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Extremal Combinatorics

“How large or how small a collection of finite 
objects can be, if it has to satisfy certain 

restrictions.”

F � 2[n]set system with ground set [n]
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F a sunflower of size r with center C:

⇥S, T � F , S ⌅ T = C|F| = r
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Induction on k. when k=1

F �
�

[n]
1

⇥
|F| > r � 1

∃ r singletons

F �
�

[n]
k

⇥
. |F| > k!(r � 1)k

Sunflower Lemma (Erdős-Rado 1960)

⇥ a sunflower G � F , such that |G| = r



For k≥2,
G � Ftake largest with disjoint members

⇤S, T � G that S ⇥= T, S ⌃ T = ⌅

case.1: |G| � r, G is a sunflower of size r
case.2: |G| ⇥ r � 1,

Goal:   find a popular x∈[n] 

F �
�

[n]
k

⇥
. |F| > k!(r � 1)k

Sunflower Lemma (Erdős-Rado 1960)

⇥ a sunflower G � F , such that |G| = r



Goal:   find a popular x∈[n] 

consider

H = {S \ {x} | S � F ⌅ x � S}

{S � F | x � S}
remove x

H ⇥
�

[n]
k � 1

⇥
I.H. if |H| > (k � 1)!(r � 1)k�1

|G| ⇥ r � 1,

F �
�

[n]
k

⇥
. |F| > k!(r � 1)k

Sunflower Lemma (Erdős-Rado 1960)

⇥ a sunflower G � F , such that |G| = r



|G| ⇥ r � 1, Y =
�

S�G
Slet

G � Ftake largest with disjoint members

|Y | ⇥ k(r � 1)

F �
�

[n]
k

⇥
. |F| > k!(r � 1)k

Y intersects all S � Fclaim:

if otherwise: ⇥T � F , T ⇧ Y = ⇤
T is disjoint with all S � G

contradiction!



H = {S \ {x} | S � F ⌅ x � S}

|G| ⇥ r � 1, Y =
�

S�G
Slet

G � Ftake maximal with disjoint members

|Y | ⇥ k(r � 1)

∃ x∈Y,pigeonhole:

|{S � F | x � S}| � |F|
|Y |

F �
�

[n]
k

⇥
. |F| > k!(r � 1)k

⇥ k!(r � 1)k

k(r � 1)

= (k � 1)!(r � 1)k�1

H ⇥
�

[n]
k � 1

⇥
|H| > (k � 1)!(r � 1)k�1

Y intersects all S � F
# of S � F contain x



∃ x∈Y, H = {S \ {x} | S � F ⌅ x � S}

H ⇥
�

[n]
k � 1

⇥
let

|H| > (k � 1)!(r � 1)k�1

I.H.: H contains a sunflower of size r
adding x back,  it is a sunflower in F

F �
�

[n]
k

⇥
. |F| > k!(r � 1)k

Sunflower Lemma (Erdős-Rado 1960)

⇥ a sunflower G � F , such that |G| = r



c(r) : constant depending only on r

F �
�

[n]
k

⇥
.

Sunflower Conjecture 

⇥ a sunflower G � F , such that |G| = r

|F| > c(r)k

Alon-Shpilka-Umans 2012:

if sunflower conjecture is true
then matrix multiplication is slow



Erdős-Ko-Rado Theorem

Paul Erdős
(1913-1996)

�
�
(1910-2002)

Richard Rado
(1906-1989)



Erdős ��

Erdős Rado



Intersecting Families

F �
�

[n]
k

⇥

⇤S, T � F , S ⌃ T ⇥= ⌅
intersecting:

trivial case:   n < 2k
nontrivial examples:

“How large can a nontrivial intersecting family be?”



Let F �
�[n]

k

⇥
, n ⇥ 2k.

|F| ⇥
�

n� 1
k � 1

⇥

Erdős-Ko-Rado Theorem

F is intersecting⇤S, T � F , S ⌃ T ⇥= ⌅

proved in 1938; published in 1961;

all S � x

x



With fixed perimeter, 
what plane figure  has the largest area?

Shifting

Steiner symmetrization

Isoperimetric problem:



With fixed area, 
what plane figure  has the smallest perimeter?

Shifting

Steiner symmetrization

Isoperimetric problem:



Let F �
�[n]

k

⇥
, n ⇥ 2k.

|F| ⇥
�

n� 1
k � 1

⇥

Erdős-Ko-Rado Theorem

⇤S, T � F , S ⌃ T ⇥= ⌅

induction on n and k
F0 = {S � F | n ⇥� S} F1 = {S � F | n � S}

|F| = |F0| + |F1|

F �
1 = {S \ {n} | S � F1}

= |F0| + |F �
1|

F0 �
�[n�1]

k

⇥
F ⇥

1 �
�[n�1]

k�1

⇥

intersecting
I.H.
|F0| �

�n�2
k�1

⇥
|F ⇥

1| �
�n�2

k�2

⇥
intersecting?

I.H.

�
�n�2

k�1

⇥
+

�n�2
k�2

⇥
=

�n�1
k�1

⇥



Shifting (compression)

special F �
�

[n]
k

⇥

F remains intersecting after deleting n

n

i



Shifting (compression)

Sij(T ) =

�
Tij if j � T, i ⇥� T, and Tij ⇥� F ,

T otherwise.

F � 2[n] 1 � i < j � nfor

⇥T � F , write Tij = (T \ {j}) ⌅ {i}
(i, j)-shift: Sij(·)
⇥T � F ,

Sij(F) = {Sij(T ) | T � F}



Sij(T ) =

�
Tij if j � T, i ⇥� T, and Tij ⇥� F ,

T otherwise.

1 � i < j � n ⇥T � F , write Tij = (T \ {j}) ⌅ {i}

Sij(F) = {Sij(T ) | T � F}

(2) the only bad case: A,B � F A �B = {j}
i ⇥� B

Aij ⇥B = �

Aij = A \ {j} ⇤ {i} � F Bij = B \ {j} ⌅ {i} ⇥� F

contradiction!

|Sij(T )| = |T |

Sij(F) intersectingF intersecting

and1.
2.

|Sij(F)| = |F|



Sij(T ) =

�
Tij if j � T, i ⇥� T, and Tij ⇥� F ,

T otherwise.

1 � i < j � n ⇥T � F , write Tij = (T \ {j}) ⌅ {i}

Sij(F) = {Sij(T ) | T � F}

repeat applying (i, j)-shifting  Sij(F) 1 � i < j � nfor

eventually, F is unchanged by any Sij(F)
is shiftedFcalled:

|Sij(T )| = |T |

Sij(F) intersectingF intersecting

and1.
2.

|Sij(F)| = |F|



Erdős-Ko-Rado’s proof: 

Let F �
�[n]

k

⇥
, n ⇥ 2k.

|F| ⇥
�

n� 1
k � 1

⇥
⇤S, T � F , S ⌃ T ⇥= ⌅

when n = 2k,
⇥S �

�[n]
k

⇥
at most one of S̄S Fand is in

|F| � 1
2

�
n

k

⇥
=

n!
2 · k!(n� k)!

=
(n� 1)!

(k � 1)!(n� k)!
=

�
n� 1
k � 1

⇥

true for k=1;



Let F �
�[n]

k

⇥
, n ⇥ 2k.

F
arbitrary

intersecting shifted F �
|F| = |F �|

keep intersecting

|F| ⇥
�

n� 1
k � 1

⇥
|F �| ⇥

�
n� 1
k � 1

⇥

|F| ⇥
�

n� 1
k � 1

⇥
⇤S, T � F , S ⌃ T ⇥= ⌅



Let F �
�[n]

k

⇥
, n ⇥ 2k.

when n > 2k,  induction on n
F1 = {S � F | n � S}

WLOG: is shiftedF
F �

1 = {S \ {n} | S � F1}

is intersecting

otherwise,
< n� 1
� F

= �

⇥A,B � F A �B = {n}
|A ⇤B| ⇥ 2k � 1
C = A \ {n} � {i}

C �B

⇤i < n, i ⇥� A ⌅B

is shiftedF
contradiction!

F �
1

|F| ⇥
�

n� 1
k � 1

⇥
⇤S, T � F , S ⌃ T ⇥= ⌅



Let F �
�[n]

k

⇥
, n ⇥ 2k.

when n > 2k,  induction on n
F0 = {S � F | n ⇥� S} F1 = {S � F | n � S}

F0 �
�[n�1]

k

⇥
and intersecting |F0| �

�n�2
k�1

⇥I.H.

WLOG: is shiftedF

F �
1 = {S \ {n} | S � F1}

F ⇥
1 �

�[n�1]
k�1

⇥
and intersecting

I.H.
|F ⇥

1| �
�n�2

k�2

⇥

|F| = |F0| + |F1| = |F0| + |F �
1| �

�n�2
k�1

⇥
+

�n�2
k�2

⇥
=

�n�1
k�1

⇥

|F| ⇥
�

n� 1
k � 1

⇥
⇤S, T � F , S ⌃ T ⇥= ⌅



i

i +k

n-cycle:
k-arc:  length k path on cycle

n ≥ 2k. Suppose A1, A2, ..., At are distinct 
pairwise intersecting k-arcs. Then t ≤ k.

Lemma

intersecting arcs:  share edges

every node can be endpoint of at most 1 arc
take A1:  A1 has k+1 nodes

2 endpoints of itself

Katona’s proof  (1972)



Let F �
�[n]

k

⇥
, n ⇥ 2k.

take an n-cycle π of [n]
family of all k-arcs in π 

double counting: {(S, �) | S � F ⌅ G�}
each n-cycle π

|F ⇤ G�| � k

X=
an n-cycle has ≤k intersecting k-arcs 

# of n-cycles:  (n-1)!
|X| =

�

n-cycle �

|F ⇤ G�| ⇥ k(n� 1)!

G� = {{�(i+j) mod n | j � [k]} | i � [n]}

|F| ⇥
�

n� 1
k � 1

⇥
⇤S, T � F , S ⌃ T ⇥= ⌅



Let F �
�[n]

k

⇥
, n ⇥ 2k.

take an n-cycle π of [n]
family of all k-arcs in π 

double counting: {(S, �) | S � F ⌅ G�}X=
|X| ⇥ k(n� 1)!

|X| =
�

S�F
|{� | S � G�}| = |F|k!(n� k)!

each S is a k-arc in 

cyclesk!(n-k)!

G� = {{�(i+j) mod n | j � [k]} | i � [n]}

|F| ⇥
�

n� 1
k � 1

⇥
⇤S, T � F , S ⌃ T ⇥= ⌅



Let F �
�[n]

k

⇥
, n ⇥ 2k.

take an n-cycle π of [n]
family of all k-arcs in π 

double counting: {(S, �) | S � F ⌅ G�}X=
|X| ⇥ k(n� 1)! |X| = |F|k!(n� k)!

|F| ⇥ k(n� 1)!
k!(n� k)!

=
(n� 1)!

(k � 1)!(n� k)!
=

�
n� 1
k � 1

⇥

G� = {{�(i+j) mod n | j � [k]} | i � [n]}

|F| ⇥
�

n� 1
k � 1

⇥
⇤S, T � F , S ⌃ T ⇥= ⌅



Antichains

∅

{1} {2} {3}

{1,2} {1,3} {2,3}

{1,2,3}

{1,2} {1,3} {2,3}
⌅A,B ⇥ F , A ⇤� B

is an antichainF � 2[n]

�[n]
k

⇥
is antichain

largest size:
� n
�n/2⇥

⇥

“Is this the largest size for all antichains?”



Three famous theorems
on finite sets

Chapter 27

Emanuel Sperner

In this chapter we are concerned with a basic theme of combinatorics:
properties and sizes of special families F of subsets of a finite set N =
{1, 2, . . . , n}. We start with two results which are classics in the field: the
theorems of Sperner and of Erdős–Ko–Rado. These two results have in
common that they were reproved many times and that each of them initi-
ated a new field of combinatorial set theory. For both theorems, induction
seems to be the natural method, but the arguments we are going to discuss
are quite different and truly inspired.

In 1928 Emanuel Sperner asked and answered the following question: Sup-
pose we are given the set N = {1, 2, . . . , n}. Call a family F of subsets of
N an antichain if no set of F contains another set of the family F . What is
the size of a largest antichain? Clearly, the family Fk of all k-sets satisfies
the antichain property with |Fk| =

(
n
k

)
. Looking at the maximum of the

binomial coefficients (see page 12) we conclude that there is an antichain
of size

( n
⌊n/2⌋

)
= maxk

(n
k

)
. Sperner’s theorem now asserts that there are

no larger ones.

Theorem 1. The size of a largest antichain of an n-set is
(

n
⌊n/2⌋

)
.

! Proof. Of the many proofs the following one, due to David Lubell, is
probably the shortest and most elegant. Let F be an arbitrary antichain.
Then we have to show |F| ≤

( n
⌊n/2⌋

)
. The key to the proof is that we

consider chains of subsets ∅ = C0 ⊂ C1 ⊂ C2 ⊂ · · · ⊂ Cn = N , where
|Ci| = i for i = 0, . . . , n. How many chains are there? Clearly, we obtain
a chain by adding one by one the elements of N , so there are just as many
chains as there are permutations of N , namely n!. Next, for a set A ∈ F
we ask how many of these chains contain A. Again this is easy. To get
from ∅ to A we have to add the elements of A one by one, and then to pass
from A to N we have to add the remaining elements. Thus if A contains k
elements, then by considering all these pairs of chains linked together we
see that there are precisely k!(n − k)! such chains. Note that no chain can
pass through two different sets A and B of F , since F is an antichain.
To complete the proof, let mk be the number of k-sets in F . Thus |F| =∑n

k=0 mk. Then it follows from our discussion that the number of chains
passing through some member of F is

n∑

k=0

mk k! (n − k)!,

and this expression cannot exceed the number n! of all chains. Hence

|F| �
�

n

⇤n/2⌅

⇥
.

Theorem (Sperner 1928)

F � 2[n] is an antichain.

Sperner’s Theorem

Emanuel Sperner
(1905 - 1980)



Sperner’s proof

∅

{1} {2} {3}

{1,2} {1,3} {2,3}

{1,2,3}

∅

{1} {2} {3}

{1,2} {1,3} {2,3}

{1,2,3}



shade:

shadow:

[n] = {1,2,3,4,5}

F =

⇥F =

�F =

{ {1,2,3}, {1,3,4}, {2,3,5} }

{ {1,2,3,4}, {1,2,3,5}, {1,3,4,5}, {2,3,4,5} }

{{1,2}, {2,3}, {1,3}, {3,4}, {1,4}, {2,5}, {3,5}}

F �
�[n]

k

⇥

⌃F =
⇤

T ⇥
� [n]
k+1

⇥
| ⇤S ⇥ F , S � T

⌅

�F =
⇤

T ⇥
� [n]
k�1

⇥
| ⇤S ⇥ F , T � S

⌅



Let F �
�[n]

k

⇥
. Then

|⇧F| ⇥ n� k

k + 1
|F|

|�F| ⇥ k

n� k + 1
|F|

(for k < n)

(for k > 0)

Lemma (Sperner)

double counting

⇥S � F , n� k T ⇤
� [n]
k+1

⇥
have T ⇥ S

R = {(S, T ) | S ⇥ F , T ⇥ �F , S � T}

|R| = (n� k)|F|

⇥T � ⌅F , T has
�k+1

k

⇥
= k + 1 many k-subsets

|R| � (k + 1)|⇧F|



Let F �
�[n]

k

⇥
. Then

|⇧F| ⇥ n� k

k + 1
|F|

|�F| ⇥ k

n� k + 1
|F|

(for k < n)

(for k > 0)

Lemma (Sperner)

Corollary:

If k ⇥ 1
2 (n� 1), then |⌃F| ⇤ |F|.

If k � 1
2 (n+ 1), then |�F| � |F|.



Sperner’s Theorem

F � 2[n] is an antichain. Then |F| ⇥
� n
�n/2⇥

⇥
.

Fk = F ⇥
�

[n]
k

⇥
let

∅

{1} {2} {3}

{1,2} {1,3} {2,3}

{1,2,3}

If k ⇥ 1
2 (n� 1), then |⌃F| ⇤ |F|.

still antichain!

repeat until F �
� [n]
�n/2⇥

⇥
with no decreasing of |F|

replace Fk by
(
rFk if k < 1

2 (n� 1)

�Fk if k � 1
2 (n+ 1)

If k � 1
2 (n+ 1), then |�F| � |F|.



Sperner’s Theorem

F � 2[n] is an antichain. Then |F| ⇥
� n
�n/2⇥

⇥
.

∅

{1} {2} {3}

{1,2} {1,3} {2,3}

{1,2,3}Lubell’s proof (double counting)

maximal chain:
⇤ ⇥ S1 ⇥ · · · ⇥ Sn�1 ⇥ [n]

# of maximal chains in 2[n]:   n!

{1,3}

# of maximal chains containing S:
F is antichain |F ⇤ C| � 1∀ chain C,

⇥S � [n],

|S|!(n� |S|)!

# maximal chains crossing     ≤ # all maximal chainsF



Sperner’s Theorem

F � 2[n] is an antichain. Then |F| ⇥
� n
�n/2⇥

⇥
.

∅

{1} {2} {3}

{1,2} {1,3} {2,3}

{1,2,3}Lubell’s proof (double counting)

maximal chain:
⇤ ⇥ S1 ⇥ · · · ⇥ Sn�1 ⇥ [n]

# of maximal chains in 2[n]:   n!

{1,3}

# of maximal chains containing S:
F is antichain |F ⇤ C| � 1∀ chain C,

⇥S � [n],

|S|!(n� |S|)!

�

S�F
|S|!(n� |S|)! ⇥ n!



Sperner’s Theorem

F � 2[n] is an antichain. Then |F| ⇥
� n
�n/2⇥

⇥
.

|F|� n
�n/2⇥

⇥ � = � 1

|F| �
� n
�n/2⇥

⇥

Lubell’s proof (double counting)

�

S�F
|S|!(n� |S|)! ⇥ n!

⇤

S�F

1� n
|S|

⇥
�

S�F

|S|!(n� |S|)!
n!



F � 2[n] is an antichain.
LYM inequality

(Lubell-Yamamoto 1954, Meschalkin 1963)

LYM Inequality

� 1
⇤

S�F

1� n
|S|

⇥



F � 2[n] is an antichain. � 1

Alon’s proof (the probabilistic method)
let π be a random permutation [n]

C� = {{�1}, {�1,�2}, . . . , {�1, . . . ,�n}}

= |F ⇤ C�|

uniform over 
all |S|-sets

contains 
precisely 1 |S|-set
C�

let

⇤

S�F

1� n
|S|

⇥

⇥S � F , XS =

�
1 S � C�

0 otherwise

X =
�

S�F
XS

E[XS ] = Pr[S � C�] =
1� n

|S|
⇥



Alon’s proof (the probabilistic method)
let π be a random permutation [n]

C� = {{�1}, {�1,�2}, . . . , {�1, . . . ,�n}}

� 1 is antichainF
is chainC�

1 �

= |F ⇤ C�|X =
�

S�F
XS

E[XS ] =
1� n

|S|
⇥

E[X] =
�

S�F
E[XS ] =

⇤

S�F

1� n
|S|

⇥

F � 2[n] is an antichain. � 1
⇤

S�F

1� n
|S|

⇥



Sperner’s Theorem

LYM inequalitySperner’s proof

(shadows)

Lubell’s proof

(counting)

Alon’s proof

(probabilistic)



Shattering

F � 2[n] R � [n]

F shatters R F|R = 2R

F|R = {S ⇤R | S � F}trace         :F|R

Extremal Combinatorics III: Some Basic Theorems
Posted on September 28, 2008 by Gil Kalai

 .

Shattering

Let us return to extremal problems for families of sets and describe several basic theorems and basic open

problems. In the next part we will discuss a nice proof technique called “shifting” or “compression.”

The Sauer-Shelah (-Perles -Vapnik-Chervonenkis) Lemma:

(Here we write .) A family  shatters a set  if for every  there is  such that

. Note that in order to shatter a set of size   you need at least  sets. But how many sets will guarantee

that you shatter a set with  elements? The Sauer-Shelah Lemma answers this question!

Theorem (Sauer-Shelah): If    then there exists a set ,  such that  shatters .

Hmm LaTeX can go wild, let me try that again:

Theorem (Sauer-Shelah): If   then there exists a set ,  such that  shatters .

(This is much better.)

The simplest way to prove this theorem is by induction. Here is a variation I just heard from Noga. Proof (a little

sketchy): Prove a slightly stronger fact that every family  shatters at least as many sets as . Consider the

subfamily  of sets in the family not containing . By induction  shatters at least as many subsets of

 as . Next consider  , and  =  .  By induction  shatters as

many subsets of  as its cardinality. The number of subsets of  shattered by  and  sum up to at least

+  = , and every subset of  shattered by  is shattered by . Sababa? not quite! there may be

subsets  shattered by both  and . But note that in this case both  and latex  are shattered by .

walla!

OK, let me give a few more words of explanation about the proof. When I say “every family” do I mean “every

family that satisfies the condition of the theorem?” (And If I do why can I use induction?) No, i really mean every

family. The point is that if every family shatters  at least as many sets as its size then a family which satisfies  

 shatters more sets than this sum. But then it must shatter a set of size larger than 

because there are not enough subsets of the set  of size at most .

Combinatorics and more
Gil Kalai’s blog



Vapnik-Cervonenkis;Sauer; Shelah-Perles;

⇥R �
�[n]

k

⇥
, F shatters R

Sauer’s Lemma 

|F| >
⇤

0�i<k

�
n

i

⇥

size of the largest R shattered by F
VC-dimension of F

VC-dim(F) = max
�
|R| | R � [n],F|R = 2R

⇥
F|R = {S ⇤R | S � F}F � 2[n]



F is hereditary if 

Heredity
⇤B � A ⇥ F , B ⇥ F

(ideal,  simplicial complex)

∅

{1} {2} {3}

{1,2} {1,3} {2,3}

{1,2,3}

{1,2}

{1} {2}

∅

{3}



Heredity

⇤B � A ⇥ F , B ⇥ Ffor hereditary     :F

R � F F shatters R

|F| >
⇤

0�i<k

�
n

i

⇥
⇤R ⇥ F , |R| � k

(ideal,  simplicial complex)

⇥R �
�[n]

k

⇥
, F shatters R

Sauer’s Lemma 

|F| >
⇤

0�i<k

�
n

i

⇥



⇥R �
�[n]

k

⇥
, F shatters R

Sauer’s Lemma 

|F| >
⇤

0�i<k

�
n

i

⇥

Farbitrary hereditary F �

VC-dim(F) � VC-dim(F �)

|F| � |F �|

F � shatters a k-setshatters a k-setF



Down Shift
F � 2[n] for

down-shift:

i � [n]

Si(·)

Si(T ) =

�
T \ {i} if i � T � F , and T \ {i} ⇥� F ,

T otherwise.

Si(F) = {Si(T ) | T � F}

∅

{1} {2} {3}

{1,2} {1,3} {2,3}

{1,2,3}

{1,2}

{1} {2}

{2,3}

∅

{1}



F � 2[n] for i � [n]

Si(T ) =

�
T \ {i} if i � T � F , and T \ {i} ⇥� F ,

T otherwise.

Si(F) = {Si(T ) | T � F}

1.
2.

|Si(F)| = |F|
|Si(F)|R| ⇥ |F|R| for all R � [n]

F|R = {S ⇤R | S � F}

Si(F)|R � Si(F|R)

by-case analysis

A 2 Si(F)

(
A = Si(A [ {i})

A = Si(A)

(
A \R 2 Si(F|R)



F � 2[n] for i � [n]

Si(T ) =

�
T \ {i} if i � T � F , and T \ {i} ⇥� F ,

T otherwise.

Si(F) = {Si(T ) | T � F}

1.
2.

|Si(F)| = |F|
|Si(F)|R| ⇥ |F|R| for all R � [n]

F|R = {S ⇤R | S � F}

repeat applying down-shifting  forSi(F) i � [n]
eventually, F is unchanged by any Si(F)

⇥A � F if B � A B � F

F is hereditary



⇥R �
�[n]

k

⇥
, F shatters R

Sauer’s Lemma 

|F| >
⇤

0�i<k

�
n

i

⇥

repeat down-shift F until unchanged

F is hereditary

|F| >
⇤

0�i<k

�
n

i

⇥
� ⇥S �

�
[n]
⇥

⇥

2S � F

� � kwith

R �
�S

k

⇥
take any F shatters R



Kruskal-Katona Theorem

|F| = m How small can the shadow         be?�F

F �
�

[n]
k

⇥

�Fshadow: =
⇤

T ⇥
� [n]
k�1

⇥
| ⇤S ⇥ F , T � S

⌅
∅

{1} {2} {3}

{1,2} {1,3} {2,3}

{1,2,3}

{1,2}

{1} {2}



Colex order of sets
lexicographic order

�
[5]
3

⇥

{1,2,3}
{1,2,4}
{1,2,5}
{1,3,4}
{1,3,5}
{1,4,5}
{2,3,4}
{2,3,5}
{2,4,5}
{3,4,5}

{3,2,1}
{4,2,1}
{4,3,1}
{4,3,2}
{5,2,1}
{5,3,1}
{5,3,2}
{5,4,1}
{5,4,2}
{5,4,3}

co-lexicographic(colex) order
(reversed lexicographic order)

elements in increasing order
sets in lexicographic order

elements in decreasing order
sets in lexicographic order

�
[3]
3

⇥

�
[4]
3

⇥

�
[5]
3

⇥



Colex order of sets
co-lexicographic(colex) order
(reversed lexicographic order)

R(m, k) :

R
��n

k

⇥
, k

⇥
=

�
[n]
k

⇥

first m members 
of       in colex order

�N
k

⇥
{3,2,1}
{4,2,1}
{4,3,1}
{4,3,2}
{5,2,1}
{5,3,1}
{5,3,2}
{5,4,1}
{5,4,2}
{5,4,3}

elements in decreasing order
sets in lexicographic order

�
[3]
3

⇥

�
[4]
3

⇥

�
[5]
3

⇥



∀ positive integers m and k
m can be uniquely represented as

mk > mk�1 > · · · > mt ⇥ t ⇥ 1with

k-cascade Representation

m =
k⇤

�=t

�
m�

�

⇥�
mk

k

⇥
+

�
mk�1

k � 1

⇥
+ · · · +

�
mt

t

⇥

greedy algorithm:
for ⇤ = k, k � 1, k � 2, . . .

until m=0

take the max m� with
�m`

`

�
 m

m m�
�m`

`

�



Colex order of sets

�
[4]
3

⇥

R(m, k) :
first m members 

of       in colex order
�N

k

⇥

colex order of
�N

k

⇥

|�R(m, k)|

m =
k⇤

�=t

�
m�

�

⇥k-cascade

�
[3]
2

⇥

�
[1]
1

⇥�[m�]
�

⇥
{mr + 1 | ⇥ < r � k}adjoining

R(m, k) :

=
k⇤

�=t

�
m�

�� 1

⇥

{3,2,1}
{4,2,1}
{4,3,1}
{4,3,2}
{5,2,1}
{5,3,1}
{5,3,2}
{5,4,1}
{5,4,2}
{5,4,3}
{6,2,1}



F �
�[n]

k

⇥
, |F| = m,

|�F| ⇥
� mk

k�1

⇥
+

�mk�1
k�2

⇥
+ · · · +

� mt

t�1

⇥
.

the k-cascade of m is

Then

Kruskal-Katona Theorem

m =
�mk

k

⇥
+

�mk�1
k�1

⇥
+ · · · +

�mt

t

⇥
.

The first m k-sets in colex order 
have the smallest shadow.

R(m, k) first m k-sets in colex order:

K-K Theorem: |�F| � |�R(|F|, k)|



F �
�[n]

k

⇥
, |F| = m, the k-cascade of m is

Then

Kruskal-Katona Theorem

m =
k⇤

�=t

�
m�

⇥

⇥
.

|�rF| �
r⇤

�=t�k+r

�
m�

⇥

⇥
.

�rF =
⌅

S ⇥
⇥

[n]
r

⇤ ���� ⇤T ⇥ F , S � T

⇧
r-shadow:

�rF = � · · ·�⇤ ⇥� ⌅
k�r

F



Let F �
�[n]

k

⇥
, n ⇥ 2k.

|F| ⇥
�

n� 1
k � 1

⇥

Erdős-Ko-Rado Theorem

⇤S, T � F , S ⌃ T ⇥= ⌅

|F| >
�n�1

k�1

⇥
Suppose G = {S̄ | S � F}

S ⇥� T̄

|F| + |�kG| �
�n

k

⇥

|�kG| >
�n�1

k

⇥
let

|G| >
�n�1

k�1

⇥
=

�n�1
n�k

⇥ K-K

F and �kG
are disjointS ⇤ T �= ⇥

�n�1
k�1

⇥
+

�n�1
k

⇥
<

�n
k

⇥
=

Contradiction!


