
Combinatorics
南京大学
尹一通

Counting (labeled) trees

“How many different trees
can be formed from
n distinct vertices?”

Cayley’s formula
for the number of trees

Chapter 30

Arthur Cayley

One of the most beautiful formulas in enumerative combinatorics concerns
the number of labeled trees. Consider the set N = {1, 2, . . . , n}. How
many different trees can we form on this vertex set? Let us denote this
number by Tn. Enumeration “by hand” yields T1 = 1, T2 = 1, T3 = 3,
T4 = 16, with the trees shown in the following table:

4 3 4 3 43 43 4 3 4 3 4 3 4

3 4 3 4 3 43 43 4 3 4 3 4 3 4

1 1 1 2 1 21 22

1 2 1 2 1 21 21

3

2 2 1 2 1 2

1 2 1 2 1 21 21 2 1 2 1 2 1 2

1

3 33

Note that we consider labeled trees, that is, although there is only one tree
of order 3 in the sense of graph isomorphism, there are 3 different labeled
trees obtained by marking the inner vertex 1, 2 or 3. For n = 5 there are
three non-isomorphic trees:

605 60

For the first tree there are clearly 5 different labelings, and for the second
and third there are 5!

2 = 60 labelings, so we obtain T5 = 125. This should
be enough to conjecture Tn = nn−2, and that is precisely Cayley’s result.

Theorem. There are nn−2 different labeled trees on n vertices.

This beautiful formula yields to equally beautiful proofs, drawing on a
variety of combinatorial and algebraic techniques. We will outline three
of them before presenting the proof which is to date the most beautiful of
them all.

Arthur Cayley

There are nn�2 trees on n distinct vertices.

Cayley’s formula:

Prüfer Code

34

6

2 5

1

7

T1 = T ;

ui : smallest leaf in Ti ;
(ui,vi) : edge in Ti ;
Ti+1 = delete ui fromTi ;

for i = 1 to n-1

Prüfer code:
(v1, v2, ... , vn-2)

T :

ui :

vi :

T1T2T3T4T5

4, 3 , 1, 3, 1, 7
2, 4, 5, 6, 3, 1

T6

leaf : vertex of degree 1
removing a leaf from T, still a tree

34

6

2 5

1

7

T :

ui :

vi : 4, 3 , 1, 3, 1, 7
2, 4, 5, 6, 3, 1

(v1, v2, ... , vn-2)

edges of T : (ui,vi), 1≤i≤n-1

vn-1 = n
a tree has ≥2 leaves
ui : smallest leaf in Ti } ui ≠ n

n is never deleted

Only need to recover
every ui from (v1, v1, ... , vn-2).

{u1, . . . , ui�1} � {vi, . . . , vn�1}
ui is the smallest number not in

34

6

2 5

1

7

T :

ui :

vi : 4, 3 , 1, 3, 1, 7
2, 4, 5, 6, 3, 1

(v1, v2, ... , vn-2)

{u1, . . . , ui�1} � {vi, . . . , vn�1}
ui is the smallest number not in

∀ vertex v in T,
occurrences of v in u1, u2, ... , un-1, vn-1 : 1
occurrences of v in edges (ui,vi), 1≤i≤n-1: degT(v)

occurrences of v in
Prüfer code: (v1, v2, ... , vn-2)

degT(v)-1

34

6

2 5

1

7

T3 :

ui :

vi : 4, 3 , 1, 3, 1, 7
2, 4, 5, 6, 3, 1

(v1, v2, ... , vn-2)

{u1, . . . , ui�1} � {vi, . . . , vn�1}
ui is the smallest number not in

∀ vertex v in Ti,
occurrences of v in ui, ui+1, ... , un-1, vn-1 : 1
occurrences of v in edges (uj,vj), i≤j≤n-1:

occurrences of v in (vi, ... , vn-2)

LMOTi
(v)

LMOTi
(v) � 1

leaf v of Ti :

in {ui, ui+1, ... , un-1, vn-1}
not in {vi, vi+1, ... , vn-2}

ui : smallest leaf in Ti

34

6

2 5

1

7

T :

ui :

vi : 4, 3 , 1, 3, 1, 7
2, 4, 5, 6, 3, 1

(v1, v2, ... , vn-2)

{u1, . . . , ui�1} � {vi, . . . , vn�1}
ui is the smallest number not in

T = empty graph;

ui : smallest number not in

add edge (ui,vi) to T ;

for i = 1 to n-1

{u1,...,ui-1}∪{vi,...,vn-1}

vn-1 = n ;

34

6

2 5

1

7

T :

ui :

vi : 4, 3 , 1, 3, 1, 7
2, 4, 5, 6, 3, 1

(v1, v2, ... , vn-2)

T = empty graph;

ui : smallest number not in

add edge (ui,vi) to T ;

for i = 1 to n-1

{u1,...,ui-1}∪{vi,...,vn-1}

vn-1 = n ;

Prüfer code is reversible 1-1
every (v1, v2, . . . , vn�2) � {1, 2, . . . , n}n�2

is decodable to a tree onto

Prüfer code is reversible 1-1
every (v1, v2, . . . , vn�2) � {1, 2, . . . , n}n�2

is decodable to a tree onto

There are nn�2 trees on n distinct vertices.

Cayley’s formula:

of sequences of adding directed edges
to an empty graph to form a rooted tree

Double Counting

: # of trees on n distinct vertices.Tn

of sequences of adding directed edges
to an empty graph to form a rooted tree

From a tree:
• pick a root;
• pick an order of edges.

Tnn(n� 1)!
= n!Tn

: # of trees on n distinct vertices.Tn

of sequences of adding directed edges
to an empty graph to form a rooted tree

From an empty graph:
• add edges one by one

• add edges one by oneFrom an empty graph:

of sequences of adding directed edges
to an empty graph to form a rooted tree

Start from n isolated vertices
rooted trees

Each step joins 2 trees.

• add edges one by oneFrom an empty graph:

Start from n rooted trees.

After adding k edges

Cayley’s formula for the number of trees 205

! Fourth proof (Double Counting). The following marvelous idea due
to Jim Pitman gives Cayley’s formula and its generalization (2) without
induction or bijection — it is just clever counting in two ways.
A rooted forest on {1, . . . , n} is a forest together with a choice of a root in
each component tree. Let Fn,k be the set of all rooted forests that consist
of k rooted trees. Thus Fn,1 is the set of all rooted trees.
Note that |Fn,1| = nTn, since in every tree there are n choices for the root.
We now regard Fn,k ∈ Fn,k as a directed graph with all edges directed
away from the roots. Say that a forest F contains another forest F ′ if F
contains F ′ as directed graph. Clearly, if F properly contains F ′, then F
has fewer components than F ′. The figure shows two such forests with the
roots on top. 10

48F2

1

3

7

9

5
2

6

F2 contains F3

5

48

F3

7

12
3

10

9

6

Here is the crucial idea. Call a sequence F1, . . . , Fk of forests a refining
sequence if Fi ∈ Fn,i and Fi contains Fi+1, for all i.
Now let Fk be a fixed forest in Fn,k and denote

• by N(Fk) the number of rooted trees containing Fk, and

• by N∗(Fk) the number of refining sequences ending in Fk.

We count N∗(Fk) in two ways, first by starting at a tree and secondly by
starting at Fk. Suppose F1 ∈ Fn,1 contains Fk. Since we may delete
the k − 1 edges of F1\Fk in any possible order to get a refining sequence
from F1 to Fk, we find

N∗(Fk) = N(Fk) (k − 1)!. (3)

Let us now start at the other end. To produce from Fk an Fk−1 we have to
add a directed edge, from any vertex a, to any of the k−1 roots of the trees
that do not contain a (see the figure on the right, where we pass from F3

to F2 by adding the edge 3 7). Thus we have n(k − 1) choices.
3

5

48 7

1
9

10

2

6
F3 −→ F2

Similarly, for Fk−1 we may produce a directed edge from any vertex b to
any of the k−2 roots of the trees not containing b. For this we have n(k−2)
choices. Continuing this way, we arrive at

N∗(Fk) = nk−1(k − 1)!, (4)

and out comes, with (3), the unexpectedly simple relation

N(Fk) = nk−1 for any Fk ∈ Fn,k.

For k = n, Fn consists just of n isolated vertices. Hence N(Fn) counts the
number of all rooted trees, and we obtain |Fn,1| = nn−1, and thus Cayley’s
formula. "

But we get even more out of this proof. Formula (4) yields for k = n:

#
{

refining sequences (F1, F2, . . . , Fn)
}

= nn−1(n − 1)!. (5)

For Fk∈Fn,k, let N∗∗(Fk) denote the number of those refining sequences
F1, . . . , Fn whose k-th term is Fk. Clearly this is N∗(Fk) times the number

Cayley’s formula for the number of trees 205

! Fourth proof (Double Counting). The following marvelous idea due
to Jim Pitman gives Cayley’s formula and its generalization (2) without
induction or bijection — it is just clever counting in two ways.
A rooted forest on {1, . . . , n} is a forest together with a choice of a root in
each component tree. Let Fn,k be the set of all rooted forests that consist
of k rooted trees. Thus Fn,1 is the set of all rooted trees.
Note that |Fn,1| = nTn, since in every tree there are n choices for the root.
We now regard Fn,k ∈ Fn,k as a directed graph with all edges directed
away from the roots. Say that a forest F contains another forest F ′ if F
contains F ′ as directed graph. Clearly, if F properly contains F ′, then F
has fewer components than F ′. The figure shows two such forests with the
roots on top. 10

48F2

1

3

7

9

5
2

6

F2 contains F3

5

48

F3

7

12
3

10

9

6

Here is the crucial idea. Call a sequence F1, . . . , Fk of forests a refining
sequence if Fi ∈ Fn,i and Fi contains Fi+1, for all i.
Now let Fk be a fixed forest in Fn,k and denote

• by N(Fk) the number of rooted trees containing Fk, and

• by N∗(Fk) the number of refining sequences ending in Fk.

We count N∗(Fk) in two ways, first by starting at a tree and secondly by
starting at Fk. Suppose F1 ∈ Fn,1 contains Fk. Since we may delete
the k − 1 edges of F1\Fk in any possible order to get a refining sequence
from F1 to Fk, we find

N∗(Fk) = N(Fk) (k − 1)!. (3)

Let us now start at the other end. To produce from Fk an Fk−1 we have to
add a directed edge, from any vertex a, to any of the k−1 roots of the trees
that do not contain a (see the figure on the right, where we pass from F3

to F2 by adding the edge 3 7). Thus we have n(k − 1) choices.
3

5

48 7

1
9

10

2

6
F3 −→ F2

Similarly, for Fk−1 we may produce a directed edge from any vertex b to
any of the k−2 roots of the trees not containing b. For this we have n(k−2)
choices. Continuing this way, we arrive at

N∗(Fk) = nk−1(k − 1)!, (4)

and out comes, with (3), the unexpectedly simple relation

N(Fk) = nk−1 for any Fk ∈ Fn,k.

For k = n, Fn consists just of n isolated vertices. Hence N(Fn) counts the
number of all rooted trees, and we obtain |Fn,1| = nn−1, and thus Cayley’s
formula. "

But we get even more out of this proof. Formula (4) yields for k = n:

#
{

refining sequences (F1, F2, . . . , Fn)
}

= nn−1(n − 1)!. (5)

For Fk∈Fn,k, let N∗∗(Fk) denote the number of those refining sequences
F1, . . . , Fn whose k-th term is Fk. Clearly this is N∗(Fk) times the number

n-k rooted trees

add an edge

any
vertex

root of
another tree

n n-k-1

of sequences of adding directed edges
to an empty graph to form a rooted tree

• add edges one by oneFrom an empty graph:

= nn�2n!

of sequences of adding directed edges
to an empty graph to form a rooted tree

Start from n rooted trees.

After adding k edges

n-k rooted trees

add an edge

any
vertex

root of
another tree

n n-k-1

n�2Y

k=0

n(n� k � 1)

= nn�1
n�1Y

k=1

k

From a tree:
• pick a root;
• pick an order of edges.

Tnn(n� 1)!
= n!Tn

From an empty graph:
• add edges one by one

n�

k=2

n(k � 1)

= nn�2n!

=

of sequences of adding directed edges
to an empty graph to form a rooted tree

Tn = nn�2

Cayley’s formula
for the number of trees

Chapter 30

Arthur Cayley

One of the most beautiful formulas in enumerative combinatorics concerns
the number of labeled trees. Consider the set N = {1, 2, . . . , n}. How
many different trees can we form on this vertex set? Let us denote this
number by Tn. Enumeration “by hand” yields T1 = 1, T2 = 1, T3 = 3,
T4 = 16, with the trees shown in the following table:

4 3 4 3 43 43 4 3 4 3 4 3 4

3 4 3 4 3 43 43 4 3 4 3 4 3 4

1 1 1 2 1 21 22

1 2 1 2 1 21 21

3

2 2 1 2 1 2

1 2 1 2 1 21 21 2 1 2 1 2 1 2

1

3 33

Note that we consider labeled trees, that is, although there is only one tree
of order 3 in the sense of graph isomorphism, there are 3 different labeled
trees obtained by marking the inner vertex 1, 2 or 3. For n = 5 there are
three non-isomorphic trees:

605 60

For the first tree there are clearly 5 different labelings, and for the second
and third there are 5!

2 = 60 labelings, so we obtain T5 = 125. This should
be enough to conjecture Tn = nn−2, and that is precisely Cayley’s result.

Theorem. There are nn−2 different labeled trees on n vertices.

This beautiful formula yields to equally beautiful proofs, drawing on a
variety of combinatorial and algebraic techniques. We will outline three
of them before presenting the proof which is to date the most beautiful of
them all.

Arthur Cayley

There are nn�2 trees on n distinct vertices.

Cayley’s formula:

Graph Laplacian
1 2

34

Graph G(V,E)
adjacency matrix A

A(i, j) =

(
1 {i, j} 2 E

0 {i, j} 62 E

D(i, j) =

(
deg(i) i = j

0 i 6= j

diagonal matrix D
D =

2

6664

d1
d2

. . .
dn

3

77750
0

graph Laplacian L

L = D �A L =

2

664

3 �1 �1 �1
�1 2 �1 0
�1 �1 3 �1
�1 0 �1 2

3

775

1 2

34

graph Laplacian L

Graph Laplacian

L(i, j) =

8
><

>:

deg(i) i = j

�1 i 6= j, {i, j} 2 E

0 otherwise

xLxT =
X

i

dix
2
i �

X

ij2E

xixj =
1

2

X

ij2E

(xi � xj)
2

quadratic form:

x1 x2

x3x4

incidence matrix B :

B(i, e) =

8
><

>:

1 e = {i, j}, i < j

�1 e = {i, j}, i > j

0 otherwise

n⇥m
i 2 V, e 2 E

L = BBT

Kirchhoff’s matrix-tree theorem
Li,i : submatrix of L obtained by removing

the ith row and ith collumn

i

i

t(G) : number of spanning trees in G

Kirchhoff’s matrix-tree theorem
Li,i

t(G)

Kirchhoff ’s Matrix-Tree Theorem:
8i, t(G) = det(Li,i)

: submatrix of L obtained by removing
the ith row and ith collumn

: number of spanning trees in G

Kirchhoff ’s Matrix-Tree Theorem:
8i, t(G) = det(Li,i)

Bi :
incidence matrix B removing ith row

(n� 1)⇥m

L = BBT

=?Li,i = BiB
T
i det(Li,i) = det(BiB

T
i)

(

S

(
S

det(AB) =
X

S2([m]
n)

det(A[n],S) det(BS,[n])

Cauchy-Binet Theorem:

A B

A : n⇥m
B : m⇥ n

det(AB) =
X

S2([m]
n)

det(A[n],S) det(BS,[n])

Cauchy-Binet Theorem:

det(Li,i) = det(BiB
T
i)

=
X

S2([m]
n�1)

det(B[n]\{i},S) det(B
T
S,[n]\{i})

=
X

S2([m]
n�1)

det(B[n]\{i},S)
2

det(Li,i)

j 2 [n] \ {i}, e 2 S

=
X

S2([m]
n�1)

det(B[n]\{i},S)
2

B[n]\{i},S(j, e) =

8
><

>:

1 e = {j, k}, j < k

�1 e = {j, k}, j > k

0 otherwise

det(B[n]\{i},S) =

(
±1 S is a spanning tree of G

0 otherwise

det(B[n]\{i},S) =

(
±1 S is a spanning tree of G

0 otherwise

B:)
S

B’
i

B0 = B[n]\{i},S

(n� 1)⇥ (n� 1) matrix:
every column contains

at most one 1 and at most one -1
and all other entries are 0

det(B0) 2 {�1, 0, 1}

det(B0) 6= 0 i↵ S is a spanning tree

B:)
S

B’
i

det(B0) 6= 0 i↵ S is a spanning tree

S is not a spanning tree:

∃ a connected component R
s.t. i 62 R

det(B0) = 0

S is a spanning tree:

9 a leaf j1 6= i with incident edge e1, delete e1
9 a leaf j2 6= i with incident edge e2, delete e2...

vertices:
edges:

j1, j2, . . . , jn�1

e1, e2, . . . , en�1

e1, e2, . . . , en�1

j1

j2
...

jn�1

±1
±1

±1

...
0

det(B0) = ±1

det(Li,i)

j 2 [n] \ {i}, e 2 S

=
X

S2([m]
n�1)

det(B[n]\{i},S)
2

B[n]\{i},S(j, e) =

8
><

>:

1 e = {j, k}, j < k

�1 e = {j, k}, j > k

0 otherwise

det(B[n]\{i},S) =

(
±1 S is a spanning tree of G

0 otherwise

Cauchy-Binet

Kirchhoff ’s Matrix-Tree Theorem:
8i, t(G) = det(Li,i)

all n-vertex trees: spanning trees of Kn

Li,i =

2

6664

n� 1 �1 · · · �1
�1 n� 1 · · · �1
...

...
. . .

...
�1 �1 · · · n� 1

3

7775

Tn = t(Kn) = det(Li,i) = nn�2

Cayley formula:

