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Maximum Cut Problem
Input: G = (V, E),

Output: a partition (S CV,T:=V \ S) of V so as to
maximize |E(S,T)],

where E(S,T) = {w € E: [{u,v} N S| =1}

4

@ Min-Uncut: remove minimum
number of edges to make
graph bipartite



@ Max-Cut = Min-Uncut for exact algorithms, but not the same
for approximation algorithms

@ Recap: 1/2-approximation algorithms for Max-Cut:

Randomized Algorithm | Greedy Algorithms
1. S« 0 1: S 0,7« 0
2: for every u € V do 2: for every u € V do
3: with probability 3: if |[E(u,S)| > |E(u,T)| then
1/2, add u to S 4: T+ TU{u}
4: return (S,V'\ S) 5 else
6: S+ SU{u}
7: return (S, 7))

@ Local Search: while we can improve the solution by switching
the side of one vertex, perform the operation, stop if no
swapping can improve the solution



Linear Programming Relaxation

First Attempt @ Ty < |Yu — Yol is not linear
ey, veV:ifvesS e feasible region is not convex:
@ Xy, uv € E: if uv is cut Yu | Yo | Tuww | Y/N
1 0 |05 Y
max Z Tors 0 1 105 Y
weE 05105105 N
Ty = ’yu — yU’ Yuv € E o Xy =~ |yu - yy| can be
> —
yo € [0,1] Vo eV replaced by =y, > yu — Y

and T, > Yy — Yu




Second Attempt

@ I,,,Uuv € (‘2/) whether wv is cut

min E T

u,veV,u<v
Tuw + Tow + Toyw < 2 Vu,v,w eV
Ty € [0,1] Yu,v €V

v

@ The integrality gap of the LP is 2 — €: there is an instance,
where opt ~ |E|/2 and Ip = |E]|



Quadratic Program Semi-Definite Program

{1 foes oy, cR"VveV
Yo = .
-1 ifvegs 1
1 max 5 EE:E(l - <yuayv>>
max 5 ZEE(l - yuyv) |yv| =1 YoeV
Yy, € {£1} Y eV

® (YurYo) = YaYv = > Yusi - Yo inner product of y, and y,
=1
@ requiring v, € R™ is the same as requiring vy, € R™ for any
n'>n



SDP for Max-Cut y

max 2 37 (1= ()

uwek

lyy| =1 Yo eV

unit sphere

@ SDP is a relaxation:

C[(1.0,0,0,---,0)  fves
77 (21,0,0,0,---,0) ifueT

@ sdp: the value of the SDP, sdp > opt

Q: Can we solve the SDP? | A: Yes

Yo
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Def. A symmetric matrix X € R"*" is Positive Semi-Definite
(PSD) if Yy € R", we have yT Xy > 0. Use X = 0 to denote X
is PSD.

@ X = X'means X — X' = 0.

Lemma The following statements are equivalent for a symmetric
matrix X € R™":

e X >0
o All the n eigenvalues of X are non-negative
@ X =VTV for some V € R™" m <n

o X =>"_ Aw,w, for some reals i, Ag, -+, A, >0 and
orthnormal basis {wy }uen]



Semi-definite Programming (SDP)

@ matrices of size n x n = flattened vectors of length n?:

e Use - as multiplication for flattened matrices,
e X > 0: view X as a matrix.

o AeR™" pheR™ ceRY
@ Assume Ay's and ¢ are symmetric matrices of size n X n

Semi-Definite Program | An equivalent formulation
min  ¢' - X min Z Cuw " {Yus Yo)
A.X > b u,vE[n]
X =0 > k(Y o) = b Vk € [m)]

Yy, € R® Yo € [n]

@ requiring 4, € R" is the same as requiring y, € R" for any
n' >n



Semi-Definite Program

min ¢’ - X

A-X>D
X =0

Example

min 5y1 + 6y2 + 7y3
Y1+ 3y2 +4yz > 5

2y1 + 3y2 +y3 > 10
3y1 + 2y +2y3 > 7

<yl y2> =0
Y2 Y3

o X = 0= X,, =X, Yu,v € [n];(yy") - X >0,Vy € R".
@ SDP = LP with infinite number of linear constraints



Seperation Oracle O

@ Given a symmetric X € R™"*", we need to either claim X > 0,
or return a y € R” such that y* Xy < 0.

@ QR decomposition finds eigenvalues and eigenvectors of X.

Recall: Ellipsoid Method

@ maintain an ellipsoid that contains
the feasible region

@ query O if the center of ellipsid is in
the feasible region:

e yes: then the feasible region is not
empty

e no: cut the elliposid in half, find P
smaller ellipsoid to enclose the
half-ellipsoid, and repeat
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direction r

SDP for Max-Cut Yu
1 Z 1
max 5 ( - <yu7yv>)
uveFE
ly| =1 YoeV

unit sphere

Yo
@ let (y,)yev be the vectors obtained from solving SDP

@ sdp = %ZquE(l - ygyv) > opt
[Goemans-Williamson'95] Rounding Algorithm
1: randomly choose a direction r € R™:
@ choose each r, ~ N(0,1) i.i.d
N(0,1): standard normal distribution
20 Gy =sgn((yy, 7)), S={veV:g, >0} return (S,V \ 5)

b




radian angle between y, and y,  arccos(yu, Yu)

Prluv is cut] =
m 7r
Prluv is cut] %a CCOS<yu7 Yo)
%a ccos(x)

s(1—a)
T = <yu>yv> S [_17 1]

-1.0 =05 05 10

o acw = infyep 1y 2 - 25 > 0.878




]E S T Z Pr uv is cut > acw Z — (Yus Yo))

weE uveE
= agw - sdp > agw - opt > 0.878 - opt.

@ Assuming Unique Game Conjecture (UGC), no
polynomial-time algorithm can give an approximation ratio of
agw + € for any constant € > 0.
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Duality for Semi-Definite Programming

Semi-Definite Program

min ¢’ - X

A-X>b
X =0

Semi-Definite Program

min ¢’

Z ak,u,vXu,v Z b

u,vE[n]

> rureXuw >0

w,vE[n]

- X

Vk € [m)]

Vr e R"

@ replace X > 0 with infinite number of linear constraints:

(rtr)- X >0,Vr € R™,

@ no symmetry constraint as Ax's and ¢ are symmetric




Duality for Semi-Definite Programming

Semi-Definite Program Semi-Definite Program
min ¢! - X min ¢! - X
A-X>b > apunXuw=b V€ m)
X>0 w,v€E[n]
’ Z Tulv Xy > 0 Vr e R"
w,vE[n]
Dual : max > oy b -y
Zakuv Yk + Z Tulv * Zr = Cuy Yu,v € [n]
reR™
yr > 0 Vk € [m]

zr >0 Vr e R"




Duality for Semi-Definite Programming

Dual : max > ey b -k
Z Ak uw - Yk + Z TuTy © Zr = Cyp VU v e {TI}
k=1 reR”
z. >0 vr € R"

e R™ is infinite. So the notion ) .. is bad. Informal.

o first red constraint < ATy + > p.z -1t =c

® > cgnz-rrtis PSD

@ moreover, any PSD matrix can be written is of this form

@ — red constraints can be replaced by ATy < ¢



min ¢! - X

A-X>0
X =0

@ Linear Program: X >0
@ In Dual of LP: ATy < ¢
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Focus on R":

@ axis-aligned ellipsoid centered at ¢ with axis lengths
O..:=acR: {3: R Y, g < 1}

1€[n]
@ axis-aligned half-ellipsoid:
Reaw = {x € Qua:w'(z—c)> 0}, w e R"

Lemma For any axis-aligned axis-aligned half-ellipsoid R 4., we
can efficiently find an axis-aligned ellipsoid Q. . such that

o Rc,a,w C Qc’,a’

vol(Q.r 41) 7+ . 1
ooy S<e T =1-0 (%)
Proof.
@ we can assume ¢ =0,a =1 and w = (1,0,0,0,--- ,0)T.

@ half-ellipsoid becomes half ball: {z € R" : |z|, < 1,27 > 0}




Proof.

@ center of new ellipsoid : (c,0,--- ,0),
ce[0,1]

@ axis lengths: (a,b,b,--- ,b),a <b

o the ellipsoid: &9 S~ : b_ <1

o (1,0,0,---,0) in ellipsoid: =2 <1

@ (0,1,0,---,0) in ellipsoid: < a—Q + b—2 <1

@ set a,b and c so that both constraints are

. —c)? —c
tight:t a=1-c,b= (1(—10)2)—62 - \/11—20

Proof.

@ we won't prove that the ellipsoid contains all points in half ball.

@ volume of ellipsoid is minimized when ¢ =

—n_ p—__n/(ntl)
¢ a n+1’b (n—1)/(n+1)



_n_ n/(n+1)
® 4= = v

vol(ellipsoid)

_ abn—l n " n+ 1 ”771
vol(unit ball) n+1 n—1
1

_ n? "z
C\n2-1 n+1

. vol(ellipsoid) _ n —1 " n? o
vol(unit ball) 2 n? —1 A
> n—1 . 1 B 1 _ 1
- 2 n2-1 n+1 2(n+1)

@ we used In(1+z) < z,Vo > —1
vol(ellipsoid) 1
vol(unit ball) —

e 2(n+l)




Lemma For any axis-aligned axis-aligned half-ellipsoid R 4., we
can efficiently find an axis-aligned ellipsoid Q. ./ such that

° Rc,a,w g Qc’,a’

voI(chya/) —+ . 1
0 vol(Qc.a) S e 2D =10 (ﬁ)

Assumption
@ The initial polytope is contained in a ball of radius R, where
R< 2p0|y(input size).

@ When the polytope is not empty, it contains a ball of radius at
least 7, where 7 > 1/2polv(input size)

@ The first assumption is easy to guarantee; the second
assumption needs some twisting.

@ we can stop the ellipsoid algorithm when volume is less than
the volume of a ball of radius r



e R< 2p0|y(input size)’ r> 1/2po|y(input size)
@ number of iterations for ellipsoid method is at most
R\" In(R R
In 1 = :n.Mzo(n2).1n_
e2nFD \ 7 1/(2(n+1)) r
< O(n?) - poly(input size)
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