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Circuit Complexity

Boolean function  f:{0,1}" — {0,1}

® DAG (directed
acyclic graph)

Boolean o Nodes:

circuit ® inputs: Ti...Tp,
® gates:A V

/ \ / \ o Complexity: #gates
X1 X2 X3



Theorem (Shannon 1949)

There is a boolean function
f:{0,1}" — {0,1} which
cannot be computed by any
circuit with g—z gates.

Claude Shannon


http://en.wikipedia.org/wiki/Claude_Shannon
http://en.wikipedia.org/wiki/Claude_Shannon

Hof f:{0,1}" —{0,1}

# of circuits with t gates:

De Morgan’s law:
“1(AVvB)=—AANB
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Theorem (Shannon 1949)

Almost all
+hereds-aboolean function f : {0,1}" — {0,1}

R ".‘

which cannot be computed by any circuit

with % gates.

one circuit computes one function

#f computable by ¢ gates <

#circuits with ¢ gates <
2'@n+t+ 1%t (




Double Counting

“Count the same thing twice.
The result will be the same.”

sum by row e

A

sum by column
B



Handshaking lemma

A party of n guests.

The number of guests who shake hands
an odd number of times is even.

Modeling:
n guests < n vertices

handshaking & edge

# of handshaking & degree



Lemma (Euler 1736)
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In the I736 paper of
Seven Bridges of

Leonhard Euler Kénigsberg




'Lemma (Euler 1736)
> d(v)=2|E

veV

Count directed edges:
(u,v) : {u,v} € K

Count by edge:
V{u,v} € K !

; Count by vertex: f
 YweV 4

d directed edges

¢ 2 directions

(v,u1) -+ (0, uq) (u,v) and (v, u) |



Lemma (Euler 1736)
> d(v)=2|E

veV

Corollary

# of odd-degree vertices is even.



Sperner’s Lemma

line segment: ab divided into small segments

each endpoint: red or blue

O——O0—0—0—0O
a b

ab have different color

J

3 small segment o—e
Emanuel Sperner



Sperner’s Lemma

C triangle: abc
triangulation

broper coloring:

3 colors red, blue,
abc is tricolored

b lines ab, bc, ac are 2-colored

| Sperner’s Lemma (1928)

Vv properly colored triangulation of a triangle,
3 a tricolored small triangle.



| Sperner’s Lemma (1928)

v properly colored triangulation of a triangle,
3 a tricolored small triangle.

partial dual graph:

each A iS a vertex
the outer-space is a vertex

add an edge if 2 /\
share a e—e edge

degree of A node: |

degree of AorA node: 2

other cases: 0 degree

degree is odd



| Sperner’s Lemma (1928)

v properly colored triangulation of a triangle,
3 a tricolored small triangle.

partial dual graph:

“ degree of A node: 1
0/“?# degree of other A: even
RN

" .o

® handshaking lemma:

# of odd-degree vertices is even.

0 #of /\: odd =0

degree is odd



Sperner’s Lemma (1928)

v properly colored triangulation of a triangle,
3 a tricolored small triangle.

high-dimension: triangle E:> simplex

triangulation E:> simplicial
subdivision

Brouwer’s fixed point theorem (1911)
V continuous function f: B—B of an
n-dimensional ball B, 3 a fixed point x =f(x).



Pigeonhole Principle

If > mn objects are
partitioned into 7

classes, then some class
receives > m objects.




Schubfachprinzip

“drawer principle”

Dirichlet Principle

Johann Peter Gustav Lejeune Dirichlet



Dirichlet's approximation

x 1S an irrational number.

Approximate x by a rational
with bounded denominator.

Theorem (Dirichlet 1879)

For any natural number n, there is a rational
number g such that 1 < g <n and

1
-2 < —.

q ng




x 1S an irrational number.

Theorem (Dirichlet 1879)

For any natural number n, there is a rational
number g such that 1 < g <n and

1

q| ng

fractional part: {2} = — |2

(n+1) pigeons: {kz} fork=1,....,.n+1

nholes: (o L) (L2 o n_1,1
'n) ' \n'n n




x 1S an 1rrational number.
fractional part: {x} =o — |x]

(n+1) pigeons: {kz} fork=1,....,.n+1

n holes: 071 | l,g .
T T N

l1<b<a<n+1 {azx},{bx} in the same hole

o)) = fax} — {ba} <




An initiation question to Mathematics

.

VS C{1,2,...,2n} that |S| >n g O
Jda,b € S suchthat a|b

Ve
i -

a=2km for an odd m \ I\ 41
\ |

Va e {1,2,...,2n}

ok k -
=1{2"m | k > 0,2%m < 2n} Paul ErdOs

>n  pigeons: S
n pigeonholes: C1, C3,Cs, ..., Con

a<b abe’,, ::> alb




Monotonic subsequences

sequence: (a1,...,ay) of n different numbers

1<y <9< <1 <n

subsequence:
(@iy s Wiy e v vy Q)
Increasing:
Ay < Ay < ... < Qg
decreasing:

Aij, > Qjy > ... > A4,



Theorem (ErdOs-Szekeres 1935)

A sequence of > mn different numbers must con-
tain either an increasing subsequence of length m—+
1, or a decreasing subsequence of length n + 1.




(a1,...,an) of N different numbers N > mn
associate each a; with (i, y;)

Z; . length of longest increasing
subsequence ending at a;

Yi - length of longest decreasing
subsequence starting at a;

Vi £ 79, (xzvyZ) i (xjﬁyj)

CQy < Gy Ti < Ty
cssume | Casesl: @i <aj T=> wi <

< Cases.2: @i >a; > ¥i >V




(a1,...,an) of N different numbers N > mn

T; . length of longest increasing
subsequence ending at @;

Yi; - length of longest decreasing
subsequence starting at a;

Vi # 4, (zi,y:) # (x,9;)

<

“One pigeon per each hole.”

No way to put N pigeons
into mn holes.

“N pigeons” (a1,...,an)

a; is in hole (zi,y;)




Theorem (ErdOs-Szekeres 1935)

A sequence of > mn different numbers must con-
tain either an increasing subsequence of length m—+
1, or a decreasing subsequence of length n + 1.

N

(a’17°°°7aN) N>m’n

T; . length of longest increasing

subsequence ending at a;

Yi; - length of longest decreasing

subsequence starting at a;




