
Advanced Algorithms (Fall 2024)

Semi-Definite Programming

Lecturers: 尹一通，栗师，刘景铖

Nanjing University

2/28

Outline

1 Max-Cut Problem

2 Semi-Definite Programming

3 0.878-Approximation for Max-Cut Using SDP

4 Duality for Semi-Definite Programming

5 Ellipsoid Method runs In Polynomial Time

3/28

Maximum Cut Problem

Input: G = (V,E),

Output: a partition (S ⊆ V, T := V \ S) of V so as to
maximize |E(S, T)|,
where E(S, T) = {uv ∈ E : |{u, v} ∩ S| = 1}

S

T

Min-Uncut: remove minimum
number of edges to make
graph bipartite

4/28

Max-Cut = Min-Uncut for exact algorithms, but not the same
for approximation algorithms

Recap: 1/2-approximation algorithms for Max-Cut:

Randomized Algorithm

1: S ← ∅
2: for every u ∈ V do
3: with probability

1/2, add u to S

4: return (S, V \ S)

Greedy Algorithms

1: S ← ∅, T ← ∅
2: for every u ∈ V do
3: if |E(u, S)| > |E(u, T)| then
4: T ← T ∪ {u}
5: else
6: S ← S ∪ {u}
7: return (S, T)

Local Search: while we can improve the solution by switching
the side of one vertex, perform the operation, stop if no
swapping can improve the solution

5/28

Linear Programming Relaxation

First Attempt

yv, v ∈ V : if v ∈ S

xuv, uv ∈ E: if uv is cut

max
∑
uv∈E

xuv

xuv ≤ |yu − yv| ∀uv ∈ E

yv ∈ [0, 1] ∀v ∈ V

xuv ≤ |yu − yv| is not linear
feasible region is not convex:

yu yv xuv Y/N
1 0 0.5 Y
0 1 0.5 Y
0.5 0.5 0.5 N

xuv ≥ |yu − yv| can be
replaced by xuv ≥ yu − yv
and xuv ≥ yv − yu

6/28

Second Attempt

xuv, uv ∈
(
V
2

)
: whether uv is cut

min
∑

u,v∈V,u<v

xuv

xuv + xvw + xuw ≤ 2 ∀u, v, w ∈ V

xuv ∈ [0, 1] ∀u, v ∈ V

The integrality gap of the LP is 2− ϵ: there is an instance,
where opt ≈ |E|/2 and lp ≈ |E|

7/28

Quadratic Program

yv =

{
1 if v ∈ S

−1 if v /∈ S

max
1

2

∑
uv∈E

(1− yuyv)

yv ∈ {±1} ∀v ∈ V

Semi-Definite Program

yv ∈ Rn,∀v ∈ V

max
1

2

∑
uv∈E

(1− ⟨yu, yv⟩)

|yv| = 1 ∀v ∈ V

⟨yu, yv⟩ = yTu yv =
n∑

i=1

yu,i · yv,i: inner product of yu and yv

requiring yv ∈ Rn is the same as requiring yv ∈ Rn′
for any

n′ ≥ n

8/28

SDP for Max-Cut

max
1

2

∑
uv∈E

(1− ⟨yu, yv⟩)

|yv| = 1 ∀v ∈ V

yu

yv

unit sphere

SDP is a relaxation:

yv =

{
(1, 0, 0, 0, · · · , 0) if v ∈ S

(−1, 0, 0, 0, · · · , 0) if v ∈ T

sdp: the value of the SDP, sdp ≥ opt

Q: Can we solve the SDP? A: Yes

9/28

Outline

1 Max-Cut Problem

2 Semi-Definite Programming

3 0.878-Approximation for Max-Cut Using SDP

4 Duality for Semi-Definite Programming

5 Ellipsoid Method runs In Polynomial Time

10/28

Def. A symmetric matrix X ∈ Rn×n is Positive Semi-Definite
(PSD) if ∀y ∈ Rn, we have yTXy ≥ 0. Use X ⪰ 0 to denote X
is PSD.

X ⪰ X ′ means X −X ′ ⪰ 0.

Lemma The following statements are equivalent for a symmetric
matrix X ∈ Rn×n:

X ⪰ 0

All the n eigenvalues of X are non-negative

X = V TV for some V ∈ Rm×n,m ≤ n

X =
∑n

u=1 λuwuw
T
u for some reals λ1, λ2, · · · , λn ≥ 0 and

orthnormal basis {wu}u∈[n]

11/28

Semi-definite Programming (SDP)

matrices of size n× n ≡ flattened vectors of length n2:
Use · as multiplication for flattened matrices,
X ⪰ 0: view X as a matrix.

A ∈ Rm×n2
, b ∈ Rm, c ∈ Rn2

Assume Ak’s and c are symmetric matrices of size n× n

Semi-Definite Program

min cT ·X

A ·X ≥ b

X ⪰ 0

An equivalent formulation

min
∑

u,v∈[n]

cu,v · ⟨yu, yv⟩

∑
u,v

ak,u,v⟨yu, yv⟩ ≥ bk ∀k ∈ [m]

yv ∈ Rn ∀v ∈ [n]

requiring yv ∈ Rn is the same as requiring yv ∈ Rn′
for any

n′ ≥ n

12/28

Semi-Definite Program

min cT ·X

A ·X ≥ b

X ⪰ 0

Example

min 5y1 + 6y2 + 7y3

y1 + 3y2 + 4y3 ≥ 5

2y1 + 3y2 + y3 ≥ 10

3y1 + 2y2 + 2y3 ≥ 7(
y1 y2
y2 y3

)
⪰ 0

X ⪰ 0⇐⇒ Xu,v = Xv,u, ∀u, v ∈ [n]; (yyT) ·X ≥ 0,∀y ∈ Rn.

SDP ≡ LP with infinite number of linear constraints

13/28

Seperation Oracle O
Given a symmetric X ∈ Rn×n, we need to either claim X ⪰ 0,
or return a y ∈ Rn such that yTXy < 0.

QR decomposition finds eigenvalues and eigenvectors of X.

Recall: Ellipsoid Method

maintain an ellipsoid that contains
the feasible region

query O if the center of ellipsid is in
the feasible region:

yes: then the feasible region is not
empty
no: cut the elliposid in half, find
smaller ellipsoid to enclose the
half-ellipsoid, and repeat

P

14/28

Outline

1 Max-Cut Problem

2 Semi-Definite Programming

3 0.878-Approximation for Max-Cut Using SDP

4 Duality for Semi-Definite Programming

5 Ellipsoid Method runs In Polynomial Time

15/28

SDP for Max-Cut

max
1

2

∑
uv∈E

(1− ⟨yu, yv⟩)

|yv| = 1 ∀v ∈ V

direction r

yu

yv

unit sphere

let (yv)v∈V be the vectors obtained from solving SDP
sdp = 1

2

∑
uv∈E(1− yTu yv) ≥ opt

[Goemans-Williamson’95] Rounding Algorithm

1: randomly choose a direction r ∈ Rn:

choose each ru ∼ N(0, 1) i.i.d
N(0, 1): standard normal distribution

2: ȳv = sgn(⟨yv, r⟩), S = {v ∈ V : ȳv > 0}, return (S, V \ S)

16/28

Pr[uv is cut] =
radian angle between yu and yv

π
=

arccos⟨yu, yv⟩
π

Pr[uv is cut]
1
2
(1− ⟨yu, yv⟩)

=
1
π
arccos⟨yu, yv⟩

1
2
(1− ⟨yu, yv⟩)

=
1
π
arccos(x)
1
2
(1− x)

x := ⟨yu, yv⟩ ∈ [−1, 1]

αGW := infx∈[−1,1]
2
π
· arccos(x)

(1−x)
≥ 0.878

17/28

E[|E(S, T)|] =
∑
uv∈E

Pr[uv is cut] ≥ αGW

∑
uv∈E

1

2
(1− ⟨yu, yv⟩)

= αGW · sdp ≥ αGW · opt ≥ 0.878 · opt.

Assuming Unique Game Conjecture (UGC), no
polynomial-time algorithm can give an approximation ratio of
αGW + ϵ for any constant ϵ > 0.

18/28

Outline

1 Max-Cut Problem

2 Semi-Definite Programming

3 0.878-Approximation for Max-Cut Using SDP

4 Duality for Semi-Definite Programming

5 Ellipsoid Method runs In Polynomial Time

19/28

Duality for Semi-Definite Programming

Semi-Definite Program

min cT ·X

A ·X ≥ b

X ⪰ 0

Semi-Definite Program

min cT ·X∑
u,v∈[n]

ak,u,vXu,v ≥ b ∀k ∈ [m]

∑
u,v∈[n]

rurvXu,v ≥ 0 ∀r ∈ Rn

replace X ⪰ 0 with infinite number of linear constraints:
(rTr) ·X ≥ 0,∀r ∈ Rn.

no symmetry constraint as Ak’s and c are symmetric

20/28

Duality for Semi-Definite Programming

Semi-Definite Program

min cT ·X

A ·X ≥ b

X ⪰ 0

Semi-Definite Program

min cT ·X∑
u,v∈[n]

ak,u,vXu,v ≥ b ∀k ∈ [m]

∑
u,v∈[n]

rurvXu,v ≥ 0 ∀r ∈ Rn

Dual : max
∑m

k=1 bk · yk
m∑
k=1

ak,u,v · yk +
∑
r∈Rn

rurv · zr = cu,v ∀u, v ∈ [n]

yk ≥ 0 ∀k ∈ [m]

zr ≥ 0 ∀r ∈ Rn

21/28

Duality for Semi-Definite Programming

Dual : max
∑m

k=1 bk · yk

m∑
k=1

ak,u,v · yk +
∑
r∈Rn

rurv · zr = cu,v ∀u, v ∈ [n]

yk ≥ 0 ∀k ∈ [m]

zr ≥ 0 ∀r ∈ Rn

Rn is infinite. So the notion
∑

r∈Rn is bad. Informal.

first red constraint ⇔ ATy +
∑

r∈Rn zr · rrT = c∑
r∈Rn zr · rrT is PSD

moreover, any PSD matrix can be written is of this form

=⇒ red constraints can be replaced by ATy ⪯ c

22/28

Duality for Semi-Definite Programming

Semi-Definite Program

min cT ·X

A ·X ≥ b

X ⪰ 0

Dual for SDP

max bTy

ATy ⪯ c

y ≥ 0

Linear Program: X ≥ 0

In Dual of LP: ATy ≤ c

23/28

Outline

1 Max-Cut Problem

2 Semi-Definite Programming

3 0.878-Approximation for Max-Cut Using SDP

4 Duality for Semi-Definite Programming

5 Ellipsoid Method runs In Polynomial Time

24/28

Focus on Rn:

axis-aligned ellipsoid centered at c with axis lengths

Qc,a := a ∈ Rn
>0:

{
x ∈ Rn :

∑
i∈[n]

(xi−ci)
2

a2i
≤ 1

}
axis-aligned half-ellipsoid:
Rc,a,w :=

{
x ∈ Qc,a : w

T(x− c) ≥ 0
}
, w ∈ Rn

Lemma For any axis-aligned axis-aligned half-ellipsoid Rc,a,w, we
can efficiently find an axis-aligned ellipsoid Qc′,a′ such that

Rc,a,w ⊆ Qc′,a′

vol(Qc′,a′)

vol(Qc,a)
≤ e−

1
2(n+1) = 1− Ω

(
1
n

)
Proof.

we can assume c = 0, a = 1 and w = (1, 0, 0, 0, · · · , 0)T.
half-ellipsoid becomes half ball: {x ∈ Rn : |x|2 ≤ 1, x1 ≥ 0}

25/28

Proof.

center of new ellipsoid : (c, 0, · · · , 0),
c ∈ [0, 1]

axis lengths: (a, b, b, · · · , b), a < b

the ellipsoid: (x1−c)2

a2
+
∑n

i=2
x2
i

b2
≤ 1

(1, 0, 0, · · · , 0) in ellipsoid: (1−c)2

a2
≤ 1

(0, 1, 0, · · · , 0) in ellipsoid: c2

a2
+ 1

b2
≤ 1

set a, b and c so that both constraints are

tight: a = 1− c, b =
√

(1−c)2

(1−c)2−c2
= 1−c√

1−2c

b

a
(c, 0)

Proof.

we won’t prove that the ellipsoid contains all points in half ball.

volume of ellipsoid is minimized when c = 1
n+1

a = n
n+1

, b = n/(n+1)√
(n−1)/(n+1)

26/28

Proof.

a = n
n+1

, b = n/(n+1)√
(n−1)/(n+1)

vol(ellipsoid)

vol(unit ball)
= abn−1 =

(
n

n+ 1

)n

·
(
n+ 1

n− 1

)n−1
2

=

(
n2

n2 − 1

)n−1
2

· n

n+ 1

ln
vol(ellipsoid)

vol(unit ball)
=

n− 1

2
ln

n2

n2 − 1
+ ln

n

n+ 1

≤ n− 1

2
· 1

n2 − 1
− 1

n+ 1
= − 1

2(n+ 1)

we used ln(1 + x) ≤ x,∀x > −1
vol(ellipsoid)

vol(unit ball)
≤ e−

1
2(n+1)

27/28

Lemma For any axis-aligned axis-aligned half-ellipsoid Rc,a,w, we
can efficiently find an axis-aligned ellipsoid Qc′,a′ such that

Rc,a,w ⊆ Qc′,a′

vol(Qc′,a′)

vol(Qc,a)
≤ e−

1
2(n+1) = 1− Ω

(
1
n

)
Assumption

The initial polytope is contained in a ball of radius R, where
R ≤ 2poly(input size).

When the polytope is not empty, it contains a ball of radius at
least r, where r ≥ 1/2poly(input size).

The first assumption is easy to guarantee; the second
assumption needs some twisting.

we can stop the ellipsoid algorithm when volume is less than
the volume of a ball of radius r

28/28

R ≤ 2poly(input size), r ≥ 1/2poly(input size)

number of iterations for ellipsoid method is at most

ln
e

1
2(n+1)

(
R

r

)n

= n · ln(R/r)

1/(2(n+ 1))
= O(n2) · ln R

r

≤ O(n2) · poly(input size)

	Max-Cut Problem
	Semi-Definite Programming
	0.878-Approximation for Max-Cut Using SDP
	Duality for Semi-Definite Programming
	Ellipsoid Method runs In Polynomial Time

