Combinatorics

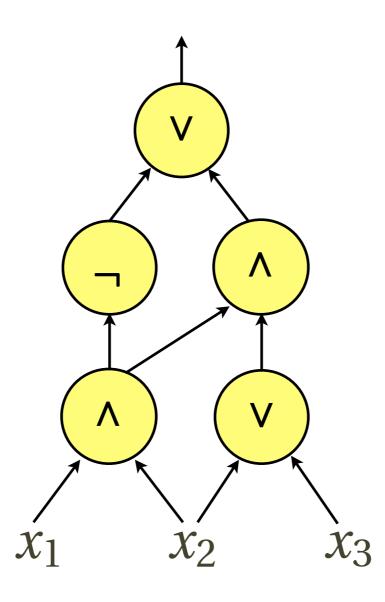
南京大学

Circuit Complexity

Boolean function

$$f: \{0,1\}^n \to \{0,1\}$$

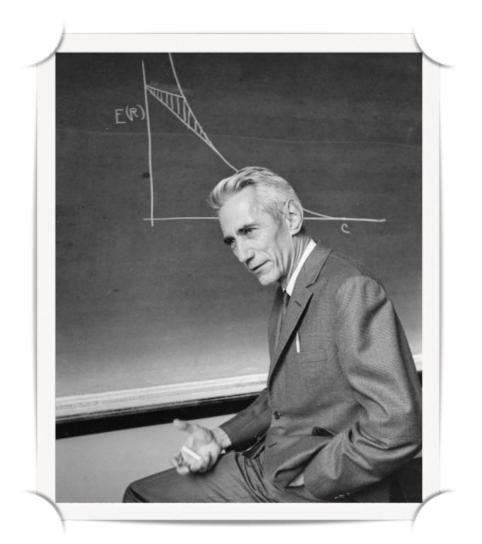
Boolean circuit



- DAG (directed acyclic graph)
- Nodes:
 - inputs: $x_1 \dots x_n$
 - gates: ∧ ∨ ¬
- Complexity: #gates

Theorem (Shannon 1949)

There is a boolean function $f: \{0,1\}^n \to \{0,1\}$ which cannot be computed by any circuit with $\frac{2^n}{3n}$ gates.

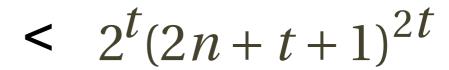


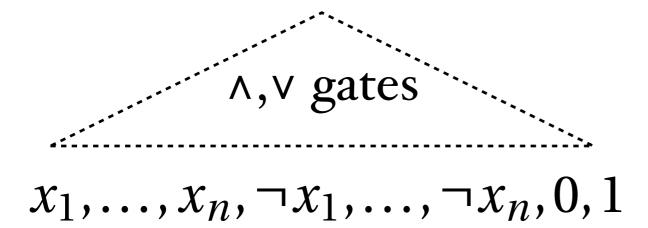
Claude Shannon

of
$$f: \{0,1\}^n \to \{0,1\}$$

$$\left| \{0,1\}^{2^n} \right| = 2^{2^n}$$

of circuits with t gates:





De Morgan's law:

$$\neg (A \lor B) = \neg A \land \neg B$$
$$\neg (A \land B) = \neg A \lor \neg B$$

$$x_i, \neg x_i, 0, 1$$
other (t-1) gates

Theorem (Shannon 1949)

Almost all There is a boolean function $f: \{0, 1\}^n \to \{0, 1\}$ which cannot be computed by any circuit with $\frac{2^n}{3n}$ gates.

one circuit computes one function

#f computable by t gates ≤

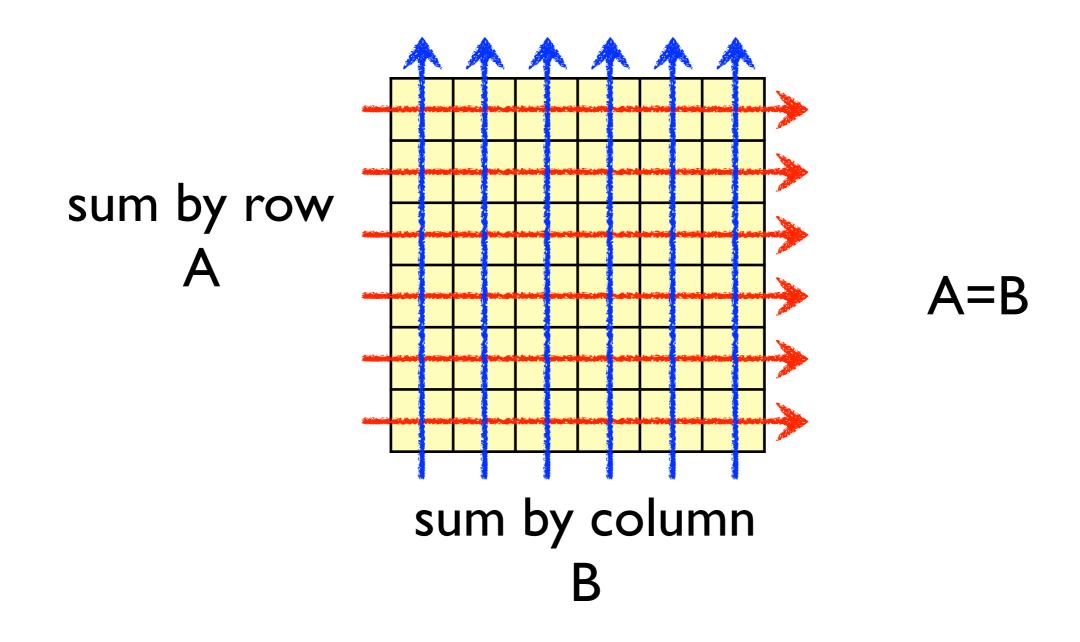
#circuits with *t* gates ≤

$$2^{t}(2n+t+1)^{2t} \iff 2^{2^{n}} = \#f$$

$$t = 2^{n}/3n$$

Double Counting

"Count the same thing twice. The result will be the same."



Handshaking lemma

A party of *n* guests.

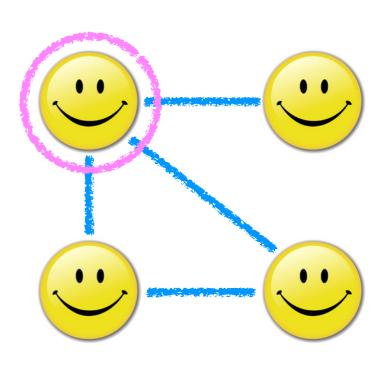
The number of guests who shake hands an odd number of times is even.

Modeling:

n guests $\Leftrightarrow n$ vertices

handshaking ⇔ edge

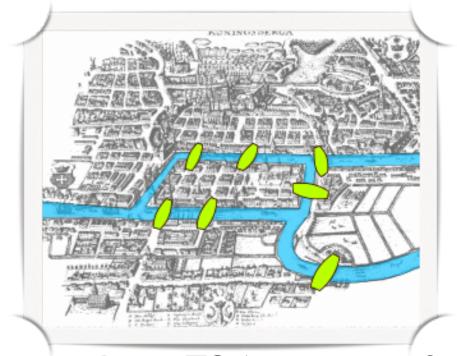
of handshaking ⇔ degree



Lemma (Euler 1736)

$$\sum_{v \in V} d(v) = 2|E|$$

Leonhard Euler



In the 1736 paper of Seven Bridges of Königsberg

Lemma (Euler 1736)

$$\sum_{v \in V} d(v) = 2|E|$$

Count directed edges:

$$(u,v):\{u,v\}\in E$$

Count by vertex:

$$\forall v \in V$$

d directed edges

$$(v, u_1) \cdots (v, u_d)$$

Count by edge:

$$\forall \{u,v\} \in E$$

2 directions

$$(u,v)$$
 and (v,u)

Lemma (Euler 1736)

$$\sum_{v \in V} d(v) = 2|E|$$

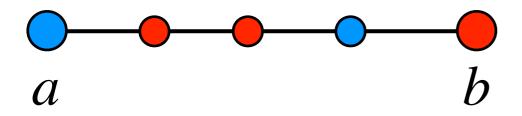
Corollary

of odd-degree vertices is even.

Sperner's Lemma

line segment: ab divided into small segments

each endpoint: red or blue

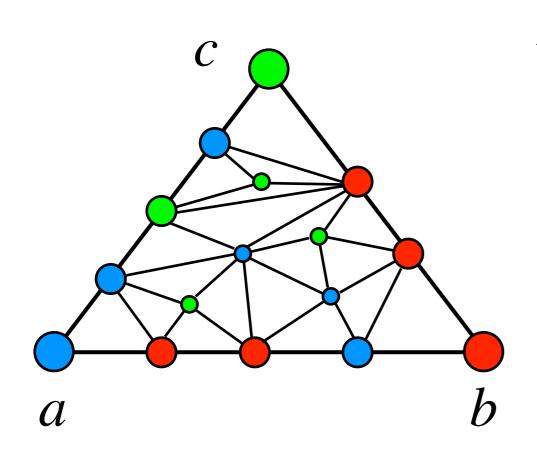


ab have different color

∃ small segment •—•

Emanuel Sperner

Sperner's Lemma



triangle: abc

triangulation

proper coloring:

3 colors red, blue, green abc is tricolored

lines ab, bc, ac are 2-colored

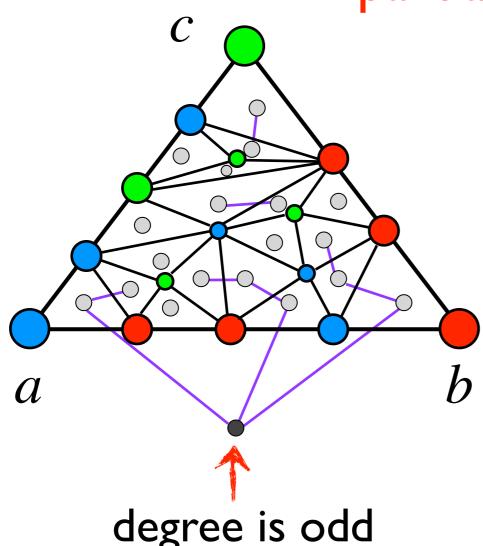
Sperner's Lemma (1928)

∀ properly colored triangulation of a triangle,∃ a tricolored small triangle.

Sperner's Lemma (1928)

∀ properly colored triangulation of a triangle,∃ a tricolored small triangle.

partial dual graph:



each \triangle is a vertex the outer-space is a vertex

add an edge if $2 \triangle$ share a $\bullet - \bullet$ edge

degree of node: 1

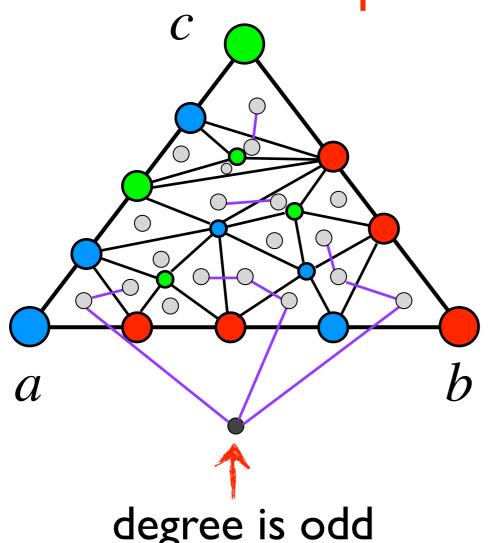
degree of or node: 2

other cases: 0 degree

Sperner's Lemma (1928)

∀ properly colored triangulation of a triangle,∃ a tricolored small triangle.

partial dual graph:



degree of node: 1

degree of other \triangle : even

handshaking lemma:

of odd-degree vertices is even.

of ∴: odd ≠0

Sperner's Lemma (1928)

∀ properly colored triangulation of a triangle,∃ a tricolored small triangle.

high-dimension: triangle simplex triangulation simplicial subdivision

Brouwer's fixed point theorem (1911)

 \forall continuous function $f: B \rightarrow B$ of an n-dimensional ball B, \exists a fixed point x = f(x).

Pigeonhole Principle

If > mn objects are partitioned into n classes, then some class receives > m objects.

Schubfachprinzip

"drawer principle"

Dirichlet Principle

Johann Peter Gustav Lejeune Dirichlet

Dirichlet's approximation

x is an irrational number.

Approximate *x* by a rational with bounded denominator.

Theorem (Dirichlet 1879)

For any natural number n, there is a rational number $\frac{p}{q}$ such that $1 \le q \le n$ and

$$\left| x - \frac{p}{q} \right| < \frac{1}{nq}.$$

x is an irrational number.

Theorem (Dirichlet 1879)

For any natural number n, there is a rational number $\frac{p}{q}$ such that $1 \le q \le n$ and

$$\left| x - \frac{p}{q} \right| < \frac{1}{nq}.$$

fractional part: $\{x\} = x - \lfloor x \rfloor$

(n+1) pigeons: $\{kx\}$ for k = 1, ..., n+1

n holes: $\left(0,\frac{1}{n}\right), \left(\frac{1}{n},\frac{2}{n}\right), \ldots, \left(\frac{n-1}{n},1\right)$

x is an irrational number.

fractional part:
$$\{x\} = x - \lfloor x \rfloor$$

$$(n+1)$$
 pigeons: $\{kx\}$ for $k = 1, ..., n+1$

n holes:
$$\left(0, \frac{1}{n}\right), \left(\frac{1}{n}, \frac{2}{n}\right), \dots, \left(\frac{n-1}{n}, 1\right)$$

$$\exists 1 \leq b < a \leq n+1 \quad \{ax\}, \{bx\} \text{ in the same hole }$$

$$|(a-b)x - (\lfloor ax \rfloor - \lfloor bx \rfloor)| = |\{ax\} - \{bx\}| < \frac{1}{n}$$

integers: $q \leq n$

$$|qx-p|<\frac{1}{n}\qquad \qquad |x-\frac{p}{q}|<\frac{1}{nq}.$$

An initiation question to Mathematics

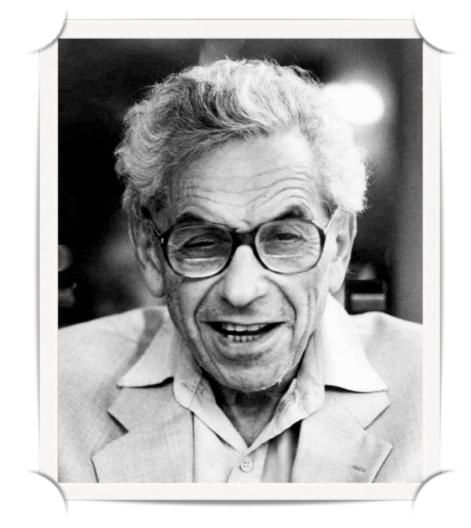
$$\forall S\subseteq\{1,2,\ldots,2n\} \ \ \text{that} \ \ |S|>n$$

$$\exists a,b\in S \ \ \text{such that} \ \ a\mid b$$

$$\forall a \in \{1, 2, \dots, 2n\}$$

 $a=2^k m$ for an odd m

$$C_m = \{2^k m \mid k \ge 0, 2^k m \le 2n\}$$



Paul Erdős

$$>n$$
 pigeons: S

n pigeonholes: $C_1, C_3, C_5, ..., C_{2n-1}$

$$a < b \quad a, b \in C_m \quad \Longrightarrow \quad a \mid b$$

Monotonic subsequences

sequence: (a_1, \ldots, a_n) of n different numbers

$$1 \le i_1 < i_2 < \dots < i_k \le n$$

subsequence:

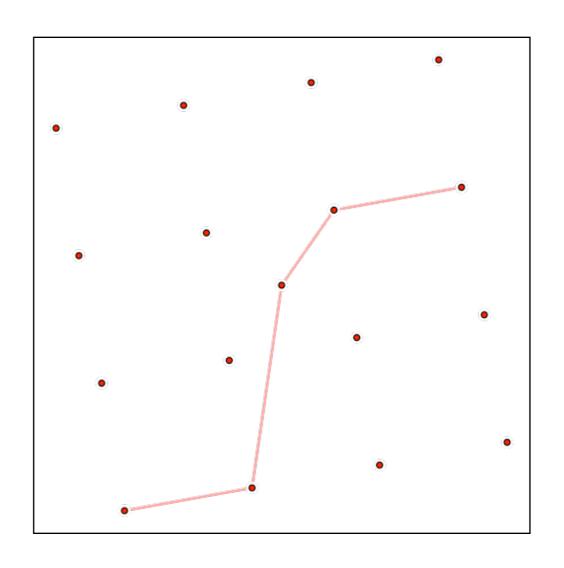
$$(a_{i_1}, a_{i_2}, \dots, a_{i_k})$$

increasing:

$$a_{i_1} < a_{i_2} < \ldots < a_{i_k}$$

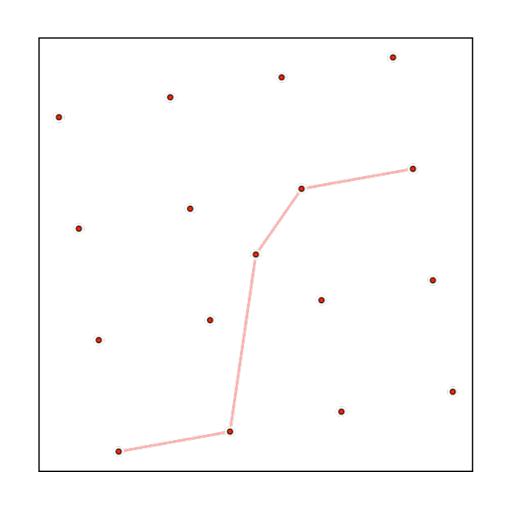
decreasing:

$$a_{i_1} > a_{i_2} > \ldots > a_{i_k}$$



Theorem (Erdős-Szekeres 1935)

A sequence of > mn different numbers must contain either an increasing subsequence of length m+1, or a decreasing subsequence of length n+1.



(a_1, \ldots, a_N) of N different numbers N > mn

associate each a_i with (x_i, y_i)

 x_i : length of longest increasing subsequence ending at a_i

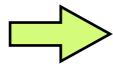
 y_i : length of longest decreasing subsequence starting at a_i

$$\forall i \neq j, \quad (x_i, y_i) \neq (x_j, y_j)$$

assume

Cases.: $a_i < a_j$ \longrightarrow $x_i < x_j$

Cases.2: $a_i > a_j$ \longrightarrow $y_i > y_j$



(a_1, \ldots, a_N) of N different numbers N > mn

 x_i : length of longest increasing subsequence ending at a_i

"N pigeons" (a_1,\ldots,a_N)

 y_i : length of longest decreasing

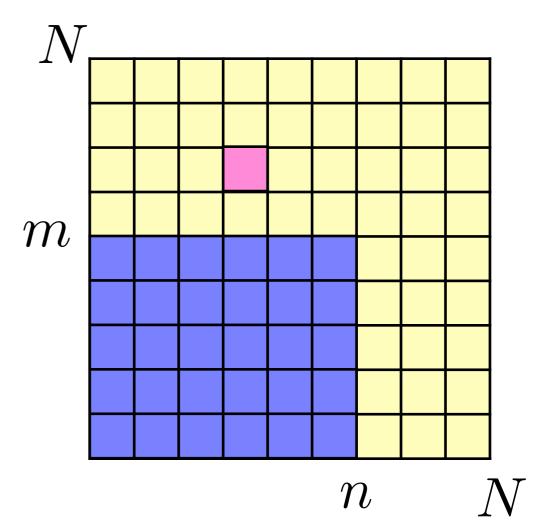
subsequence starting at a_i

$$\forall i \neq j, \quad (x_i, y_i) \neq (x_j, y_j)$$

"One pigeon per each hole."

No way to put N pigeons into mn holes.

 a_i is in hole (x_i, y_i)



Theorem (Erdős-Szekeres 1935)

A sequence of > mn different numbers must contain either an increasing subsequence of length m+1, or a decreasing subsequence of length n+1.

$$(a_1,\ldots,a_N)$$
 $N>mn$

 x_i : length of longest increasing subsequence ending at a_i

 y_i : length of longest decreasing subsequence starting at a_i

