Uncapacitated Facility Location Problem

Input: F : pontential facilities C: clients

d: (symmetric) metric over F ∪ C (fi)i∈F : facility
opening costs

Output: S ⊆ F , so as to minimize
∑

i∈S fi +
∑

j∈C d(j, S)

1.488-approximation [Li, 2011]

1.463-hardness of approximation, 1.463 ≈ root of x = 1+2e−x



8/18

facilities

clients

Uncapacitated Facility Location Problem

Input: F : pontential facilities C: clients

d: (symmetric) metric over F ∪ C (fi)i∈F : facility
opening costs

Output: S ⊆ F , so as to minimize
∑

i∈S fi +
∑

j∈C d(j, S)

1.488-approximation [Li, 2011]

1.463-hardness of approximation, 1.463 ≈ root of x = 1+2e−x



8/18

3

24

2

facilities

clients

Uncapacitated Facility Location Problem

Input: F : pontential facilities C: clients

d: (symmetric) metric over F ∪ C (fi)i∈F : facility
opening costs

Output: S ⊆ F , so as to minimize
∑

i∈S fi +
∑

j∈C d(j, S)

1.488-approximation [Li, 2011]

1.463-hardness of approximation, 1.463 ≈ root of x = 1+2e−x



8/18

3

24

2

facilities

clients

Uncapacitated Facility Location Problem

Input: F : pontential facilities C: clients

d: (symmetric) metric over F ∪ C (fi)i∈F : facility
opening costs

Output: S ⊆ F , so as to minimize
∑

i∈S fi +
∑

j∈C d(j, S)

1.488-approximation [Li, 2011]

1.463-hardness of approximation, 1.463 ≈ root of x = 1+2e−x



9/18

yi: open facility i?

xi,j: connect client j to facility i?

Basic LP Relaxation

min
∑
i∈F

fiyi +
∑

i∈F,j∈C

d(i, j)xi,j∑
i∈F

xi,j ≥ 1 ∀j ∈ C

xi,j ≤ yi ∀i ∈ F, j ∈ C

xi,j ≥ 0 ∀i ∈ F, j ∈ C

yi ≥ 0 ∀i ∈ F

Obs. When (yi)i∈F is determined,
(xi,j)i∈F,j∈C can be determined
automatically.

facilities

clients



9/18

yi: open facility i?

xi,j: connect client j to facility i?

Basic LP Relaxation

min
∑
i∈F

fiyi +
∑

i∈F,j∈C

d(i, j)xi,j∑
i∈F

xi,j ≥ 1 ∀j ∈ C

xi,j ≤ yi ∀i ∈ F, j ∈ C

xi,j ≥ 0 ∀i ∈ F, j ∈ C

yi ≥ 0 ∀i ∈ F

Obs. When (yi)i∈F is determined,
(xi,j)i∈F,j∈C can be determined
automatically.

facilities

clients



9/18

yi: open facility i?

xi,j: connect client j to facility i?

Basic LP Relaxation

min
∑
i∈F

fiyi +
∑

i∈F,j∈C

d(i, j)xi,j∑
i∈F

xi,j ≥ 1 ∀j ∈ C

xi,j ≤ yi ∀i ∈ F, j ∈ C

xi,j ≥ 0 ∀i ∈ F, j ∈ C

yi ≥ 0 ∀i ∈ F

Obs. When (yi)i∈F is determined,
(xi,j)i∈F,j∈C can be determined
automatically.

facilities

clients



9/18

yi: open facility i?

xi,j: connect client j to facility i?

Basic LP Relaxation

min
∑
i∈F

fiyi +
∑

i∈F,j∈C

d(i, j)xi,j∑
i∈F

xi,j ≥ 1 ∀j ∈ C

xi,j ≤ yi ∀i ∈ F, j ∈ C

xi,j ≥ 0 ∀i ∈ F, j ∈ C

yi ≥ 0 ∀i ∈ F

Obs. When (yi)i∈F is determined,
(xi,j)i∈F,j∈C can be determined
automatically.

0.1

facilities

clients

0.3

0.3

0.20.6
0.2

0.4



9/18

yi: open facility i?

xi,j: connect client j to facility i?

Basic LP Relaxation

min
∑
i∈F

fiyi +
∑

i∈F,j∈C

d(i, j)xi,j∑
i∈F

xi,j ≥ 1 ∀j ∈ C

xi,j ≤ yi ∀i ∈ F, j ∈ C

xi,j ≥ 0 ∀i ∈ F, j ∈ C

yi ≥ 0 ∀i ∈ F

Obs. When (yi)i∈F is determined,
(xi,j)i∈F,j∈C can be determined
automatically.

0.1

facilities

clients

0.3

0.3

0.20.6
0.2

0.4

0.3

0.6
0.1



10/18

Basic LP Relaxation

min
∑
i∈F

fiyi +
∑

i∈F,j∈C

d(i, j)xi,j∑
i∈F

xi,j ≥ 1 ∀j ∈ C

xi,j ≤ yi ∀i ∈ F, j ∈ C

xi,j ≥ 0 ∀i ∈ F, j ∈ C

yi ≥ 0 ∀i ∈ F

LP is not of covering type

harder to understand the
dual

consider an equivalent
covering LP

idea: treat a solution as a
set of stars

facilities

clients



10/18

Basic LP Relaxation

min
∑
i∈F

fiyi +
∑

i∈F,j∈C

d(i, j)xi,j∑
i∈F

xi,j ≥ 1 ∀j ∈ C

xi,j ≤ yi ∀i ∈ F, j ∈ C

xi,j ≥ 0 ∀i ∈ F, j ∈ C

yi ≥ 0 ∀i ∈ F

LP is not of covering type

harder to understand the
dual

consider an equivalent
covering LP

idea: treat a solution as a
set of stars

facilities

clients



10/18

Basic LP Relaxation

min
∑
i∈F

fiyi +
∑

i∈F,j∈C

d(i, j)xi,j∑
i∈F

xi,j ≥ 1 ∀j ∈ C

xi,j ≤ yi ∀i ∈ F, j ∈ C

xi,j ≥ 0 ∀i ∈ F, j ∈ C

yi ≥ 0 ∀i ∈ F

LP is not of covering type

harder to understand the
dual

consider an equivalent
covering LP

idea: treat a solution as a
set of stars

facilities

clients



11/18

(i, J), i ∈ F, J ⊆ C: star with center i and leaves J

cost(i, J) := fi +
∑

j∈J d(i, j): cost of star (i, J)

xi,J ∈ {0, 1}: if star (i, J) is chosen

Equivalent LP

min
∑
(i,J)

cost(i, J) · xi,J∑
(i,J):j∈J

xi,J ≥ 1 ∀j ∈ C

xi,J ≥ 0 ∀(i, J)

Dual LP

max
∑
j∈C

αj∑
j∈J

αj ≤ cost(j, J) ∀(i, J)

αj ≥ 0 ∀j ∈ C

both LPs have exponential size, but the final algorithm can run
in polynomial time



11/18

(i, J), i ∈ F, J ⊆ C: star with center i and leaves J

cost(i, J) := fi +
∑

j∈J d(i, j): cost of star (i, J)

xi,J ∈ {0, 1}: if star (i, J) is chosen

Equivalent LP

min
∑
(i,J)

cost(i, J) · xi,J∑
(i,J):j∈J

xi,J ≥ 1 ∀j ∈ C

xi,J ≥ 0 ∀(i, J)

Dual LP

max
∑
j∈C

αj∑
j∈J

αj ≤ cost(j, J) ∀(i, J)

αj ≥ 0 ∀j ∈ C

both LPs have exponential size, but the final algorithm can run
in polynomial time



11/18

(i, J), i ∈ F, J ⊆ C: star with center i and leaves J

cost(i, J) := fi +
∑

j∈J d(i, j): cost of star (i, J)

xi,J ∈ {0, 1}: if star (i, J) is chosen

Equivalent LP

min
∑
(i,J)

cost(i, J) · xi,J∑
(i,J):j∈J

xi,J ≥ 1 ∀j ∈ C

xi,J ≥ 0 ∀(i, J)

Dual LP

max
∑
j∈C

αj∑
j∈J

αj ≤ cost(j, J) ∀(i, J)

αj ≥ 0 ∀j ∈ C

both LPs have exponential size, but the final algorithm can run
in polynomial time



11/18

(i, J), i ∈ F, J ⊆ C: star with center i and leaves J

cost(i, J) := fi +
∑

j∈J d(i, j): cost of star (i, J)

xi,J ∈ {0, 1}: if star (i, J) is chosen

Equivalent LP

min
∑
(i,J)

cost(i, J) · xi,J∑
(i,J):j∈J

xi,J ≥ 1 ∀j ∈ C

xi,J ≥ 0 ∀(i, J)

Dual LP

max
∑
j∈C

αj∑
j∈J

αj ≤ cost(j, J) ∀(i, J)

αj ≥ 0 ∀j ∈ C

both LPs have exponential size, but the final algorithm can run
in polynomial time



11/18

(i, J), i ∈ F, J ⊆ C: star with center i and leaves J

cost(i, J) := fi +
∑

j∈J d(i, j): cost of star (i, J)

xi,J ∈ {0, 1}: if star (i, J) is chosen

Equivalent LP

min
∑
(i,J)

cost(i, J) · xi,J∑
(i,J):j∈J

xi,J ≥ 1 ∀j ∈ C

xi,J ≥ 0 ∀(i, J)

Dual LP

max
∑
j∈C

αj∑
j∈J

αj ≤ cost(j, J) ∀(i, J)

αj ≥ 0 ∀j ∈ C

both LPs have exponential size, but the final algorithm can run
in polynomial time



11/18

(i, J), i ∈ F, J ⊆ C: star with center i and leaves J

cost(i, J) := fi +
∑

j∈J d(i, j): cost of star (i, J)

xi,J ∈ {0, 1}: if star (i, J) is chosen

Equivalent LP

min
∑
(i,J)

cost(i, J) · xi,J∑
(i,J):j∈J

xi,J ≥ 1 ∀j ∈ C

xi,J ≥ 0 ∀(i, J)

Dual LP

max
∑
j∈C

αj∑
j∈J

αj ≤ cost(j, J) ∀(i, J)

αj ≥ 0 ∀j ∈ C

both LPs have exponential size, but the final algorithm can run
in polynomial time



12/18

min
∑
(i,J)

cost(i, J) · xi,J∑
(i,J):j∈J

xi,J ≥ 1 ∀j ∈ C

xi,J ≥ 0 ∀(i, J)

max
∑
j∈C

αj∑
j∈J

αj ≤ cost(j, J) ∀(i, J)

αj ≥ 0 ∀j ∈ C

αj: budget of j

dual constraints: total budget in any star is ≤ its cost

=⇒ opt ≥ total budget = dual value



12/18

min
∑
(i,J)

cost(i, J) · xi,J∑
(i,J):j∈J

xi,J ≥ 1 ∀j ∈ C

xi,J ≥ 0 ∀(i, J)

max
∑
j∈C

αj∑
j∈J

αj ≤ cost(j, J) ∀(i, J)

αj ≥ 0 ∀j ∈ C

αj: budget of j

dual constraints: total budget in any star is ≤ its cost

=⇒ opt ≥ total budget = dual value



13/18

0.9

0.5

0.3
0.3

i

facilities

clients

0.9



13/18

0.9

0.5

0.3
0.3

i

facilities

clients

0.9

i
0.3

i

0.2

i

0.4



14/18

Construction of Dual Solution α

αj’s can only increase

α is always feasible

if a dual constraint
becomes tight, freeze
all clients in star

unfrozen clients are
called active clients

facilities
clients

Construction of Dual Solution α

1: αj ← 0,∀j ∈ C
2: while exists at least one active client do
3: increase the budgets αj for all active clients j at uniform

rate, until (at least) one new client is frozen



14/18

Construction of Dual Solution α

αj’s can only increase

α is always feasible

if a dual constraint
becomes tight, freeze
all clients in star

unfrozen clients are
called active clients

facilities
clients

Construction of Dual Solution α

1: αj ← 0,∀j ∈ C
2: while exists at least one active client do
3: increase the budgets αj for all active clients j at uniform

rate, until (at least) one new client is frozen



14/18

Construction of Dual Solution α

αj’s can only increase

α is always feasible

if a dual constraint
becomes tight, freeze
all clients in star

unfrozen clients are
called active clients

facilities
clients

Construction of Dual Solution α

1: αj ← 0,∀j ∈ C
2: while exists at least one active client do
3: increase the budgets αj for all active clients j at uniform

rate, until (at least) one new client is frozen



14/18

Construction of Dual Solution α

αj’s can only increase

α is always feasible

if a dual constraint
becomes tight, freeze
all clients in star

unfrozen clients are
called active clients

facilities
clients

Construction of Dual Solution α

1: αj ← 0,∀j ∈ C
2: while exists at least one active client do
3: increase the budgets αj for all active clients j at uniform

rate, until (at least) one new client is frozen



14/18

Construction of Dual Solution α

αj’s can only increase

α is always feasible

if a dual constraint
becomes tight, freeze
all clients in star

unfrozen clients are
called active clients

8

4

3
3

2

5

5

5

5

5

5

5

5

facilities
clients

Construction of Dual Solution α

1: αj ← 0,∀j ∈ C
2: while exists at least one active client do
3: increase the budgets αj for all active clients j at uniform

rate, until (at least) one new client is frozen



14/18

Construction of Dual Solution α

αj’s can only increase

α is always feasible

if a dual constraint
becomes tight, freeze
all clients in star

unfrozen clients are
called active clients

8

9

4

3
3

2

5

5

5

5

2

3
3

6

6

6

6

facilities
clients

Construction of Dual Solution α

1: αj ← 0,∀j ∈ C
2: while exists at least one active client do
3: increase the budgets αj for all active clients j at uniform

rate, until (at least) one new client is frozen



14/18

Construction of Dual Solution α

αj’s can only increase

α is always feasible

if a dual constraint
becomes tight, freeze
all clients in star

unfrozen clients are
called active clients

8

9

4

3
3

2

5

5

5

5

2

3
3

8

8

6

6

8

facilities
clients

Construction of Dual Solution α

1: αj ← 0,∀j ∈ C
2: while exists at least one active client do
3: increase the budgets αj for all active clients j at uniform

rate, until (at least) one new client is frozen



14/18

Construction of Dual Solution α

αj’s can only increase

α is always feasible

if a dual constraint
becomes tight, freeze
all clients in star

unfrozen clients are
called active clients

8

9 8

4

3
3

2

5

5

5

5

2

3
3

8

8

6

6
5

5 7

11

facilities
clients

Construction of Dual Solution α

1: αj ← 0,∀j ∈ C
2: while exists at least one active client do
3: increase the budgets αj for all active clients j at uniform

rate, until (at least) one new client is frozen



15/18

Construction of Dual Solution α

: tight facilities; they
are temporarily open

□: pemanently closed

ti: time when facility i
becomes tight

construct a bipartite
graph: (i, j) exists
⇐⇒ αj > d(i, j),

8

9 8

4

3
3

2

5

5

5

5

2

3
3

8

8

6

6
5

5 7

11

facilities
clients

αj > d(i, j): j contributes to i, (solid lines)

αj = d(i, j): j does not contribute to i, but its budget is just
enough for it to connect to i (dashed lines)

αj < d(i, j): budget of j is not enough to connect to i



15/18

Construction of Dual Solution α

: tight facilities; they
are temporarily open

□: pemanently closed

ti: time when facility i
becomes tight

construct a bipartite
graph: (i, j) exists
⇐⇒ αj > d(i, j),

8

9 8

4

3
3

2

5

5

5

5

2

3
3

8

8

6

6
5

5 7

11

facilities
clients

αj > d(i, j): j contributes to i, (solid lines)

αj = d(i, j): j does not contribute to i, but its budget is just
enough for it to connect to i (dashed lines)

αj < d(i, j): budget of j is not enough to connect to i



15/18

Construction of Dual Solution α

: tight facilities; they
are temporarily open

□: pemanently closed

ti: time when facility i
becomes tight

construct a bipartite
graph: (i, j) exists
⇐⇒ αj > d(i, j),

8

9 8

4

3
3

2

5

5

5

5

2

3
3

8

8

6

6
5

5 7

11

facilities
clients

αj > d(i, j): j contributes to i, (solid lines)

αj = d(i, j): j does not contribute to i, but its budget is just
enough for it to connect to i (dashed lines)

αj < d(i, j): budget of j is not enough to connect to i



15/18

Construction of Dual Solution α

: tight facilities; they
are temporarily open

□: pemanently closed

ti: time when facility i
becomes tight

construct a bipartite
graph: (i, j) exists
⇐⇒ αj > d(i, j),

8

9 8

4

3
3

2

5

5

5

5

2

3
3

8

8

6

6
5

5 7

11

facilities
clients

αj > d(i, j): j contributes to i, (solid lines)

αj = d(i, j): j does not contribute to i, but its budget is just
enough for it to connect to i (dashed lines)

αj < d(i, j): budget of j is not enough to connect to i



15/18

Construction of Dual Solution α

: tight facilities; they
are temporarily open

□: pemanently closed

ti: time when facility i
becomes tight

construct a bipartite
graph: (i, j) exists
⇐⇒ αj > d(i, j),

8

9 8

4

3
3

2

5

5

5

5

2

3
3

8

8

6

6
5

5 7

11

ti = 5

ti = 6
ti = 11

facilities
clients

αj > d(i, j): j contributes to i, (solid lines)

αj = d(i, j): j does not contribute to i, but its budget is just
enough for it to connect to i (dashed lines)

αj < d(i, j): budget of j is not enough to connect to i



15/18

Construction of Dual Solution α

: tight facilities; they
are temporarily open

□: pemanently closed

ti: time when facility i
becomes tight

construct a bipartite
graph: (i, j) exists
⇐⇒ αj > d(i, j),

8

9 8

4

3
3

2

5

5

5

5

2

3
3

8

8

6

6
5

5 7

11

ti = 5

ti = 6
ti = 11

facilities
clients

αj > d(i, j): j contributes to i, (solid lines)

αj = d(i, j): j does not contribute to i, but its budget is just
enough for it to connect to i (dashed lines)

αj < d(i, j): budget of j is not enough to connect to i



15/18

Construction of Dual Solution α

: tight facilities; they
are temporarily open

□: pemanently closed

ti: time when facility i
becomes tight

construct a bipartite
graph: (i, j) exists
⇐⇒ αj > d(i, j),

8

9 8

4

3
3

2

5

5

5

5

2

3
3

8

8

6

6
5

5 7

11

ti = 5

ti = 6
ti = 11

facilities
clients

αj > d(i, j): j contributes to i, (solid lines)

αj = d(i, j): j does not contribute to i, but its budget is just
enough for it to connect to i (dashed lines)

αj < d(i, j): budget of j is not enough to connect to i



15/18

Construction of Dual Solution α

: tight facilities; they
are temporarily open

□: pemanently closed

ti: time when facility i
becomes tight

construct a bipartite
graph: (i, j) exists
⇐⇒ αj > d(i, j),

8

9 8

4

3
3

2

5

5

5

5

2

3
3

8

8

6

6
5

5 7

11

ti = 5

ti = 6
ti = 11

facilities
clients

αj > d(i, j): j contributes to i, (solid lines)

αj = d(i, j): j does not contribute to i, but its budget is just
enough for it to connect to i (dashed lines)

αj < d(i, j): budget of j is not enough to connect to i



16/18

Construction of Integral Primal Solution

Construction of Integral Primal Solution

1: S ← ∅, all clients are unowned

2: for every temporarily open facility i, in
increasing order of ti do

3: if all (solid-line) neighbors of i are
unowned then

4: S ← S ∪ {i}, open facility i
5: connect to all its neighbors to i
6: let i own them
7: connect unconnected clients to their

nearest facilities in S

ti increasing



16/18

Construction of Integral Primal Solution

Construction of Integral Primal Solution

1: S ← ∅, all clients are unowned
2: for every temporarily open facility i, in

increasing order of ti do

3: if all (solid-line) neighbors of i are
unowned then

4: S ← S ∪ {i}, open facility i
5: connect to all its neighbors to i
6: let i own them
7: connect unconnected clients to their

nearest facilities in S

ti increasing



16/18

Construction of Integral Primal Solution

Construction of Integral Primal Solution

1: S ← ∅, all clients are unowned
2: for every temporarily open facility i, in

increasing order of ti do
3: if all (solid-line) neighbors of i are

unowned then
4: S ← S ∪ {i}, open facility i
5: connect to all its neighbors to i
6: let i own them

7: connect unconnected clients to their
nearest facilities in S

ti increasing



16/18

Construction of Integral Primal Solution

Construction of Integral Primal Solution

1: S ← ∅, all clients are unowned
2: for every temporarily open facility i, in

increasing order of ti do
3: if all (solid-line) neighbors of i are

unowned then
4: S ← S ∪ {i}, open facility i
5: connect to all its neighbors to i
6: let i own them
7: connect unconnected clients to their

nearest facilities in S

ti increasing



16/18

Construction of Integral Primal Solution

Construction of Integral Primal Solution

1: S ← ∅, all clients are unowned
2: for every temporarily open facility i, in

increasing order of ti do
3: if all (solid-line) neighbors of i are

unowned then
4: S ← S ∪ {i}, open facility i
5: connect to all its neighbors to i
6: let i own them
7: connect unconnected clients to their

nearest facilities in S

ti increasing



16/18

Construction of Integral Primal Solution

Construction of Integral Primal Solution

1: S ← ∅, all clients are unowned
2: for every temporarily open facility i, in

increasing order of ti do
3: if all (solid-line) neighbors of i are

unowned then
4: S ← S ∪ {i}, open facility i
5: connect to all its neighbors to i
6: let i own them
7: connect unconnected clients to their

nearest facilities in S

ti increasing



16/18

Construction of Integral Primal Solution

Construction of Integral Primal Solution

1: S ← ∅, all clients are unowned
2: for every temporarily open facility i, in

increasing order of ti do
3: if all (solid-line) neighbors of i are

unowned then
4: S ← S ∪ {i}, open facility i
5: connect to all its neighbors to i
6: let i own them
7: connect unconnected clients to their

nearest facilities in S

ti increasing



16/18

Construction of Integral Primal Solution

Construction of Integral Primal Solution

1: S ← ∅, all clients are unowned
2: for every temporarily open facility i, in

increasing order of ti do
3: if all (solid-line) neighbors of i are

unowned then
4: S ← S ∪ {i}, open facility i
5: connect to all its neighbors to i
6: let i own them
7: connect unconnected clients to their

nearest facilities in S

ti increasing



16/18

Construction of Integral Primal Solution

Construction of Integral Primal Solution

1: S ← ∅, all clients are unowned
2: for every temporarily open facility i, in

increasing order of ti do
3: if all (solid-line) neighbors of i are

unowned then
4: S ← S ∪ {i}, open facility i
5: connect to all its neighbors to i
6: let i own them
7: connect unconnected clients to their

nearest facilities in S

ti increasing

S



17/18

S: set of open facilities

C1: clients that make contributions

C2: clients that do not make
contributions

f : total facillity cost

cj: connection cost of client j

c =
∑

j∈C cj: total connection cost

D =
∑

j∈C αj: value of α

Lemma

f +
∑

j∈C1
cj ≤

∑
j∈C1

αj

for any client j ∈ C2, we have cj ≤ 3αj

ti increasing

S



17/18

S: set of open facilities

C1: clients that make contributions

C2: clients that do not make
contributions

f : total facillity cost

cj: connection cost of client j

c =
∑

j∈C cj: total connection cost

D =
∑

j∈C αj: value of α

Lemma

f +
∑

j∈C1
cj ≤

∑
j∈C1

αj

for any client j ∈ C2, we have cj ≤ 3αj

ti increasing

C1

C2

S



17/18

S: set of open facilities

C1: clients that make contributions

C2: clients that do not make
contributions

f : total facillity cost

cj: connection cost of client j

c =
∑

j∈C cj: total connection cost

D =
∑

j∈C αj: value of α

Lemma

f +
∑

j∈C1
cj ≤

∑
j∈C1

αj

for any client j ∈ C2, we have cj ≤ 3αj

ti increasing

C1

C2

S



17/18

S: set of open facilities

C1: clients that make contributions

C2: clients that do not make
contributions

f : total facillity cost

cj: connection cost of client j

c =
∑

j∈C cj: total connection cost

D =
∑

j∈C αj: value of α

Lemma

f +
∑

j∈C1
cj ≤

∑
j∈C1

αj

for any client j ∈ C2, we have cj ≤ 3αj

ti increasing

C1

C2

S



17/18

S: set of open facilities

C1: clients that make contributions

C2: clients that do not make
contributions

f : total facillity cost

cj: connection cost of client j

c =
∑

j∈C cj: total connection cost

D =
∑

j∈C αj: value of α

Lemma

f +
∑

j∈C1
cj ≤

∑
j∈C1

αj

for any client j ∈ C2, we have cj ≤ 3αj

ti increasing

C1

C2

S



18/18

Lemma

f +
∑

j∈C1
cj ≤

∑
j∈C1

αj

for any client j ∈ C2, we have cj ≤ 3αj

So, f + c = f +
∑
j∈C

cj ≤ 3
∑
j∈C

αj = 3D ≤ 3 · opt.

stronger statement:

3f + c = 3f +
∑
j∈C

cj ≤ 3
∑
j∈C

αj = 3D ≤ 3 · opt.



18/18

Lemma

f +
∑

j∈C1
cj ≤

∑
j∈C1

αj

for any client j ∈ C2, we have cj ≤ 3αj

So, f + c = f +
∑
j∈C

cj ≤ 3
∑
j∈C

αj = 3D ≤ 3 · opt.

stronger statement:

3f + c = 3f +
∑
j∈C

cj ≤ 3
∑
j∈C

αj = 3D ≤ 3 · opt.



18/18

Lemma

f +
∑

j∈C1
cj ≤

∑
j∈C1

αj

for any client j ∈ C2, we have cj ≤ 3αj

So, f + c = f +
∑
j∈C

cj ≤ 3
∑
j∈C

αj = 3D ≤ 3 · opt.

stronger statement:

3f + c = 3f +
∑
j∈C

cj ≤ 3
∑
j∈C

αj = 3D ≤ 3 · opt.



19/18

Proof of ∀j ∈ C2, cj ≤ 3αj

at time αj, j is frozen.

let i be the temporarily open facility
it connects to

i ∈ S: then cj ≤ αj. assume i /∈ S.

there exists a client j′, which made
contribution to i, and owned by
another facility i′ ∈ S

d(j, i) ≤ αj

d(j′, i) < αj′ , d(j
′, i′) < αj′

αj′ = t′i ≤ ti ≤ αj

d(j, i′) ≤ d(j, i)+d(i, j′)+d(j′, i′) ≤
αj + αj + αj = 3αj

ti increasing

C1

C2

ji
j′

i′

S



19/18

Proof of ∀j ∈ C2, cj ≤ 3αj

at time αj, j is frozen.

let i be the temporarily open facility
it connects to

i ∈ S: then cj ≤ αj. assume i /∈ S.

there exists a client j′, which made
contribution to i, and owned by
another facility i′ ∈ S

d(j, i) ≤ αj

d(j′, i) < αj′ , d(j
′, i′) < αj′

αj′ = t′i ≤ ti ≤ αj

d(j, i′) ≤ d(j, i)+d(i, j′)+d(j′, i′) ≤
αj + αj + αj = 3αj

ti increasing

C1

C2

ji
j′

i′

S



19/18

Proof of ∀j ∈ C2, cj ≤ 3αj

at time αj, j is frozen.

let i be the temporarily open facility
it connects to

i ∈ S: then cj ≤ αj. assume i /∈ S.

there exists a client j′, which made
contribution to i, and owned by
another facility i′ ∈ S

d(j, i) ≤ αj

d(j′, i) < αj′ , d(j
′, i′) < αj′

αj′ = t′i ≤ ti ≤ αj

d(j, i′) ≤ d(j, i)+d(i, j′)+d(j′, i′) ≤
αj + αj + αj = 3αj

ti increasing

C1

C2

ji
j′

i′

S



19/18

Proof of ∀j ∈ C2, cj ≤ 3αj

at time αj, j is frozen.

let i be the temporarily open facility
it connects to

i ∈ S: then cj ≤ αj. assume i /∈ S.

there exists a client j′, which made
contribution to i, and owned by
another facility i′ ∈ S

d(j, i) ≤ αj

d(j′, i) < αj′ , d(j
′, i′) < αj′

αj′ = t′i ≤ ti ≤ αj

d(j, i′) ≤ d(j, i)+d(i, j′)+d(j′, i′) ≤
αj + αj + αj = 3αj

ti increasing

C1

C2

ji
j′

i′

S



19/18

Proof of ∀j ∈ C2, cj ≤ 3αj

at time αj, j is frozen.

let i be the temporarily open facility
it connects to

i ∈ S: then cj ≤ αj. assume i /∈ S.

there exists a client j′, which made
contribution to i, and owned by
another facility i′ ∈ S

d(j, i) ≤ αj

d(j′, i) < αj′ , d(j
′, i′) < αj′

αj′ = t′i ≤ ti ≤ αj

d(j, i′) ≤ d(j, i)+d(i, j′)+d(j′, i′) ≤
αj + αj + αj = 3αj

ti increasing

C1

C2

ji
j′

i′

S



19/18

Proof of ∀j ∈ C2, cj ≤ 3αj

at time αj, j is frozen.

let i be the temporarily open facility
it connects to

i ∈ S: then cj ≤ αj. assume i /∈ S.

there exists a client j′, which made
contribution to i, and owned by
another facility i′ ∈ S

d(j, i) ≤ αj

d(j′, i) < αj′ , d(j
′, i′) < αj′

αj′ = t′i ≤ ti ≤ αj

d(j, i′) ≤ d(j, i)+d(i, j′)+d(j′, i′) ≤
αj + αj + αj = 3αj

ti increasing

C1

C2

ji
j′

i′

S



19/18

Proof of ∀j ∈ C2, cj ≤ 3αj

at time αj, j is frozen.

let i be the temporarily open facility
it connects to

i ∈ S: then cj ≤ αj. assume i /∈ S.

there exists a client j′, which made
contribution to i, and owned by
another facility i′ ∈ S

d(j, i) ≤ αj

d(j′, i) < αj′ , d(j
′, i′) < αj′

αj′ = t′i ≤ ti ≤ αj

d(j, i′) ≤ d(j, i)+d(i, j′)+d(j′, i′) ≤
αj + αj + αj = 3αj

ti increasing

C1

C2

ji
j′

i′

S



19/18

Proof of ∀j ∈ C2, cj ≤ 3αj

at time αj, j is frozen.

let i be the temporarily open facility
it connects to

i ∈ S: then cj ≤ αj. assume i /∈ S.

there exists a client j′, which made
contribution to i, and owned by
another facility i′ ∈ S

d(j, i) ≤ αj

d(j′, i) < αj′ , d(j
′, i′) < αj′

αj′ = t′i ≤ ti ≤ αj

d(j, i′) ≤ d(j, i)+d(i, j′)+d(j′, i′) ≤
αj + αj + αj = 3αj

ti increasing

C1

C2

ji
j′

i′

S



19/18

Proof of ∀j ∈ C2, cj ≤ 3αj

at time αj, j is frozen.

let i be the temporarily open facility
it connects to

i ∈ S: then cj ≤ αj. assume i /∈ S.

there exists a client j′, which made
contribution to i, and owned by
another facility i′ ∈ S

d(j, i) ≤ αj

d(j′, i) < αj′ , d(j
′, i′) < αj′

αj′ = t′i ≤ ti ≤ αj

d(j, i′) ≤ d(j, i)+d(i, j′)+d(j′, i′) ≤
αj + αj + αj = 3αj

ti increasing

C1

C2

ji
j′

i′

S


	2-Approximation Algorithm for Weighted Vertex Cover Using Primal-Dual
	3-Approximation Algorithm for Uncapacitated Facility Location Problem Using Primal Dual

