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Ramsey Number

“In any party of six people, either at least three of them are mutual
strangers or at least three of them are mutual acquaintances”

e For any two coloring of Kg,
there is a monochromatic Ks .

Ramsey’s Theorem

If n = R(k, k), for any two
coloring of K;,, there is a
monochromatic Kj.

Ramsey number: R(k,k)



Theorem (Erdss 1947)

k
If (7) .21-(2) < 1 then it is possible to color
the edges of K;, with two colors so that there
is no monochromatic K3 subgraph.

For each edge e € K,

. with prob 1/2

e is colored {

. with prob 1/2

For a particular K, (’26) edges
k
2

Pr[ K or Kj | = 21_( )



Theorem (Erdds 1947)

k
If (7) .21-(2) < 1 then it is possible to color
the edges of K;, with two colors so that there
is no monochromatic K3 subgraph.

For a particular Ky,
k
Pr[the K. is monochromatic] = 21-(2)
number of Ky in K,,: ()
Pr[d a monochromatic Ky ]

< (") ol-(3) <1



Theorem (Erdds 1947)

k
If (7) .21-(2) < 1 then it is possible to color
the edges of K;, with two colors so that there
is no monochromatic K3 subgraph.

For a random two-coloring:

Pr[d a monochromatic K;] <1
Pr[—3 a monochromatic K] > 0

There exists a two-coloring without
monochromatic Kj..



Tournament

T(V, E)
n players, each pair has a match.

u points to v iff u beats v. @ ) @
k-paradoxical: T >< l
For every k-subset § of

there is a player in '\ S who @<_@

beats all players in S.

“Does there exist a k-paradoxical tournament for every finite k?”



Theorem (Erdds 1963)

If (Z) (1 — 2"“)”4C < 1 then there is a
k-paradoxical tournament of n players.

Pick a random tournament T on n players [n].

Fixed any § ¢ ([Z]>

Event Ag : no player in J'\S beat all players in S.

Pr[Ag] = (1—27F)""



Theorem (Erdds 1963)

If (Z) (1 — 2"“)”4C < 1 then there is a
k-paradoxical tournament of n players.

Pick a random tournament T on n players [n].

Event Ag : no player in '\S beat all players in S.
Pr[Ag] = (1—27%)"""
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Theorem (Erdds 1963)

If (Z) (1 — 2"“)”4C < 1 then there is a
k-paradoxical tournament of n players.

Pick a random tournament T on n players [n].

Event Ag : no player in '\S beat all players in S.

Pr \/A5<]_

_SE([Z])

Pr[T is k-paradoxical] =1-Pr| \/ As| > 0




Theorem (Erdds 1963)

If (Z) (1 — 2"“)”4C < 1 then there is a
k-paradoxical tournament of n players.

Pick a random tournament T on n players [n].

Pr|T is k-paradoxical] > 0

There is a k-paradoxical tournament on n players.



The Probabilistic Method

e Pick random ball from a box, O O O
Pr{the ball is blue}>0. O . O
= There is a blue ball.

* Define a probability space 2, and a property P:

I;CI[P(X)] > ()

—> dx € (2 with the property P.



Averaging Principle

* Average height of the students in class is /.

= There is a student of height >/ (< /)

¢ For a random variable X,

e 1 x < E[X], such that X = x is possible;
e 3 x > E[X], such that X = x is possible.



Hamiltonian paths in tournament

Hamiltonian path:

a path visiting every
vertex exactly once.

Theorem (Szele 1943)

There is a tournament on 7n players with at
least n!2~ "~V Hamiltonian paths.



Theorem (Szele 1943)

There is a tournament on 7n players with at
least n!2~ """~V Hamiltonian paths.

Pick a random tournament T on n players [n].
For every permutation x of [n],
1 mis a Hamiltonian path
Xp =

0 mis nota Hamiltonian path

# Hamiltonian paths: X =) X,
T

E[X,]= Pr[X,=1]= 2~ "D



Theorem (Szele 1943)

There is a tournament on 7n players with at
least n!2~ """~V Hamiltonian paths.

Pick a random tournament T on n players [n].

# Hamiltonian paths: X = ZXR
E[X,]= Pr[X,=1]= 2"}

E[X] =) E[X;]=nl2”"""D



Large Independent Set

® Graph G(VE)
® independentsetS CV

® no adjacent vertices
in S

® max independent set is
NP-hard



Theorem

G has n vertices and m edges

TL2

> 3 an independent set S of size —
dm

A uniform S is very unlikely to be an
independent set!



G(V,E) : n vertices, m edges

l1.sample a random S : each vertex is chosen
independently with probability p

2.modify Sto S*: independent set!

Vuve E  if u,vesS
delete one of i,y from §

: I wu,ved
Y: #ofedgesinS v=> VY, Y, = ’
8 {O 0.W.

uve l

E[|S7]] = E[|S|] - E[Y]

BIS| = np  E[Y] = Y BlY.) = mp?



G(V,E) : n vertices, m edges

l1.sample a random S : each vertex is chosen
independently with probability p

2.modify Sto S*: independent set!

Vuve E  if u,vesS
delete one of i,y from §

1
E(|S*(] > np —mp” = ;—

n

when p=—
2m



G(V,E) : n vertices, m edges adv:grfeg: =
n2 T
random S*:  E[|S*]|> — = —
do 1571 2 4m 2d
Theorem

G has n vertices and m edges

2

> 3 an independent set S of size Z—
T



Markov’s Inequality

Markov’s Inequality:
For nonnegative X, tor any ¢ > 0,
E[X]
PriX = 1] < at
Proof:

1 ifX=>t, X| X

Let Y =+« | :>YS[_JS_’

0 otherwise. t t

X
Pr(X=t]=E[Y]| =E |7 i;(]

QED



Markov’s Inequality

Markov’s Inequality:
For nonnegative X, tor any ¢ > 0,
E[X]

PriX =t1] < .

p.d.f.
A E[X]

\ P{X = a)

0 a X




Graph G(V, F)

girth g(G): length of the shortest cycle

chromatic number y(G):

minimum number of color to
properly color the vertices of G.

A gG)=3 xG)=3

1 2G)=4 yG=2

Intuition: Large cycles are easy to color!



" Theorem (ErdOs 1959)

For all k, £, there exists a finite graph G with
X(G) > k and g(G) > /.

coloring classes:

equivalence classes of vertices

“Independent sets!”

independence number a(G):

size of the largest independent set in G.

n vertices




For all k,{, there exists a graph G on n vertices

with o(G) < # and g(G) > /.

Vien Viuo)e (Z)

independently Pr[{u,v} C E] =P



Random Graphs

\ Sp—
\

3
I

.‘d

\41
Paul ErdOs Alfréd Rényi
(1913 - 1996) (1921 - 1970)



Erdds-Rény1 1960 paper:

ON THE EVOLUTION OF RANDOM GRAPHS

by

P. ErRDOs and A. RENYI

Institute of Mathematics
Hungarian Academy of Sciences, Hungary

I. Definition of a random graph

Let E,, ~ denote the set of all graphs having n given labelled vertices V,V,,---,
Va and N edges. The graphs considered are supposed to be not oriented, without
parallel edges and without slings (such graphs are sometimes called linear graphs).
Thus a graph belonging to the set E.,» is obtained by choosing N out of the

possible (%) edges between the points Vi, Vi, -+, Vi, and therefore the number of
elements of E., » is equal to ((%]) A random graph I'n,» can be defined as an
element of E,, » chosen at random, so that each of the elements of F., » have the
same probability to be chosen, namely 1/([’2;)) There is however an other slightly

different point of view, which has some advantages. We may consider the forma-
tion of a random graph as a stochastic process defined as follows: At time (=1

we choose one out of the (%) possible edges connecting the points Vi, Vi, Vg,




Vi=n Yu,v €V
independently Pr|{u,v} € E|=p

uniform random graph: G(n, =)



For all k,{, there exists a graph G on n vertices

with o(G) < # and g(G) > /.

fix any large k, [
G~G(n,p)
Plan:

Pr[ o(G) > nlk 1 < 1/2

Pr[ g(G) <[] < 1/2

exists n

¥

union
bound

> Pr[ a(G)>n/k V 9(G)<l <1
Pr| a(G)=<n/k A g(G)=[ |>0



G~G(n,p)

Prla(G) > n/k] < Pr[dind. set of size n/k|

< Pr[3s e (TE/]]C)V{u v} € <§>uv Z G
Z Pr|V{u,v} € ( > wv € G|  union bound

SE(n/k)

LY L mwra - ()aont

SE( ){u U}G )

<n"/k(1—p)"5)



G~G(n,p) Prla(G) > n/k] <n™k(1 —p)(")

Pr[ g(G)>1]<?

for each i-cycle o:u; — us — ... = u; — ug

Prlo is a cycle in G| = p’

P 1 oisacyclein G
> 10 otherwise

# of length</ cyclesin G~ X = Z Z Xo

1=3 o:|o|=1

=iz 1= Y

1=3 o:|o|=1 i=3 o:|o|=1

‘ n(n —1) (n—z+)i £ nt .
Z P ZQ—ZP

1=3 1=3




np 3inn

G~G(n.p) k= o — n/k = ;
Pria(G) > n/k] < n™*k(1 — p)("2)
< nn/ke_p(nék)

= (ne~P(n/k=L)/Zyn/k — (1)

X : #oflength</cyclesin G

01

¢ : ¢
X <35 =20
21 ; 21
=3 =3
1
p:ne_l 9<2—€
Prlx > 1 < 2EXT o)
27— n

Markov



G~G(np)
1 np

1/26
01 1 _ _
p=mn 0<%, F=3mn ~ 3mnn

Prla(G) > n/k] = o(1)

X : #oflength</cyclesin G

1G: alG) <n/k
# of length</ cycles in G < n/2

delete 1 vertex per each length</ cycle in G

> G

g(G)>1  afG) <a(G) <n/k



" Theorem (ErdOs 1959)

For all k, £, there exists a finite graph G with
X(G) > k and g(G) > /.

coloring classes:

equivalence classes of vertices

“Independent sets!”

independence number a(G):

size of the largest independent set in G.

n vertices




Ramsey Number

“In any party of six people, either at least three of them are mutual
strangers or at least three of them are mutual acquaintances”

e For any two coloring of Kg,
there is a monochromatic Ks .

Ramsey’s Theorem

If n = R(k, k), for any two
coloring of K;,, there is a
monochromatic Kj.

Ramsey number: R(k,k)



R(kk) > "?

“3 a 2-coloring of K, no monochromatic Kx.”

The Probabilistic Method:

a random 2-coloring of K,
vS e (M)
event As: S is a monochromatic Kx

To prove:

Pr /\ Ag| >0
SE([Z])




| ovasz Sieve

e Bad events: A, Ay, ..., A,

e None of the bad events occurs:
o

Pr| A\ A;

=1

e [he probabilistic method: being good is possible

n —
Pr A;jl >0
-1

l

h




events: A, Aoz, ..., Ax
dependency graph: D(V,E)

V={1,2,...n}
ek <Z:> A;and A; are dependent

d : max degree of dependency graph

A
y A3(Xp, X3) O

Xi,..., X4 mutually independent



events: A, Ao, ..., Ax

d : max degree of dependency graph

Lovasz Local Lemmma

e Vi, Pr{Aj] <p > Pr’
eep(d+1)=<1 i

h

n —
A;jl >0
=1 )

General Lovasz Local Lemxma
dx1,...,T, € [0,1)

Vi, Pr|A;] < x; H(1 — ;) ::> Pr _,,;/:\1E_ > 71;[1(1 — x;)

jri




R(kk)=n
“3 a 2-coloring of K,, no monochromatic K.’

a random 2-coloring of K, :

Uy
V{u,v}&€K,, uniformly and independently {

uyv

VS € ([Z’]) event As: S is a monochromatic Kx
Pr(dg] — 2.9-(5) — o1-(5)
As, Ar dependent <:::> SNT| > 2
ey o (1),
max degree o ependency graph @ = {, ], _ 4

To prove: Pr| A\ Ag| >0
SG([Z])



Lovasz Local Lemmma

o Vi, Pr[Ai]<p
cep(d+1)=<1

Pr[Ag] = 21— (5) }

1= ()2

To prove: Pr| A\ 4s
g ([n])

:>Prr

h

l

n —
Aj
g | J

>0

for some n = ck2k/?

:> with constant ¢
e21(2) (d+1) <1

> ()

R(kJ)=n = Q(k28/?)



events: A, Ao, ..., Ax

General Lovasz Local Lemmma

EliEl,...

Vi, PI‘[Az] S XL H(l — CIZ‘j)

y Ty € [07 1)

jri

Pr

A

l

n n -
A;i| =]]Pr|A;
=1 | i=1 |

i-1_
N\ 4
Jj=1 )

Y

Lemma For any £,&,....&,,

Pr /\g@

=|[Pr|&| A&
k=1

_ 1<k

=1 i =1

i-1_
1-Pr|A;| N\ A;

j=1
proof: .

Pr [gn | n/_\l Sz} —



events: A, Ao, ..., Ax

General Lovasz Local Lemmma

drq,...,x, € (0,1) -

Vi, Pr|A;| < x; H(l — ;) :> br .

1=1

Al > ﬁ(l — ;)

jri

l.H.

Pr | A;, \Aiz---Aim] < Xj, forany ii1,...,Im}

induction on m:
m=1, trivial



events: A, Ao, ..., Ax
dx1,...,T, € [0,1)

Vi, Pr[A;] < x; [ [(1 — ;)

jrvi

|.H. Pr[Ail ‘Alelm] le'l for any {ll))lm}

suppose i adjacent to iz, ..., Ik

Pr| Ay, | Ap, -+ Ay, | =

a [AilA_iz'“Aik [ A “'Aim]

i PI[A_iz"°Aik|Aik+1'”Aim]
k
<Pr|A; | Ai, -+ Ay, | =Pr[Ay] <o [J0-o)
k k )=
= [1Pr|A; 1 Ay, -+ Ay, | = [T(1-Pr|a; 1A, 4,
J=2 J



events: A, Ao, ..., Ax

dx1,...,x, € [0,1)
Vi, Pr|A;| < x; H(l — ;)
jroi
Pr| Ay, | Ay -+ A, | <
n n _1i-1
Pri/N\Ai|=]]Pr|A:i| )\ A;
=1 | i=1 j=1

General Lovasz Local Lemmma

::> Pr /n\E > ﬁ(l—%)

:H(l—Pr A; i_/\lA_j )
=1 j=1 )
>||0-x) >0



events: A, Ao, ..., Ax

d : max degree of dependency graph

Lovasz Local Lemmma

e Vi, Pr{Aj] <p > Pr’
eep(d+1)=<1 i

h

n —
A;jl >0
=1 )

General Lovasz Local Lemxma
dx1,...,T, € [0,1)

Vi, Pr|A;] < x; H(1 — ;) ::> Pr _,,;/:\1E_ > 71;[1(1 — x;)

jri




Constraint Satisfaction Problem

® variables: xi1,x2,...,x, €D (domain)

® constraints: Ci, Ca, ..., Cy,
® where C;(x;,,x;,,...) € {true, false}

® CSP solution:an assignment of variables
satisfying all constraints

® examples: SAT, graph colorability, ...

® cxistence: YWhen does a solution exist!?

® search: How to find a solution?



