Combinatorics

南京大学

Extremal Combinatorics

"How large or how small a collection of finite objects can be, if it has to satisfy certain restrictions."

set system $\mathcal{F} \subseteq 2^{[n]}$ with ground set [n]

Sunflowers

 \mathcal{F} a sunflower of size r with center C:

$$|\mathcal{F}| = r$$
 $\forall S, T \in \mathcal{F}, \quad S \cap T = C$

a sunflower of size 6 with core C

Sunflowers

 \mathcal{F} a sunflower of size r with center C:

$$|\mathcal{F}| = r$$
 $\forall S, T \in \mathcal{F}, \quad S \cap T = C$

a sunflower of size 6 with core ()

$$\mathcal{F} \subseteq \binom{[n]}{k}. \quad |\mathcal{F}| > k!(r-1)^k$$

 \exists a sunflower $\mathcal{G} \subseteq \mathcal{F}$, such that $|\mathcal{G}| = r$

Induction on k. when k=1

$$\mathcal{F} \subseteq \binom{[n]}{1} \qquad |\mathcal{F}| > r - 1$$

∃ r singletons

$$\mathcal{F} \subseteq \binom{[n]}{k}. \quad |\mathcal{F}| > k!(r-1)^k$$

 \exists a sunflower $\mathcal{G} \subseteq \mathcal{F}$, such that $|\mathcal{G}| = r$

For $k \ge 2$,

take largest $\mathcal{G} \subseteq \mathcal{F}$ with disjoint members

$$\forall S, T \in \mathcal{G} \text{ that } S \neq T, S \cap T = \emptyset$$

case.1: $|\mathcal{G}| \ge r$, \mathcal{G} is a sunflower of size r

case.2: $|\mathcal{G}| \leq r - 1$,

Goal: find a popular $x \in [n]$

$$\mathcal{F} \subseteq \binom{[n]}{k}. \quad |\mathcal{F}| > k!(r-1)^k$$

 \exists a sunflower $\mathcal{G} \subseteq \mathcal{F}$, such that $|\mathcal{G}| = r$

$$|\mathcal{G}| \le r - 1$$
, Goal: find a popular $x \in [n]$

consider

$$\{S \in \mathcal{F} \mid x \in S\}$$

remove *x*

$$\mathcal{H} = \{ S \setminus \{x\} \mid S \in \mathcal{F} \land x \in S \}$$

$$\mathcal{H} \subseteq {n \brack k-1}$$
 if $|\mathcal{H}| > (k-1)!(r-1)^{k-1}$ L.H

$$\mathcal{F} \subseteq {n \choose k}. \qquad |\mathcal{F}| > k!(r-1)^k$$

take largest $\mathcal{G} \subseteq \mathcal{F}$ with disjoint members

$$|\mathcal{G}| \leq r-1, \quad \text{let } Y = \bigcup_{S \in \mathcal{G}} S \quad |Y| \leq k(r-1)$$

claim: Y intersects all $S \in \mathcal{F}$

if otherwise: $\exists T \in \mathcal{F}, \ T \cap Y = \emptyset$

T is disjoint with all $S \in \mathcal{G}$

contradiction!

$$\mathcal{F} \subseteq {n \choose k}.$$
 $|\mathcal{F}| > k!(r-1)^k$

take maximal $\mathcal{G} \subseteq \mathcal{F}$ with disjoint members

$$|\mathcal{G}| \leq r-1, \quad \text{let } Y = \bigcup_{S \in \mathcal{G}} S \quad |Y| \leq k(r-1)$$

Y intersects all $S \in \mathcal{F}$

pigeonhole: $\exists x \in Y$, # of $S \in \mathcal{F}$ contain x

$$|\{S \in \mathcal{F} \mid x \in S\}| \ge \frac{|\mathcal{F}|}{|Y|} \ge \frac{k!(r-1)^k}{k(r-1)}$$

$$= (k-1)!(r-1)^{k-1}$$

$$\mathcal{H} = \{ S \setminus \{x\} \mid S \in \mathcal{F} \land x \in S \}$$

$$\mathcal{H} \subseteq \binom{[n]}{k-1} \qquad |\mathcal{H}| > (k-1)!(r-1)^{k-1}$$

$$\mathcal{F} \subseteq \binom{[n]}{k}. \quad |\mathcal{F}| > k!(r-1)^k$$

 \exists a sunflower $\mathcal{G} \subseteq \mathcal{F}$, such that $|\mathcal{G}| = r$

 $\exists x \in Y$, let $\mathcal{H} = \{S \setminus \{x\} \mid S \in \mathcal{F} \land x \in S\}$

I.H.: \mathcal{H} contains a sunflower of size r adding x back, it is a sunflower in \mathcal{F}

Sunflower Conjecture

$$\mathcal{F} \subseteq \binom{[n]}{k}. \qquad |\mathcal{F}| > c(r)^k$$

 \exists a sunflower $\mathcal{G} \subseteq \mathcal{F}$, such that $|\mathcal{G}| = r$

c(r): constant depending only on r

Alon-Shpilka-Umans 2012:

if sunflower conjecture is true then matrix multiplication is slow

Erdős-Ko-Rado Theorem

Paul Erdős (1913-1996)

柯召 (1910-2002)

Richard Rado (1906-1989)

个 个 TATE

Erdős Rado

Intersecting Families

$$\mathcal{F} \subseteq \binom{[n]}{k} \quad \mbox{intersecting:} \\ \forall S, T \in \mathcal{F}, \quad S \cap T \neq \emptyset$$

$$\forall S, T \in \mathcal{F},$$

$$S \cap T \neq \emptyset$$

trivial case: n < 2k

nontrivial examples:

"How large can a nontrivial intersecting family be?"

Erdős-Ko-Rado Theorem

Let
$$\mathcal{F} \subseteq \binom{[n]}{k}$$
, $n \geq 2k$.

proved in 1938; published in 1961;

Shifting

Isoperimetric problem:

With fixed perimeter, what plane figure has the largest area?

Steiner symmetrization

Shifting

Isoperimetric problem:

With fixed area, what plane figure has the smallest perimeter?

Steiner symmetrization

Erdős-Ko-Rado Theorem

Let
$$\mathcal{F} \subseteq \binom{[n]}{k}$$
, $n \geq 2k$.

$$\forall S, T \in \mathcal{F}, S \cap T \neq \emptyset \implies |\mathcal{F}| \leq \binom{n-1}{k-1}$$

induction on n and k

$$\mathcal{F}_0 = \{ S \in \mathcal{F} \mid n \notin S \}$$

$$\mathcal{F}_0 \subseteq \binom{[n-1]}{k}$$
 IH.

intersecting
$$|\mathcal{F}_0| \leq \binom{n-2}{k-1}$$

$$\mathcal{F}_1' = \{ S \setminus \{n\} \mid S \in \mathcal{F}_1 \}$$

$$\mathcal{F}_1' \subseteq \binom{[n-1]}{k-1}$$

intersecting?

$$|\mathcal{F}_1'| \le \binom{n-2}{k-2}$$

$$|\mathcal{F}| = |\mathcal{F}_0| + |\mathcal{F}_1| = |\mathcal{F}_0| + |\mathcal{F}_1'| \le \binom{n-2}{k-1} + \binom{n-2}{k-2} = \binom{n-1}{k-1}$$

Shifting (compression)

special
$$\mathcal{F} \subseteq \binom{[n]}{k}$$

 \mathcal{F} remains intersecting after deleting n

Shifting (compression)

$$\mathcal{F} \subseteq 2^{[n]}$$
 for $1 \leq i < j \leq n$ $\forall T \in \mathcal{F}$, write $T_{ij} = (T \setminus \{j\}) \cup \{i\}$ (i,j) -shift: $S_{ij}(\cdot)$ $\forall T \in \mathcal{F}$, $S_{ij}(T) = \begin{cases} T_{ij} & \text{if } j \in T, i \notin T, \text{ and } T_{ij} \notin \mathcal{F}, \\ T & \text{otherwise.} \end{cases}$

 $S_{ij}(\mathcal{F}) = \{S_{ij}(T) \mid T \in \mathcal{F}\}$

$$1 \le i < j \le n \quad \forall T \in \mathcal{F}, \text{ write } T_{ij} = (T \setminus \{j\}) \cup \{i\}$$

$$S_{ij}(T) = \begin{cases} T_{ij} & \text{if } j \in T, i \notin T, \text{ and } T_{ij} \notin \mathcal{F}, \\ T & \text{otherwise.} \end{cases}$$

$$S_{ij}(\mathcal{F}) = \{ S_{ij}(T) \mid T \in \mathcal{F} \}$$

- 1. $|S_{ij}(T)| = |T|$ and $|S_{ij}(\mathcal{F})| = |\mathcal{F}|$
- 2. \mathcal{F} intersecting $\Longrightarrow S_{ij}(\mathcal{F})$ intersecting
- (2) the only bad case: $A, B \in \mathcal{F}$ $A \cap B = \{j\}$

$$A_{ij} = A \setminus \{j\} \cup \{i\} \in \mathcal{F} \quad B_{ij} = B \setminus \{j\} \cup \{i\} \notin \mathcal{F} \quad i \notin B$$

$$A_{ij} \cap B = \emptyset$$
 contradiction!

$$1 \leq i < j \leq n \quad \forall T \in \mathcal{F}, \text{ write } T_{ij} = (T \setminus \{j\}) \cup \{i\}$$
$$S_{ij}(T) = \begin{cases} T_{ij} & \text{if } j \in T, i \notin T, \text{ and } T_{ij} \notin \mathcal{F}, \\ T & \text{otherwise.} \end{cases}$$

$$S_{ij}(\mathcal{F}) = \{ S_{ij}(T) \mid T \in \mathcal{F} \}$$

- 1. $|S_{ij}(T)| = |T|$ and $|S_{ij}(\mathcal{F})| = |\mathcal{F}|$
- 2. \mathcal{F} intersecting $\Longrightarrow S_{ij}(\mathcal{F})$ intersecting

repeat applying (i,j)-shifting $S_{ij}(\mathcal{F})$ for $1 \leq i < j \leq n$ eventually, \mathcal{F} is unchanged by any $S_{ij}(\mathcal{F})$

called: \mathcal{F} is shifted

Let
$$\mathcal{F} \subseteq \binom{[n]}{k}$$
, $n \geq 2k$.

$$\forall S, T \in \mathcal{F}, \ S \cap T \neq \emptyset \implies |\mathcal{F}| \leq \binom{n-1}{k-1}$$

Erdős-Ko-Rado's proof:

true for k=1; when n=2k,

 $\forall S \in {[n] \choose k}$ at most one of S and \bar{S} is in \mathcal{F}

$$|\mathcal{F}| \le \frac{1}{2} \binom{n}{k} = \frac{n!}{2 \cdot k! (n-k)!}$$

$$= \frac{(n-1)!}{(k-1)!(n-k)!} = \binom{n-1}{k-1}$$

Let
$$\mathcal{F} \subseteq \binom{[n]}{k}$$
, $n \geq 2k$.

$$\forall S, T \in \mathcal{F}, \ S \cap T \neq \emptyset \implies |\mathcal{F}| \leq \binom{n-1}{k-1}|$$

arbitrary $|\mathcal{F}| = |\mathcal{F}'|$ intersecting \mathcal{F}

$$|\mathcal{F}| = |\mathcal{F}'|$$
 keep intersecting

shifted \mathcal{F}'

$$|\mathcal{F}| \le \binom{n-1}{k-1} \qquad \qquad |\mathcal{F}'| \le \binom{n-1}{k-1}$$

$$|\mathcal{F}'| \le \binom{n-1}{k-1}$$

Let
$$\mathcal{F} \subseteq \binom{[n]}{k}$$
, $n \geq 2k$.

$$\forall S, T \in \mathcal{F}, \ S \cap T \neq \emptyset \implies |\mathcal{F}| \leq \binom{n-1}{k-1}|$$

when n > 2k, induction on n WLOG: \mathcal{F} is shifted

$$\mathcal{F}_1 = \{ S \in \mathcal{F} \mid n \in S \} \qquad \mathcal{F}_1' = \{ S \setminus \{n\} \mid S \in \mathcal{F}_1 \}$$

 \mathcal{F}_1' is intersecting

otherwise, $\exists A, B \in \mathcal{F}$ $A \cap B = \{n\}$ $|A \cup B| \le 2k - 1 < n - 1$ $\exists i < n, i \notin A \cup B$ $C = A \setminus \{n\} \cup \{i\} \in \mathcal{F}$ \mathcal{F} is shifted $C \cap B = \emptyset$ contradiction!

Let
$$\mathcal{F} \subseteq \binom{[n]}{k}$$
, $n \geq 2k$.

$$\forall S, T \in \mathcal{F}, \ S \cap T \neq \emptyset \implies |\mathcal{F}| \leq \binom{n-1}{k-1}|$$

when n > 2k, induction on n WLOG: \mathcal{F} is shifted

WLOG:
$$\mathcal{F}$$
 is shifted

$$\mathcal{F}_0 = \{ S \in \mathcal{F} \mid n \notin S \} \qquad \mathcal{F}_1 = \{ S \in \mathcal{F} \mid n \in S \}$$

$$\mathcal{F}_1 = \{ S \in \mathcal{F} \mid n \in S \}$$

 $\mathcal{F}_0\subseteq \binom{[n-1]}{k}$ and intersecting $|\mathcal{F}_0|\le \binom{n-2}{k-1}$

$$|\mathcal{F}_0|$$

$$|\mathcal{F}_0| \le \binom{n-2}{k-1}$$

$$\mathcal{F}_1' = \{ S \setminus \{ n \} \mid S \in \mathcal{F}_1 \}$$

$$\mathcal{F}_1'\subseteq \binom{[n-1]}{k-1}$$
 and intersecting $|\mathcal{F}_1'|\le \binom{n-2}{k-2}$

$$|\mathcal{F}_1'| \leq \binom{n-2}{k-2}$$

$$|\mathcal{F}| = |\mathcal{F}_0| + |\mathcal{F}_1| = |\mathcal{F}_0| + |\mathcal{F}_1'| \le {n-2 \choose k-1} + {n-2 \choose k-2} = {n-1 \choose k-1}$$

Katona's proof (1972)

n-cycle:

k-arc: length k path on cycle

intersecting arcs: share edges

Lemma

 $n \ge 2k$. Suppose $A_1, A_2, ..., A_t$ are distinct pairwise intersecting k-arcs. Then $t \le k$.

every node can be endpoint of at most 1 arc take A_1 : A_1 has k+1 nodes 2 endpoints of itself

Let
$$\mathcal{F} \subseteq {[n] \choose k}$$
, $n \ge 2k$.

$$\forall S, T \in \mathcal{F}, \ S \cap T \neq \emptyset \implies |\mathcal{F}| \leq \binom{n-1}{k-1} \|$$

take an n-cycle π of [n]

family of all k-arcs in π

$$\mathcal{G}_{\pi} = \{ \{ \pi_{(i+j) \bmod n} \mid j \in [k] \} \mid i \in [n] \}$$

double counting:
$$X = \{(S, \pi) \mid S \in \mathcal{F} \cap \mathcal{G}_{\pi}\}$$

each n-cycle π an n-cycle has $\leq k$ intersecting k-arcs

$$|\mathcal{F} \cap \mathcal{G}_{\pi}| \leq k$$

of n-cycles: (n-1)!

$$|X| = \sum_{n \text{-cycle } \pi} |\mathcal{F} \cap \mathcal{G}_{\pi}| \le k(n-1)!$$

Let
$$\mathcal{F} \subseteq {[n] \choose k}$$
, $n \ge 2k$.

$$\forall S, T \in \mathcal{F}, S \cap T \neq \emptyset \implies |\mathcal{F}| \leq \binom{n-1}{k-1}|$$

take an n-cycle π of [n]

family of all k-arcs in π

$$\mathcal{G}_{\pi} = \{ \{ \pi_{(i+j) \bmod n} \mid j \in [k] \} \mid i \in [n] \}$$

double counting: $X=\{(S,\pi)\mid S\in\mathcal{F}\cap\mathcal{G}_{\pi}\}$

$$|X| \le k(n-1)!$$

each S is a k-arc in

k!(n-k)! cycles

$$|X| = \sum_{S \in \mathcal{F}} |\{\pi \mid S \in \mathcal{G}_{\pi}\}| = |\mathcal{F}|k!(n-k)!$$

Let
$$\mathcal{F} \subseteq {[n] \choose k}$$
, $n \ge 2k$.

$$\forall S, T \in \mathcal{F}, \ S \cap T \neq \emptyset \implies |\mathcal{F}| \leq \binom{n-1}{k-1}|$$

take an *n*-cycle π of [n]

family of all k-arcs in π

$$\mathcal{G}_{\pi} = \{ \{ \pi_{(i+j) \bmod n} \mid j \in [k] \} \mid i \in [n] \}$$

double counting: $X=\{(S,\pi)\mid S\in\mathcal{F}\cap\mathcal{G}_{\pi}\}$

$$|X| \le k(n-1)!$$

$$|X| \le k(n-1)!$$

$$|X| = |\mathcal{F}|k!(n-k)!$$

$$|\mathcal{F}| \le \frac{k(n-1)!}{k!(n-k)!} = \frac{(n-1)!}{(k-1)!(n-k)!} = \binom{n-1}{k-1}$$

Antichains

$$\mathcal{F} \subseteq 2^{[n]}$$
 is an antichain

$$\forall A, B \in \mathcal{F}, \quad A \not\subseteq B$$

 $\binom{[n]}{k}$ is antichain

largest size: $\binom{n}{\lfloor n/2 \rfloor}$

"Is this the largest size for all antichains?"

Sperner's Theorem

Theorem (Sperner 1928)

$$\mathcal{F} \subseteq 2^{[n]}$$
 is an antichain.

$$|\mathcal{F}| \leq {n \choose |n/2|}.$$

Emanuel Sperner (1905 - 1980)

Sperner's proof

$$\mathcal{F} \subseteq \binom{[n]}{k}$$

$$\begin{array}{ll} \textbf{shade:} & \nabla \mathcal{F} = \left\{ T \in \binom{[n]}{k+1} \mid \exists S \in \mathcal{F}, S \subset T \right\} \\ \textbf{shadow:} & \Delta \mathcal{F} = \left\{ T \in \binom{[n]}{k-1} \mid \exists S \in \mathcal{F}, T \subset S \right\} \\ & [\texttt{n}] = \{\texttt{1,2,3,4,5}\} \\ & \mathcal{F} = \; \{\; \{\texttt{1,2,3}\}, \{\texttt{1,3,4}\}, \{\texttt{2,3,5}\}\; \} \\ & \nabla \mathcal{F} = \; \{\; \{\texttt{1,2,3,4}\}, \{\texttt{1,2,3,5}\}, \{\texttt{1,3,4,5}\}, \{\texttt{2,3,4,5}\}\; \} \\ & \Delta \mathcal{F} = \; \{\{\texttt{1,2}\}, \{\texttt{2,3}\}, \{\texttt{1,3}\}, \{\texttt{3,4}\}, \{\texttt{1,4}\}, \{\texttt{2,5}\}, \{\texttt{3,5}\}\} \\ \end{aligned}$$

Lemma (Sperner)

Let
$$\mathcal{F} \subseteq {[n] \choose k}$$
. Then
$$|\nabla \mathcal{F}| \ge \frac{n-k}{k+1} |\mathcal{F}| \qquad \text{(for } k < n)$$

$$|\Delta \mathcal{F}| \ge \frac{k}{n-k+1} |\mathcal{F}| \qquad \text{(for } k > 0)$$

double counting

$$\mathcal{R} = \{ (S,T) \mid S \in \mathcal{F}, T \in \nabla \mathcal{F}, S \subset T \}$$

$$\forall S \in \mathcal{F}, \qquad n - k \ T \in {[n] \choose k+1} \ \text{have} \ T \supset S$$

$$|\mathcal{R}| = (n-k)|\mathcal{F}|$$

$$\forall T \in \nabla \mathcal{F}, \quad T \ \text{has} \ {k+1 \choose k} = k+1 \ \text{many} \ k\text{-subsets}$$

$$|\mathcal{R}| \le (k+1)|\nabla \mathcal{F}|$$

Lemma (Sperner)

Let
$$\mathcal{F} \subseteq \binom{[n]}{k}$$
. Then

$$|\nabla \mathcal{F}| \ge \frac{n-k}{k+1} |\mathcal{F}| \qquad \text{(for } k < n)$$

$$|\nabla \mathcal{F}| \ge \frac{n-k}{k+1}|\mathcal{F}| \qquad \text{(for } k < n)$$

$$|\Delta \mathcal{F}| \ge \frac{k}{n-k+1}|\mathcal{F}| \qquad \text{(for } k > 0)$$

Corollary:

If
$$k \leq \frac{1}{2}(n-1)$$
, then $|\nabla \mathcal{F}| \geq |\mathcal{F}|$.

If
$$k \ge \frac{1}{2}(n+1)$$
, then $|\Delta \mathcal{F}| \ge |\mathcal{F}|$.

$$\mathcal{F} \subseteq 2^{[n]}$$
 is an antichain. Then $|\mathcal{F}| \leq {n \choose \lfloor n/2 \rfloor}$.

let
$$\mathcal{F}_k = \mathcal{F} \cap {[n] \choose k}$$

If
$$k \leq \frac{1}{2}(n-1)$$
, then $|\nabla \mathcal{F}| \geq |\mathcal{F}|$.

If
$$k \ge \frac{1}{2}(n+1)$$
, then $|\Delta \mathcal{F}| \ge |\mathcal{F}|$.

replace
$$\mathcal{F}_k$$
 by $\begin{cases} \nabla \mathcal{F}_k & \text{if } k < \frac{1}{2}(n-1) \\ \Delta \mathcal{F}_k & \text{if } k \geq \frac{1}{2}(n+1) \end{cases}$ still antichain!

repeat until $\mathcal{F}\subseteq {[n]\choose \lfloor n/2\rfloor}$ with no decreasing of $|\mathcal{F}|$

$$\mathcal{F} \subseteq 2^{[n]}$$
 is an antichain. Then $|\mathcal{F}| \leq {n \choose \lfloor n/2 \rfloor}$.

Lubell's proof (double counting)

maximal chain:

$$\emptyset \subset S_1 \subset \cdots \subset S_{n-1} \subset [n]$$

of maximal chains in $2^{[n]}$: n!

$$\forall S \subseteq [n],$$

of maximal chains containing S: |S|!(n-|S|)!

 \mathcal{F} is antichain \longrightarrow \forall chain C, $|\mathcal{F} \cap C| \leq 1$

maximal chains crossing $\mathcal{F} \leq \#$ all maximal chains

$$\mathcal{F} \subseteq 2^{[n]}$$
 is an antichain. Then $|\mathcal{F}| \leq {n \choose \lfloor n/2 \rfloor}$.

Lubell's proof (double counting)

maximal chain:

$$\emptyset \subset S_1 \subset \cdots \subset S_{n-1} \subset [n]$$

of maximal chains in $2^{[n]}$: n!

$$\forall S \subseteq [n],$$

of maximal chains containing S: |S|!(n-|S|)!

 \mathcal{F} is antichain \longrightarrow \forall chain C, $|\mathcal{F} \cap C| \leq 1$

$$|\mathcal{F} \cap C| \le 1$$

$$\sum_{S \in \mathcal{F}} |S|!(n - |S|)! \le n!$$

$$\mathcal{F} \subseteq 2^{[n]}$$
 is an antichain. Then $|\mathcal{F}| \leq {n \choose \lfloor n/2 \rfloor}$.

Lubell's proof (double counting)

$$\sum_{S \in \mathcal{F}} |S|!(n - |S|)! \le n!$$

$$\frac{|\mathcal{F}|}{\binom{n}{\lfloor n/2 \rfloor}} \le \sum_{S \in \mathcal{F}} \frac{1}{\binom{n}{|S|}} = \sum_{S \in \mathcal{F}} \frac{|S|!(n-|S|)!}{n!} \le 1$$

$$|\mathcal{F}| \le \binom{n}{\lfloor n/2 \rfloor}$$

LYM Inequality

(Lubell-Yamamoto 1954, Meschalkin 1963)

LYM inequality

$$\mathcal{F} \subseteq 2^{[n]}$$
 is an antichain.

$$\sum_{S \in \mathcal{F}} \frac{1}{\binom{n}{|S|}} \le 1$$

$$\mathcal{F} \subseteq 2^{[n]}$$
 is an antichain. $\sum_{S \in \mathcal{F}} \frac{1}{\binom{n}{|S|}} \le 1$

Alon's proof (the probabilistic method)

let π be a random permutation [n]

$$\mathcal{C}_{\pi} = \{\{\pi_1\}, \{\pi_1, \pi_2\}, \dots, \{\pi_1, \dots, \pi_n\}\}$$

$$\forall S \in \mathcal{F}, \quad X_S = \begin{cases} 1 & S \in \mathcal{C}_{\pi} \\ 0 & \text{otherwise} \end{cases}$$

$$\text{let } X = \sum_{S \in \mathcal{F}} X_S = |\mathcal{F} \cap \mathcal{C}_{\pi}|$$

$$\mathcal{C}_{\pi} \text{ contain}$$

$$\mathbf{E}[X_S] = \Pr[S \in \mathcal{C}_\pi] = \frac{1}{\binom{n}{|S|}} \quad \text{uniform over all } |S| \text{-sets}$$

$$\mathcal{F} \subseteq 2^{[n]}$$
 is an antichain. $\sum_{S \in \mathcal{F}} \frac{1}{\binom{n}{|S|}} \le 1$

Alon's proof (the probabilistic method) let π be a random permutation [n]

$$\mathcal{C}_{\pi} = \{\{\pi_1\}, \{\pi_1, \pi_2\}, \dots, \{\pi_1, \dots, \pi_n\}\}$$
 $X = \sum_{S \in \mathcal{F}} X_S = |\mathcal{F} \cap \mathcal{C}_{\pi}| \leq 1$ \mathcal{F} is antichain \mathcal{C}_{π} is chain $\mathbf{E}[X_S] = \frac{1}{\binom{n}{|S|}}$

$$1 \ge \mathbf{E}[X] = \sum_{S \in \mathcal{F}} \mathbf{E}[X_S] = \sum_{S \in \mathcal{F}} \frac{1}{\binom{n}{|S|}}$$

Sperner's proof (shadows)

LYM inequality

Lubell's proof (counting)

Alon's proof (probabilistic)

Shattering

$$\mathcal{F} \subseteq 2^{[n]}$$

$$R \subseteq [n]$$

trace $\mathcal{F}|_R$:

$$\mathcal{F}|_{R} = \{S \cap R \mid S \in \mathcal{F}\}$$

$$\mathcal{F}$$
 shatters R

$$\mathcal{F}|_R = 2^R$$

Sauer's Lemma

$$|\mathcal{F}| > \sum_{0 \le i \le k} \binom{n}{i} \implies \exists R \in \binom{[n]}{k}, \mathcal{F} \text{ shatters } R$$

Sauer; Shelah-Perles; Vapnik-Cervonenkis;

VC-dimension of ${\mathcal F}$

size of the largest R shattered by \mathcal{F}

$$\mathcal{F} \subseteq 2^{[n]}$$
 $\mathcal{F}|_R = \{S \cap R \mid S \in \mathcal{F}\}$

$$VC-\dim(\mathcal{F}) = \max\{|R| \mid R \subseteq [n], \mathcal{F}|_R = 2^R\}$$

Heredity (ideal, simplicial complex)

 \mathcal{F} is hereditary if $\forall B\subseteq A\in\mathcal{F},\quad B\in\mathcal{F}$

Heredity (ideal, simplicial complex)

Sauer's Lemma

$$|\mathcal{F}| > \sum_{0 \le i \le k} \binom{n}{i} \implies \exists R \in \binom{[n]}{k}, \mathcal{F} \text{ shatters } R$$

$$|\mathcal{F}| > \sum_{0 \le i \le k} \binom{n}{i} \implies \exists R \in \mathcal{F}, |R| \ge k$$

for hereditary \mathcal{F} : $\forall B \subseteq A \in \mathcal{F}$, $B \in \mathcal{F}$

$$R \in \mathcal{F} \quad \longrightarrow \quad \mathcal{F} \text{ shatters } R$$

Sauer's Lemma

$$|\mathcal{F}| > \sum_{0 \le i < k} \binom{n}{i} \implies \exists R \in \binom{[n]}{k}, \mathcal{F} \text{ shatters } R$$

$$|\mathcal{F}| \leq |\mathcal{F}'|$$
 arbitrary \mathcal{F} hereditary \mathcal{F}'
$$\mathrm{VC\text{-}dim}(\mathcal{F}) \geq \mathrm{VC\text{-}dim}(\mathcal{F}')$$

 \mathcal{F} shatters a k-set \mathcal{F}' shatters a k-set

Down Shift

$$\mathcal{F} \subseteq 2^{[n]}$$
 for $i \in [n]$

down-shift: $S_i(\cdot)$

$$S_i(T) = \begin{cases} T \setminus \{i\} & \text{if } i \in T \in \mathcal{F}, \text{ and } T \setminus \{i\} \notin \mathcal{F}, \\ T & \text{otherwise.} \end{cases}$$

$$S_i(\mathcal{F}) = \{ S_i(T) \mid T \in \mathcal{F} \}$$

$$\mathcal{F} \subseteq 2^{[n]} \quad \mathcal{F}|_{R} = \{S \cap R \mid S \in \mathcal{F}\} \quad \text{for } i \in [n]$$

$$S_{i}(T) = \begin{cases} T \setminus \{i\} & \text{if } i \in T \in \mathcal{F}, \text{ and } T \setminus \{i\} \notin \mathcal{F}, \\ T & \text{otherwise.} \end{cases}$$

$$S_i(\mathcal{F}) = \{ S_i(T) \mid T \in \mathcal{F} \}$$

1.
$$|S_i(\mathcal{F})| = |\mathcal{F}| \checkmark$$

1.
$$|S_i(\mathcal{F})| = |\mathcal{F}| \checkmark$$

2. $|S_i(\mathcal{F})|_R | \le |\mathcal{F}|_R |$ for all $R \subseteq [n]$

$$|S_i(\mathcal{F})|_R \subseteq S_i(\mathcal{F}|_R)$$

by-case analysis

$$A \in S_i(\mathcal{F}) \longrightarrow \left\{ \begin{array}{l} A = S_i(A \cup \{i\}) \\ A = S_i(A) \end{array} \right\} \longrightarrow A \cap R \in S_i(\mathcal{F}|_R)$$

$$\mathcal{F} \subseteq 2^{[n]} \quad \mathcal{F}|_{R} = \{S \cap R \mid S \in \mathcal{F}\} \quad \text{for } i \in [n]$$

$$S_{i}(T) = \begin{cases} T \setminus \{i\} & \text{if } i \in T \in \mathcal{F}, \text{ and } T \setminus \{i\} \notin \mathcal{F}, \\ T & \text{otherwise.} \end{cases}$$

$$S_i(\mathcal{F}) = \{ S_i(T) \mid T \in \mathcal{F} \}$$

1.
$$|S_i(\mathcal{F})| = |\mathcal{F}|$$

1.
$$|S_i(\mathcal{F})| = |\mathcal{F}|$$

2. $|S_i(\mathcal{F})|_R| \le |\mathcal{F}|_R|$ for all $R \subseteq [n]$

repeat applying down-shifting $S_i(\mathcal{F})$ for $i \in [n]$ eventually, \mathcal{F} is unchanged by any $S_i(\mathcal{F})$

$$\forall A \in \mathcal{F} \quad \text{if } B \subseteq A \implies B \in \mathcal{F}$$

 \mathcal{F} is hereditary

Sauer's Lemma

$$|\mathcal{F}| > \sum_{0 < i < l} \binom{n}{i} \implies \exists R \in \binom{[n]}{k}, \mathcal{F} \text{ shatters } R$$

repeat down-shift \mathcal{F} until unchanged

$$\begin{array}{c} \mathcal{F} \text{ is hereditary} \\ |\mathcal{F}| > \sum_{0 \leq i < k} \binom{n}{i} \end{array} \right\} \stackrel{\exists S \in \binom{[n]}{\ell} \text{ with } \ell \geq k}{2^S \subseteq \mathcal{F}}$$

take any $R \in \binom{S}{k}$ \mathcal{F} shatters R

Kruskal-Katona Theorem

$$\mathcal{F}\subseteq \binom{[n]}{k}$$

$$\{1,2,3\}$$

$$\{1,3\}$$

$$\{2,3\}$$

$$\{1\}$$

$$\{2\}$$

$$\{3\}$$

shadow:
$$\Delta \mathcal{F} = \left\{ T \in \binom{[n]}{k-1} \mid \exists S \in \mathcal{F}, T \subseteq S \right\}$$

 $|\mathcal{F}| = m$ How small can the shadow $\Delta \mathcal{F}$ be?

Colex order of sets

lexicographic order

co-lexicographic(colex) order (reversed lexicographic order)

elements in decreasing order sets in lexicographic order

elements in increasing order sets in lexicographic order

Colex order of sets

co-lexicographic(colex) order (reversed lexicographic order)

$$\mathcal{R}(m,k)$$
:

first m members of $\binom{\mathbb{N}}{k}$ in colex order

$$\mathcal{R}\left(\binom{n}{k}, k\right) = \binom{[n]}{k}$$

elements in decreasing order sets in lexicographic order

k-cascade Representation

 \forall positive integers m and k

m can be uniquely represented as

$$m = \sum_{k=t}^{k} \binom{m_k}{t} \binom{m_{k-1}}{k-1} + \dots + \binom{m_t}{t}$$

with
$$m_k > m_{k-1} > \cdots > m_t \ge t \ge 1$$

greedy algorithm:

for
$$\ell=k,k-1,k-2,\ldots$$
 take the max m_ℓ with $\binom{m_\ell}{\ell} \leq m$ $m \leftarrow m - \binom{m_\ell}{\ell}$ until $m\!=\!0$

Colex order of sets

$$\mathcal{R}(m,k)$$
:

first m members of $\binom{\mathbb{N}}{k}$ in colex order

k-cascade

$$m = \sum_{\ell=t}^{k} \binom{m_{\ell}}{\ell}$$

$$\mathcal{R}(m,k)$$
:

$$\binom{[m_\ell]}{\ell}$$
 adjoining $\{m_r+1 \mid \ell < r \le k\}$

$$|\Delta \mathcal{R}(m,k)| = \sum_{\ell=t}^{k} {m_{\ell} \choose \ell-1}$$

colex order of $\binom{\mathbb{N}}{k}$

```
{3,2,1}
          {4,3,2}
         \{5, 2, 1\}
          \{5, 3, 1\}
          {5,<mark>3,2</mark>}

\begin{cases}
5,4,I \\
1
\end{cases}

          {5,4,3}
          \{6,2,1\}
```

Kruskal-Katona Theorem

$$\mathcal{F}\subseteq {[n]\choose k}, \ |\mathcal{F}|=m, \ ext{the k-cascade of m is}$$

$$m={m_k\choose k}+{m_{k-1}\choose k-1}+\cdots+{m_t\choose t}.$$
 Then $|\Delta\mathcal{F}|\geq {m_k\choose k-1}+{m_{k-1}\choose k-2}+\cdots+{m_t\choose t-1}.$

The first m k-sets in colex order have the smallest shadow.

 $\mathcal{R}(m,k)$: first m k-sets in colex order

K-K Theorem: $|\Delta \mathcal{F}| \ge |\Delta \mathcal{R}(|\mathcal{F}|, k)|$

Kruskal-Katona Theorem

 $\mathcal{F} \subseteq \binom{\lfloor n \rfloor}{k}, \ |\mathcal{F}| = m, \ \text{ the k-cascade of m is}$

$$m = \sum_{\ell=t}^{k} \binom{m_{\ell}}{\ell}.$$

Then
$$|\Delta_r \mathcal{F}| \geq \sum_{\ell=t-k+r}^r \binom{m_\ell}{\ell}$$
.

k-r

r-shadow:

$$\Delta_r \mathcal{F} = \left\{ S \in {[n] \choose r} \mid \exists T \in \mathcal{F}, S \subset T \right\}$$

$$\Delta_r \mathcal{F} = \underbrace{\Delta \cdots \Delta}_{\mathcal{F}} \mathcal{F}$$

Erdős-Ko-Rado Theorem

Let
$$\mathcal{F} \subseteq \binom{[n]}{k}$$
, $n \geq 2k$.

$$\forall S, T \in \mathcal{F}, S \cap T \neq \emptyset \implies |\mathcal{F}| \leq \binom{n-1}{k-1}$$

Suppose
$$|\mathcal{F}| > \binom{n-1}{k-1}$$
 let $\mathcal{G} = \{\bar{S} \mid S \in \mathcal{F}\}$

$$\mathbf{let} \ \mathcal{G} = \{ \bar{S} \mid S \in \mathcal{F} \}$$

$$|\mathcal{G}| > \binom{n-1}{k-1} = \binom{n-1}{n-k}$$
 $|\Delta_k \mathcal{G}| > \binom{n-1}{k}$

$$|\Delta_k \mathcal{G}| > \binom{n-1}{k}$$

$$S \cap T \neq \emptyset$$

$$S \not\subseteq \bar{T}$$

 $S \cap T \neq \emptyset \implies S \not\subseteq \bar{T} \implies \mathcal{F} \text{ and } \Delta_k \mathcal{G}$ are disjoint

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k} < |\mathcal{F}| + |\Delta_k \mathcal{G}| \le \binom{n}{k}$$

Contradiction!