Combinatorics

南京大学

Counting (labeled) trees

"How many different trees can be formed from n distinct vertices?"

Cayley's formula:

There are n^{n-2} trees on n distinct vertices.

Arthur Cayley

Prüfer Code

leaf: vertex of degree 1

removing a leaf from T, still a tree

$T_{\mathfrak{F}}$:

 u_i : 2,4,5,6,3,1

 v_i : 4,3,1,3,1,7

$T_1 = T$; for i = 1 to n-1 u_i : smallest leaf in T_i ; (u_i,v_i) : edge in T_i ; T_{i+1} = delete u_i from T_i ;

Prüfer code:

$$(v_1, v_2, \dots, v_{n-2})$$

edges of $T: (u_i,v_i), 1 \le i \le n-1$

$$v_{n-1} = n$$

 u_i : smallest leaf in T_i a tree has ≥ 2 leaves

n is never deleted $u_i \neq n$

T:

 u_i : 2,4,5,6,3,1

 v_i : 4,3,1,3,1,7 $(v_1, v_2, ..., v_{n-2})$

Only need to recover every u_i from $(v_1, v_1, ..., v_{n-2})$.

 u_i is the smallest number not in $\{u_1, \ldots, u_{i-1}\} \cup \{v_i, \ldots, v_{n-1}\}$

u_i is the smallest number not in

$$\{u_1,\ldots,u_{i-1}\}\cup\{v_i,\ldots,v_{n-1}\}$$

 \forall vertex v in T,

occurrences of v in $u_1, u_2, ..., u_{n-1}, v_{n-1}$: 1

occurrences of v in edges (u_i,v_i) , $1 \le i \le n-1$: $\deg_T(v)$

occurrences of v in

Prüfer code: $(v_1, v_2, ..., v_{n-2})$

 $\deg_T(v)$ -1

$$u_i$$
: 2,4,5,6,3,1

$$v_i$$
: 4,3,1,3,1,7

$$(v_1, v_2, \dots, v_{n-2})$$

u_i is the smallest number not in

$$\{u_1,\ldots,u_{i-1}\}\cup\{v_i,\ldots,v_{n-1}\}$$

 \forall vertex v in T_i ,

occurrences of v in $u_i, u_{i+1}, ..., u_{n-1}, v_{n-1}$: 1

occurrences of v in edges (u_j,v_j) , $i \le j \le n-1$: $\deg_{T_i}(v)$

occurrences of v in $(v_i, ..., v_{n-2})$

$$\deg_{T_i}(v) - 1$$

 u_i : 2,4,5,6,3,1

 u_i . Z, +, 5, 0, 5, 1

 v_i : 4,3,1,3,1,7

 $(v_1, v_2, \dots, v_{n-2})$

leaf v of T_i :

in $\{u_i, u_{i+1}, \dots, u_{n-1}, v_{n-1}\}$

not in $\{v_i, v_{i+1}, ..., v_{n-2}\}$

 u_i : smallest leaf in T_i

u_i is the smallest number not in

$$\{u_1,\ldots,u_{i-1}\}\cup\{v_i,\ldots,v_{n-1}\}$$

 u_i : 2,4,5,6,3,1

 v_i : 4,3,1,3,1,7

 $(v_1, v_2, \dots, v_{n-2})$

T = empty graph; $v_{n-1} = n;$ for i = 1 to n-1 u_i : smallest number not in $\{u_1, ..., u_{i-1}\} \cup \{v_i, ..., v_{n-1}\}$

add edge (u_i,v_i) to T;

Prüfer code is reversible

every
$$(v_1, v_2, \dots, v_{n-2}) \in \{1, 2, \dots, n\}^{n-2}$$

is decodable to a tree

onto

 u_i : 2,4,5,6,3,1

 v_i : 4,3,1,3,1,7

 $(v_1, v_2, \dots, v_{n-2})$

$$T = \text{empty graph};$$

 $v_{n-1} = n;$
for $i = 1$ to $n-1$
 u_i : smallest number not in
 $\{u_1, ..., u_{i-1}\} \cup \{v_i, ..., v_{n-1}\}$
add edge (u_i, v_i) to T ;

Prüfer code is reversible 1-1

every
$$(v_1, v_2, \dots, v_{n-2}) \in \{1, 2, \dots, n\}^{n-2}$$

is decodable to a tree

Cayley's formula:

There are n^{n-2} trees on n distinct vertices.

Double Counting

of sequences of adding directed edges to an empty graph to form a rooted tree

 T_n : # of trees on n distinct vertices.

of sequences of adding directed edges to an empty graph to form a rooted tree

From a tree:

- pick a root;
- pick an order of edges.

$$T_n n(n-1)!$$

$$= n!T_n$$

 T_n : # of trees on n distinct vertices.

of sequences of adding directed edges to an empty graph to form a rooted tree

From an empty graph:

add edges one by one

From an empty graph: • add edges one by one

Start from *n* isolated vertices rooted trees

Each step joins 2 trees.

From an empty graph: • add edges one by one

Start from *n* rooted trees.

After adding k edges

n-k rooted trees

add an edge

From an empty graph: • add edges one by one

$$\prod_{k=0}^{n-2} n(n-k-1)$$

$$= n^{n-1} \prod_{k=1}^{n-1} k$$

$$= n^{n-2} n!$$

Start from *n* rooted trees.

After adding k edges

n-k rooted trees

add an edge

From a tree:

- pick a root;
- pick an order of edges.

$$T_n n(n-1)!$$

$$= n!T_n$$

From an empty graph:

add edges one by one

$$\prod_{k=2}^{n} n(k-1)$$

$$= n^{n-2} n!$$

$$T_n = n^{n-2}$$

Cayley's formula:

There are n^{n-2} trees on n distinct vertices.

Arthur Cayley

Graph Laplacian

Graph G(V,E)adjacency matrix A

$$A(i,j) = \begin{cases} 1 & \{i,j\} \in E \\ 0 & \{i,j\} \notin E \end{cases}$$

diagonal matrix D

$$D(i,j) = \begin{cases} \deg(i) & i = j \\ 0 & i \neq j \end{cases}$$

$$D(i,j) = egin{cases} \deg(i) & i = j \ 0 & i
eq j \end{cases} \qquad D = egin{bmatrix} d_1 & & & \ d_2 & 0 & \ & & \ddots & \ 0 & & i
eq j \end{cases}$$

graph Laplacian L

$$L = D - A$$

$$L = \begin{vmatrix} 3 & -1 & -1 & -1 \\ -1 & 2 & -1 & 0 \\ -1 & -1 & 3 & -1 \\ -1 & 0 & -1 & 2 \end{vmatrix}$$

Graph Laplacian

graph Laplacian L

$$L(i,j) = \begin{cases} \deg(i) & i = j \\ -1 & i \neq j, \{i,j\} \in E \\ 0 & \text{otherwise} \end{cases}$$

quadratic form:

$$xLx^{T} = \sum_{i} d_{i}x_{i}^{2} - \sum_{ij \in E} x_{i}x_{j} = \frac{1}{2} \sum_{ij \in E} (x_{i} - x_{j})^{2}$$

incidence matrix $B: n \times m$

$$i \in V, e \in E$$

$$B(i, e) = \begin{cases} 1 & e = \{i, j\}, i < j \\ -1 & e = \{i, j\}, i > j \\ 0 & \text{otherwise} \end{cases}$$

$$L = BB^T$$

Kirchhoff's matrix-tree theorem

 $L_{i,i}$: submatrix of L by removing ith row and ith collumn

t(G): number of spanning trees in G

Kirchhoff's matrix-tree theorem

 $L_{i,i}$: submatrix of L by removing ith row and ith collumn

t(G): number of spanning trees in G

Kirchhoff's Matrix-Tree Theorem:

$$\forall i, \quad t(G) = \det(L_{i,i})$$

Kirchhoff's Matrix-Tree Theorem:

$$\forall i, \quad t(G) = \det(L_{i,i})$$

$$B_i: (n-1) \times m$$

incidence matrix B removing ith row

$$L = BB^T$$

$$L_{i,i} = B_i B_i^T$$
 $\det(L_{i,i}) = \det(B_i B_i^T) = ?$

Cauchy-Binet Theorem:

$$\det(AB) = \sum_{S \in \binom{[m]}{n}} \det(A_{[n],S}) \det(B_{S,[n]})$$

$$A: n \times m$$

 $B:m\times n$

Cauchy-Binet Theorem:

$$\det(AB) = \sum_{S \in \binom{[m]}{n}} \det(A_{[n],S}) \det(B_{S,[n]})$$

$$\det(L_{i,i}) = \det(B_i B_i^T)$$

$$= \sum_{S \in \binom{[m]}{n-1}} \det(B_{[n]\setminus\{i\},S}) \det(B_{S,[n]\setminus\{i\}}^T)$$

$$= \sum_{S \in \binom{[m]}{n-1}} \det(B_{[n]\setminus\{i\},S})^2$$

$$\det(L_{i,i}) = \sum_{S \in \binom{[m]}{n-1}} \det(B_{[n]\setminus\{i\},S})^2$$

$$j \in [n] \setminus \{i\}, e \in S$$

$$B_{[n]\setminus\{i\},S}(j,e) = \begin{cases} 1 & e = \{j,k\}, j < k \\ -1 & e = \{j,k\}, j > k \\ 0 & \text{otherwise} \end{cases}$$

$$\det(B_{[n]\setminus\{i\},S}) = \begin{cases} \pm 1 & S \text{ is a spanning tree of } G \\ 0 & \text{otherwise} \end{cases}$$

$$\det(B_{[n]\setminus\{i\},S}) = \begin{cases} \pm 1 & S \text{ is a spanning tree of } G \\ 0 & \text{otherwise} \end{cases}$$

$$B' = B_{[n] \setminus \{i\}, S}$$

$$(n-1) \times (n-1)$$
 matrix:
every column contains
at most one 1 and at most one -1
and all other entries are 0

 $det(B') \neq 0$ iff S is a spanning tree

$det(B') \neq 0$ iff S is a spanning tree

S is not a spanning tree:

 \exists a connected component R s.t. $i \notin R$

S is a spanning tree:

 \exists a leaf $j_1 \neq i$ with incident edge e_1 , delete e_1 \exists a leaf $j_2 \neq i$ with incident edge e_2 , delete e_2

• •

vertices: j_1, j_2, \dots, j_{n-1}

edges: $e_1, e_2, ..., e_{n-1}$

 $\det(B') = \pm 1$

Cauchy-Binet

$$\det(L_{i,i}) = \sum_{S \in \binom{[m]}{n-1}} \det(B_{[n]\setminus\{i\},S})^2$$

$$j \in [n] \setminus \{i\}, e \in S$$

$$B_{[n] \setminus \{i\}, S}(j, e) = \begin{cases} 1 & e = \{j, k\}, j < k \\ -1 & e = \{j, k\}, j > k \\ 0 & \text{otherwise} \end{cases}$$

$$\det(B_{[n]\setminus\{i\},S}) = \begin{cases} \pm 1 & S \text{ is a spanning tree of } G \\ 0 & \text{otherwise} \end{cases}$$

Kirchhoff's Matrix-Tree Theorem:

$$\forall i, \quad t(G) = \det(L_{i,i})$$

all n-vertex trees: spanning trees of K_n

$$L_{i,i} = \begin{bmatrix} n-1 & -1 & \cdots & -1 \\ -1 & n-1 & \cdots & -1 \\ \vdots & \vdots & \ddots & \vdots \\ -1 & -1 & \cdots & n-1 \end{bmatrix}$$

Cayley formula:

$$T_n = t(K_n) = \det(L_{i,i}) = n^{n-2}$$