Combinatorics

南京大学

Course Info

- Instructor: 尹一通
 - yinyt@nju.edu.cn,
- Office hour:
 - 804, Wednesday, 4–6pm
- course homepage:
 - http://tcs.nju.edu.cn/wiki/

Combinatorics

combinatorial≈ discrete finite

solution: combinatorial object

constraint: combinatorial structure

• Enumeration (counting):

How many solutions satisfying the constraints?

• Existence: Does there exist a solution?

• Extremal:

How large/small a solution can be to preserve/avoid certain structure?

• Ramsey:

When a solution is sufficiently large, some structure must emerge.

• Optimization: Find the optimal solution.

Construction (design): Construct a solution.

Textbook

van Lint and Wilson, A course in Combinatorics, 2nd Edition.

Jukna, Extremal Combinatorics: with applications in computer science, 2nd Edition.

Reference Books

Stanley,
Enumerative Combinatorics,
Volume I

Graham, Knuth, and Patashnik, Concrete Mathematics: A Foundation for Computer Science

Reference Books

Aigner and Ziegler.

Proofs from THE BOOK.

Alon and Spencer.
The Probabilistic Method.

Cook, Cunningham, Pulleyblank, and Schrijver. Combinatorial Optimization.

Enumeration

(counting)

How many ways are there:

- to rank n people?
- to assign m zodiac signs to n people?
- to choose m people out of n people?
- to partition *n* people into *m* groups?
- to distribute m yuan to n people?
- to partition m yuan to n parts?

•

The Twelvefold Way

Gian-Carlo Rota (1932-1999)

The twelvefold way

$$f: N \to M$$
 $|N| = n, |M| = m$

elements of N	elements of M	any f	1-1	on-to
distinct	distinct			
identical	distinct			
distinct	identical			
identical	identical			

Knuth's version (in TAOCP vol.4A)

n balls are put into m bins

balls per bin:	unrestricted	≤ 1	≥ 1
n distinct balls, m distinct bins	m^n		
n identical balls, m distinct bins			
n distinct balls, m identical bins			
n identical balls, m identical bins			

Tuples

$$\{1, 2, \dots, m\}$$

$$[m] = \{0, 1, \dots, m-1\}$$

$$[m]^n = \underbrace{[m] \times \cdots \times [m]}_{n}$$

$$|[m]^n| = m^n$$

Product rule:

finite sets S and T

$$|S \times T| = |S| \cdot |T|$$

Functions

count the # of functions

$$f:[n] \to [m]$$

$$(f(1), f(2), \dots, f(n)) \in [m]^n$$

one-one correspondence

$$[n] \rightarrow [m] \Leftrightarrow [m]^n$$

Functions

count the # of functions

$$f:[n] \to [m]$$

one-one correspondence

$$[n] \rightarrow [m] \Leftrightarrow [m]^n$$

Bijection rule:

finite sets S and T

$$\exists \phi : S \xrightarrow[\text{on-to}]{1-1} T \implies |S| = |T|$$

Functions

count the # of functions

$$f:[n] \to [m]$$

one-one correspondence

$$[n] \rightarrow [m] \Leftrightarrow [m]^n$$

$$|[n] \to [m]| = |[m]^n| = m^n$$

"Combinatorial proof."

Injections

 $\lceil m \rceil$

 $\lceil n \rceil$

count the # of 1-1 functions

$$f: [n] \xrightarrow{1-1} [m]$$

one-to-one correspondence

$$\pi = (f(1), f(2), \dots, f(n))$$

n-permutation: $\pi \in [m]^n$ of distinct elements

$$(m)_n = m(m-1)\cdots(m-n+1) = \frac{m!}{(m-n)!}$$

"m lower factorial n"

```
subsets of \{1, 2, 3\}:
                   {1}, {2}, {3},
                   {1, 2}, {1, 3}, {2, 3},
                   {1, 2, 3}
 [n] = \{1, 2, \dots, n\}
Power set: 2^{\lfloor n \rfloor} = \{S \mid S \subseteq [n]\}
                        |2^{[n]}| =
```

$$[n] = \{1,2,\dots,n\}$$
 Power set:
$$2^{[n]} = \{S \mid S \subseteq [n]\}$$

$$\left|2^{[n]}\right| =$$

Combinatorial proof:

A subset $S \subseteq [n]$ corresponds to a string of n bit, where bit i indicates whether $i \in S$.

$$[n] = \{1, 2, \dots, n\}$$

Power set:
$$2^{[n]} = \{S \mid S \subseteq [n]\}$$

$$\left|2^{[n]}\right| = |\{0,1\}^n| = 2^n$$

Combinatorial proof:

$$S \subseteq [n] \iff \chi_S \in \{0,1\}^n \quad \chi_S(i) = \begin{cases} 1 & i \in S \\ 0 & i \notin S \end{cases}$$

one-to-one correspondence

$$[n] = \{1, 2, \dots, n\}$$

Power set:
$$2^{[n]} = \{S \mid S \subseteq [n]\}$$

$$\left|2^{[n]}\right| =$$

A not-so-combinatorial proof:

Let
$$f(n) = |2^{[n]}|$$

$$f(n) = 2f(n-1)$$

$$f(n) = \left| 2^{[n]} \right|$$

$$f(n) = 2f(n-1)$$

$$2^{[n]} = \{ S \subseteq [n] \mid n \notin S \} \cup \{ S \subseteq [n] \mid n \in S \}$$

$$\left|2^{[n]}\right| = \left|2^{[n-1]}\right| + \left|2^{[n-1]}\right| = 2f(n-1)$$

Sum rule:

finite disjoint sets S and T

$$|S \cup T| = |S| + |T|$$

$$[n] = \{1, 2, \dots, n\}$$

Power set:
$$2^{[n]} = \{S \mid S \subseteq [n]\}$$

$$\left|2^{[n]}\right| = 2^n$$

Let
$$f(n) = |2^{[n]}|$$

$$f(n) = 2f(n-1)$$

$$f(0) = |2^{\emptyset}| = 1$$

Three rules

Sum rule:

finite disjoint sets S and T

$$|S \cup T| = |S| + |T|$$

Product rule:

finite sets S and T

$$|S \times T| = |S| \cdot |T|$$

Bijection rule:

finite sets S and T

$$\exists \phi : S \xrightarrow[\text{on-to}]{1-1} T \implies |S| = |T|$$

Subsets of fixed size

2-subsets of { 1, 2, 3 }: {1, 2}, {1, 3}, {2, 3}

k-uniform
$$\binom{S}{k} = \{T \subseteq S \mid |T| = k\}$$

$$\binom{n}{k} = \left| \binom{[n]}{k} \right|$$

"n choose k"

Subsets of fixed size

$$\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{k(k-1)\cdots1} = \frac{n!}{k!(n-k)!}$$

of ordered k-subsets: $n(n-1)\cdots(n-k+1)$

of permutations of a k-set: $k(k-1)\cdots 1$

Binomial coefficients

Binomial coefficient: $\binom{n}{k}$

$$\binom{n}{k}$$

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

1.
$$\binom{n}{k} = \binom{n}{n-k}$$

$$\sum_{k=0}^{n} \binom{n}{k} = 2^n$$

choose a k-subset ⇔ choose its compliment

Binomial theorem

Binomial Theorem

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$$

Proof:

$$(1+x)^n = \underbrace{(1+x)(1+x)\cdots(1+x)}_n$$

of x^k : choose k factors out of n

Binomial Theorem

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$$

$$\sum_{k=0}^{n} \binom{n}{k} = 2^n \qquad \text{Let } x = 1.$$

$$S = \{x_1, x_2, \dots, x_n\}$$

of subsets of S of odd sizes = # of subsets of S of even sizes

Let
$$x = -1$$
.

The twelvefold way

n balls are put into m bins

balls per bin:	unrestricted	≤ 1	≥ 1
n distinct balls, m distinct bins	m^n	$(m)_n$	
n identical balls, m distinct bins		$\binom{m}{n}$	
n distinct balls, m identical bins			
n identical balls, m identical bins			

How many ways to assign *n* beli to *k* pirates?

How many ways to assign *n* beli to *k* pirates, so that each pirate receives at least 1 beli?

$$n \in \mathbb{Z}^+$$

k-composition of n:

an ordered sum of k positive integers

a k-tuple
$$(x_1,x_2,\cdots,x_k)$$

$$x_1+x_2+\cdots+x_k=n \ \ \text{and} \ \ x_i\in\mathbb{Z}^+$$

$$n \in \mathbb{Z}^+$$

k-composition of n:

a k-tuple
$$(x_1,x_2,\cdots,x_k)$$

$$x_1+x_2+\cdots+x_k=n \ \ \text{and} \ \ x_i\in\mathbb{Z}^+$$

of k-compositions of n? $\binom{n-1}{k-1}$

n identical balls
$$x_1$$
 x_2 x_k

a k-tuple
$$(x_1,x_2,\cdots,x_k)$$

$$x_1+x_2+\cdots+x_k=n \ \ \text{and} \ \ x_i\in\mathbb{Z}^+$$

of k-compositions of n? $\binom{n-1}{k-1}$

$$\phi((x_1, x_2, \dots, x_k)) = \{x_1, x_1 + x_2, x_1 + x_2 + x_3, \dots, x_1 + x_2 + \dots + x_{k-1}\}$$

 ϕ is a 1-1 correspondence between $\{k\text{-compositions of }n\}$ and $\binom{\{1,2,\ldots,n-1\}}{k-1}$

weak k-composition of n:

an ordered sum of k nonnegative integers

a k-tuple
$$(x_1,x_2,\cdots,x_k)$$

$$x_1+x_2+\cdots+x_k=n \ \ \text{and} \ \ x_i\in\mathbb{N}$$

weak k-composition of n:

a k-tuple
$$(x_1,x_2,\cdots,x_k)$$
 $x_1+x_2+\cdots+x_k=n$ and $x_i\in\mathbb{N}$

of weak k-compositions of n? $\binom{n+k-1}{k-1}$

$$\binom{n+k-1}{k-1}$$

$$(x_1+1)+(x_2+1)+\cdots+(x_k+1)=n+k$$

a k-composition of n+k

I-I correspondence

Multisets

k-subset of S

"k-combination of S without repetition"

3-combinations of $\{1, 2, 3, 4\}$

without repetition:

$$\{1,2,3\},\{1,2,4\},\{1,3,4\},\{2,3,4\}$$

with repetition:

```
\{1,1,1\}, \{1,1,2\}, \{1,1,3\}, \{1,1,4\}, \{1,2,2\}, \{1,3,3\}, \{1,4,4\}, \{2,2,2\}, \{2,2,3\}, \{2,2,4\}, \{2,3,3\}, \{2,4,4\}, \{3,3,3\}, \{3,3,4\}, \{3,4,4\}, \{4,4,4\}
```

Multisets

multiset M on set S:

$$m:S\to\mathbb{N}$$

multiplicity of $x \in S$

m(x): # of repetitions of x in M

cardinality
$$|M| = \sum_{x \in S} m(x)$$

"k-combination of S with repetition" k-multiset on S

$$\binom{n}{k}$$
: # of k-multisets on an n-set

Multisets

$$\binom{n}{k} = \binom{n+k-1}{n-1} = \binom{n+k-1}{k}$$

$$k$$
-multiset on $S = \{x_1, x_2, ..., x_n\}$

$$m(x_1) + m(x_2) + \dots + m(x_n) = k$$
$$m(x_i) \ge 0$$

a weak n-composition of k

Multinomial coefficients

permutations of a multiset of size n with multiplicities $m_1, m_2 ..., m_k$

of reordering of "multinomial"
permutations of {a, i,i, l,l, m,m, n, o, t, u}

assign n distinct balls to k distinct bins with the i-th bin receiving m_i balls

multinomial
$$m_1, \dots, m_k$$
 coefficient m_1, \dots, m_k

Multinomial coefficients

permutations of a multiset of size n with multiplicities $m_1, m_2 ..., m_k$

assign n distinct balls to k distinct bins with the i-th bin receiving m_i balls

$$\binom{n}{m_1,\ldots,m_k} = \frac{n!}{m_1!m_2!\cdots m_k!}$$

$$\binom{n}{m, n-m} = \binom{n}{m}$$

Multinomial theorem

Multinomial Theorem

$$(x_1 + x_2 + \dots + x_k)^n$$

$$= \sum_{m_1 + \dots + m_k = n} {n \choose m_1, \dots, m_k} x_1^{m_1} x_2^{m_2} \dots x_k^{m_k}$$

Proof:
$$(x_1 + x_2 + \dots + x_k)^n$$

= $\underbrace{(x_1 + x_2 + \dots + x_k) \cdot \dots \cdot (x_1 + x_2 + \dots + x_k)}_{n}$

$$\# \text{ of } x_1^{m_1} x_2^{m_2} \cdots x_k^{m_k}$$
:

assign n factors to k groups of sizes m_1, m_2, \ldots, m_k

balls per bin:	unrestricted	≤ 1	≥ 1
n distinct balls, m distinct bins	m^n	$(m)_n$	
n identical balls, m distinct bins	$\binom{m}{n}$	$\binom{m}{n}$	$\binom{n-1}{m-1}$
n distinct balls, m identical bins			
n identical balls, m identical bins			

balls per bin:	unrestricted	≤ 1	≥ 1
n distinct balls, m distinct bins	m^n	$(m)_n$	
n identical balls, m distinct bins	$\binom{n+m-1}{m-1}$	$\binom{m}{n}$	$\binom{n-1}{m-1}$
n distinct balls, m identical bins			
n identical balls, m identical bins			

Partitions of a set

k boats

n pirates

$$P = \{A_1, A_2, \dots, A_k\}$$
 is a partition of S :
 $A_i \neq \emptyset$
 $A_i \cap A_j = \emptyset$
 $A_1 \cup A_2 \cup \dots \cup A_k = S$

Partitions of a set

$$P = \{A_1, A_2, \dots, A_k\}$$
 is a partition of S :
$$A_i \neq \emptyset$$

$$A_i \cap A_j = \emptyset$$

$$A_1 \cup A_2 \cup \dots \cup A_k = S$$

$${n \brace k}$$
 # of k-partitions of an n-set

"Stirling number of the second kind"

$$B_n = \sum_{k=1}^n \begin{Bmatrix} n \\ k \end{Bmatrix} \qquad \text{# of partitions of an } n\text{-set}$$

"Bell number"

Stirling number of the 2nd kind

$${n \brace k}$$
 # of k-partitions of an n-set

$$\begin{Bmatrix} n \\ k \end{Bmatrix} = k \begin{Bmatrix} n-1 \\ k \end{Bmatrix} + \begin{Bmatrix} n-1 \\ k-1 \end{Bmatrix}$$

Case. $\{n\}$ is not a partition block

n is in one of the k blocks in a k-partition of [n-1]

Case.2 $\{n\}$ is a partition block

the remaining k-1 blocks forms a (k-1)-partition of [n-1]

 $f:N\to M$

balls per bin:	unrestricted	≤ 1	≥ 1
n distinct balls, m distinct bins	m^n	$(m)_n$	
n identical balls, m distinct bins	$\binom{m}{n}$	$\binom{m}{n}$	$\binom{n-1}{m-1}$
n distinct balls, m identical bins	$\sum_{k=1}^{m} \begin{Bmatrix} n \\ k \end{Bmatrix}$	$\begin{cases} 1 & \text{if } n \le m \\ 0 & \text{if } n > m \end{cases}$	$\binom{n}{m}$
n identical balls, m identical bins			

Surjections

$$f: [n] \xrightarrow{\text{on-to}} [m]$$

$$\forall i \in [m]$$

$$f^{-1}(i) \neq \emptyset$$

$$(f^{-1}(1), f^{-1}(2), \dots, f^{-1}(m))$$

ordered m-partition of [n]

$$m! \begin{Bmatrix} n \\ m \end{Bmatrix}$$

balls per bin:	unrestricted	≤ 1	≥ 1
n distinct balls, m distinct bins	m^n	$(m)_n$	$m! \left\{ {n \atop m} \right\}$
n identical balls, m distinct bins	$\binom{m}{n}$	$\binom{m}{n}$	$\binom{n-1}{m-1}$
n distinct balls, m identical bins	$\sum_{k=1}^{m} \begin{Bmatrix} n \\ k \end{Bmatrix}$	$\begin{cases} 1 & \text{if } n \le m \\ 0 & \text{if } n > m \end{cases}$	$\binom{n}{m}$
n identical balls, m identical bins			

Partitions of a number

a partition of *n* into *k* parts:

an unordered sum of k positive integers

Partitions of a number

```
a partition of n into k parts:
                                       "positive"
                                    "unordered"
   n=7
                {1,6}, {2,5}, {3,4}
         {1,1,5}, {1,2,4}, {1,3,3}, {2,2,3}
          {1,1,1,4}, {1,1,2,3}, {1,2,2,2}
              {1,1,1,1,3}, {1,1,1,2,2}
                   {1,1,1,1,1,2}
                  {|,|,|,|,|,|,|}
p_k(n) # of partitions of n into k parts
```

$p_k(n)$ # of partitions of n into k parts

integral
$$\begin{cases} x_1 + x_2 + \dots + x_k = n \\ x_1 \geq x_2 \geq \dots \geq x_k \geq 1 \end{cases}$$
 solutions to

$$p_k(n) = ?$$

$$\begin{cases} x_1 + x_2 + \dots + x_k = n \\ x_1 \ge x_2 \ge \dots \ge x_k \ge 1 \end{cases}$$

$$p_k(n) = p_{k-1}(n-1) + p_k(n-k)$$

Case. I $x_k = 1$

 (x_1,\ldots,x_{k-1}) is a (k-1)-partition of n-1

Case.2 $x_k > 1$

 (x_1-1,\ldots,x_k-1) is a k-partition of n-k

partition
$$\begin{cases} x_1 + x_2 + \dots + x_k = n \\ x_1 \ge x_2 \ge \dots \ge x_k \ge 1 \end{cases}$$

$$\begin{cases} x_1 + x_2 + \dots + x_k = n \\ x_i \ge 1 \end{cases}$$

$$(x_1,\cdots,x_k)$$

permutation

"on-to"

$$k!p_k(n) \ge \binom{n-1}{k-1}$$

partition
$$\{x_1, \dots, x_k\}$$
 $y_i = x_i + k - i$

$$x_1 \ge x_2 \ge \dots \ge x_{k-2} \ge x_{k-1} \ge x_k \ge 1$$

+ $k-1$ + $k-2$ + 2 + 1

$$y_1 > y_2 > \dots > y_{k-2} > y_{k-1} > y_k > 1$$

composition of $n+\frac{k(k-1)}{2}$ (y_1,y_2,\ldots,y_k) rmutation

$$(y_1,y_2,\ldots,y_k)$$

"1-1"

$$k!p_k(n) \le \binom{n + \frac{k(k-1)}{2} - 1}{k - 1}$$

$$\frac{\binom{n-1}{k-1}}{k!} \le p_k(n) \le \frac{\binom{n + \frac{k(k-1)}{2} - 1}{k-1}}{k!}$$

If k is fixed,

$$p_k(n) \sim rac{n^{k-1}}{k!(k-1)!} \quad \text{as} \quad n o \infty$$

G. H. Hardy (1877-1947)

Srinivasa Ramanujan (1887-1920)

$$p(n) = \sum_{k=1}^{n} p_k(n)$$

$$\approx \frac{1}{4n\sqrt{3}} \exp\left\{\pi\sqrt{\frac{2n}{3}}\right\}$$

The Man Who Knew Infinity (2015 film)

Ferrers diagram

(Young diagram)

partition
$$\begin{cases} x_1 + x_2 + \dots + x_k = n \\ x_1 \ge x_2 \ge \dots \ge x_k \ge 1 \end{cases}$$

one-to-one correspondence

of partitions of *n* into *k* parts

of partitions of n with largest part k

of partitions of n = # of partitions of n-k into k parts into at most k parts

$$p_k(n) = \sum_{j=1}^k p_j(n-k)$$

balls per bin:	unrestricted	≤ 1	≥ 1
n distinct balls, m distinct bins	m^n	$(m)_n$	$m! \left\{ {m \atop m} \right\}$
n identical balls, m distinct bins	$\binom{m}{n}$	$\binom{m}{n}$	$\binom{n-1}{m-1}$
n distinct balls, m identical bins	$\sum_{k=1}^{m} \begin{Bmatrix} n \\ k \end{Bmatrix}$	$\begin{cases} 1 & \text{if } n \le m \\ 0 & \text{if } n > m \end{cases}$	$\binom{n}{m}$
n identical balls, m identical bins	$\sum_{k=1}^{m} p_k(n)$	$\begin{cases} 1 & \text{if } n \le m \\ 0 & \text{if } n > m \end{cases}$	$p_m(n)$