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Ramsey’s
Theorem

Frank P. Ramsey
1903-1930



“In any party of six people, either at least three of them are mutual
strangers or at least three of them are mutual acquaintances”

Color edges of K¢ with 2 colors.
There must be a monochromatic Kj.

ON A PROBLEM OF FORMAL LOGIC

By F. P. RaMSEY.

[Received 28 November, 1928.—Read 13 December, 1928.]

This paper is primarily concerned with a special case of one of the
leading problems of mathematical logic, the problem of finding a regular Fran k F). Ramsey
procedure to determine the truth or falsity of any given logical formula®.
But in the course of this investigation it is necessary to use certain (1 903-1 930)

theorems on combinations which have an independent interest and are
most conveniently set out by themselves beforehand.




R(k,l) & the smallest integer satisfying:

if n > R(k,]), then no matter how to color edges of K,
with [l and [, there must exist a red K, or a blue K.

2-coloring of K,

f (@) s {red, blue)

Ramsey Theorem

R(k, 1) is finite.

<

Frank P. Ramsey
(1903-1930)

R(33)=6



if n > R(k,]), then no matter how to color edges of K,
with [l and [, there must exist a red K, or a blue K.

Rk2)=k: RQI=1:

R < RUL— 1)+ R(k — 1,1)



if n > R(k,]), then no matter how to color edges of K,
with [l and [, there must exist a red K, or a blue K.

R < RUL— 1)+ R(k — 1,1)

lge
' ‘ take n = R(k,[-1) + R(k-1,])
@ @ arbitrary vertex v

|1S|+|T|+1=n =R(k,/-1)+ R(k-1,])

¢ RO 7 Kiin §
> 1-1)lor
OI‘/‘ ‘ ( )\ Kiiin S ﬂ> K;



if n > R(k,), then no matter how to color edges of K,
with [l and [, there must exist a red K, or a blue K.

Rk2)=k: RQI=1:

R < RGI— 1)+ Rk — 1. 1)

v

Ramsey Theorem R(k,!) is finite.

By induction:

R(k,1) < (k . : 2)




R(kk)=n
“3 a 2-coloring of K, with no monochromatic K,.”

a random 2-coloring of K, :

Uy
Viu,v} € K ,uniformly and independently { .

VS € ([Z’]) event As: S is a monochromatic Kx
Pr[Ag] = 2.2-(5) = 21-(5)
Ag, Ay dependent (> [SNT| ZkQ )
max degree of dependency graph d < <2> (k B 2>

To prove: Pr| A\ As| >0
se (')



Lovasz Local Lemmma

o Vi, Pr[Ai]<p
cep(d+1)=<1

Pr[Ag] = 21— (3)
(0]

To prove: Pr

:>Prr

h

l

n —
Aj
g | J

>0

for some n = ck2k/?

:> with constant ¢

e21(2) (d+1) <1

A As| >0

R(kJ)=n = Q(k2F/?)



Ramsey Number

k
Q (ka/Q) < R(k, k) < k= 2) o2
k-1 NG
R(k,]) 1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1
2 2 3 4 5 6 14 8 9 10
3 6 9 14 18 23 28 36 [[40,42]
4 18 25 |[36,40]|[49,58]|[59,79]|[73,106] | [92,136]
5 [43,48] |[58,85]|[80,133] | [101,194] | [133,282] | [149,381]
6 [102,161] | [115,273] | [134,427] | [183,656] | [204,949]
7 [205,497] | [219,840] | [252,1379] | [292,2134]
8 [282,1532] | [329,2683] | [343,4432]
9 [565,6588] | [581,12677]
10 [798,23556]




Multicolor

if n > R(k,l), for any 2-coloring of edges of K,
there exists a red K or a blue K.

R(r; ki, ko, ..., k)

fn=R(r; ki, ko, ..., k),
for any r-coloring of edges of K, for some 1 € [r]
there exists a k.-cligue monochromatic with color 1.

R(I’; kl, cos ’ k}"—l, ) < R(r_l; kla coe ’ (2; ))

the mixing color trick:




Multicolor

if n > R(k,l), for any 2-coloring of edges of K,

there exists a red K or a blue K.

R(r; ki, ko, ..., k)

fn=R(r; ki, ko, ..., k),
for any r-coloring of edges of K, for some 1 € [r]
there exists a k.-cligue monochromatic with color 1.

| Ramsey Theorem
R(r; ki1, ko, ..., k) is finite.



Hypergraph

fn=R(r; ki, ko, ..., k),
for any r-coloring of edges of K, for some 1 € [r]
there exists a k;-clique monochromatic with color i.

n
complete 7-uniform hypergraph ([ ])
{

7]

[

r-coloring f: ( ) — {1727°°°7T}



Hypergraph
if n=RAr; ki, ko, ..., ki),

for any r-coloring of <[Z’]>, there exists

a monochromatic (S> with color 1 and

[

| S| = k; forsomei € {1,2,...,r}
n

complete 7f-uniform hypergraph ([ ])
t

7]

[

r-coloring J : ( > —{1,2,...,71}



Partition of Set Family

fn > R, (r; ki, k-, ...,kr),

for any r-partition of ([Z’]) = C1U---UCy,
there exists an S C |n| such that [S| = k;
and (f) C (; for some ¢ € {1,2,...,r}.

Erdos-Rado partition arrow

n — (kl,kg,...,kr)t



fn > R, (r; ki, k>, ...,k,,),

for any r-partition of ([?]) = C1U---UC,,
there exists an S C |n| such that \S| = k;
and (7) C C; for some i € {1,2,...,7}.

mixing color:

Rt(r; kl, ces ’ kr—l, kl”) =< Rt(r_l; kla coe ’ Rt(za k”'l) kr))

Rt(k,l) =< Rt_l(Rt(k'l ,l), Rt(k,l'l)) + 1

n=Ru(R(k-1,0), R(k,J-1)) + 1
goal: Vf: (") — {red,blue}
(), | X|=kor (), |Y]=1




Rt(k,l) =< Rt-l(Rt(k—l ,l), Rt(k,l—l)) + 1

I = Rt_l(Rt(k‘l ,l), Rt(k,l—l)) + 1

Vf: ([Ttl]) — {red, blue}

remove n from |[n], consider ([?:11])

([n]=11,2,....,n})
define f': (")) — {red,blue}
vae ("), f(4) = f(AU {n})

n-1 —Rtl(Rt(k 1,), R(k,l-1))

JESC n — 1, S —Rt(k—l l) (t 1) -Oy f/
or -
T C [n =10, |T| = Ri(k, 1 = 1), (,[) by f'

\ 19




Rt(k,l) =< Rt_l(Rt(k—l ,l), Rt(k,l—l)) + 1

n=R.(R(k-1,0), R (k,-1)) + 1
Vf: ([”]) — {red,blue}
define f’: ([n 1]) — {red, blue}
N vAe ("2, f(A) = f(Au {n})
symmetry 35 C [n —1,|S| = Ry(k — 1,1), (,”,) by f’
X CS,|X] :k—l,(f) by f
YQS,|Y|:l,(St/) by f W/

V4 (X ut{ n }) by f <

OT <




fn >R, (r k. ks, ... k),

[7]
f
di € [r]and S C [n] with | S| = £,

such that <f> C C,

r

V r-partition of ( ) =C,U---UC

mixing color:

Rt(r; k1, cee , kr-1, ) < Rt(l’—l; k1, cee , Rt(Z; kr-l, ))

R(kJ) < Rus(Rik-1.0), Rk J-1)) + 1

Theorem (Ramsey 1930)
RAr; k1, ko, ..., k) is finite.




Ramsey Theorem

If n > R, (r; ki, k>, ...,k,,),

[n]
t
1 € [r]land S C [n] with | S| =&,

such that (f) C C,

V r-partition of ( ) =C,U--uUC

r

Theorem (Ramsey 1930)
RAr; k1, ko, ..., kr) is finite.



Ramsey Theorem

fn >R, (r; ki, ks, ...,k,,),

V r-coloring 7 <[’Z]> — [7]
di € [r]and § C [n] with | S| = £,

such thatf( (f)) = {i}

Theorem (Ramsey 1930)
RAr; k1, ko, ..., kr) is finite.



Ramsey Theorem (diagonal)

If n > R(r; k) = R(r;k, k, ..., k),

-~

V r-coloring 7 ([IZ]> — [7]

a monochromatic <f > with S ([Z])

Theorem (Ramsey 1930)
R«r; k) is finite.



Applications of
Ramsey’s Theorem




Happy Ending Problem

Any 5 points in the plane, no three on a line, has a
subset of 4 points that form a convex quadrilateral.




Theorem (Erdds-Szekeres 1935)

Vm > 3, AN(m) such that any set of n > N(m)

L ng ﬁml positioned
points in the plane, n ree on a line, contains m

points that are the vertlces of a convex m-gon.

Polygon:

p—

.

convex concave




Theorem (Erdds-Szekeres 1935)
Vm > 3, AN(m) such that any set of n > N(m)
points in the plane, no three on a line, contains m

points that are the vertices of a convex mi-gon.

Polygon:

convex concave



Theorem (Erdds-Szekeres 1935)
Vm > 3, AN(m) such that any set of n > N(m)
points in the plane, no three on a line, contains m

points that are the vertices of a convex mi-gon.

N(m) = R3(2; m, m) X = N(m)
Vi (3) —{0,1} 3SCX,|S|=m
S
(3)
X: set of points in the plane, no 3 on a line
b

Va,b,c € X, Ngpe: points in triangle abe
° o f({a,b,c}) = [Agpe| mod 2




X: set of points in the plane, no 3 on a line

Va,b,c € X, Dgpe: points in triangle abe

... f({&, bv C}) — |Aabc‘ mod 2
X1 > Rs(2;m,m) Vf:(5)— {0,1}
1S C X, |S|=m (g)

S is a convex m-gon /

Otherwise, 2 disjoint union: Contradiction!

Aabc — Aabd U acd U Abccl U{d}
. f(abc) = f(abd) + f(acd) + f(bcd) + 1

A



Happy Ending Problem

Any 5 points in the plane, no three on a line, has a
subset of 4 points that form a convex quadrilateral.




Data Structures

: Problem: “Igs x € S§?”

; dataset S & ([]X]) key = € [N| data universe [N]

4 Solution: - Complexity:

Data structure:
| sorted table
' Search Alg

> logan
Mmemory accesses
INn the worst-case




jsxes?” ze[N Se (M

'Theorem (Yao 1981)
If N > 2n, on sorted table, any search Alg
requires £2(log n) accesses in the worst-case.

: Problem: “Isn S S’?” VS S ([ ]) N =2n ;

Inductiononn, n = 2, trivial
Suppose it is true for any smaller n.

adversarial argument + self-reduction



: Problem: “Isn S S’?” VS S ([ ]) N=z=2n

Alg

first accey kth entry

sorted
table

~

e ifk<z
N—(n—k) ifk>2

noo..,N-—2} {z. .,N}) possible
: n i >§< n = {T[2+1],...,T[n]}
n =1 =[{5,.... N =5} =>n>2n

relative key in [N’]: N g’ =n'




' Problem “Isn S S'?” VS S ([ ]) N=z=2n

L2214+ 1og 5 logn Alg

fkstacciji//lkﬂ1enny

sorted
table

~

N_(n-k) k> g

N =35 “lsn'es’?” VS e ([n,]) N’> 2n

I.H. require log & memory accesses



: Problem: “Isn S S’?” VS S ([ ]) N=z=2n

Alg

first accessyith entry

sorted
table

~

k 1fk<
B %}> p033|ble




‘“sxe S?77 x€|[N| Sc¢ ([g])

'Theorem (Yao 1981)
If N > 2n, on sorted table, any search Alg
requires £2(log n) accesses in the worst-case.

implicit data structure:
each S € (UZ]) S stored as a permutatlon of S

)

dataset S 1 < - < Ty '
| table: (Zr(1),- - Tr(n)) |

([‘]X]) IS mapped to the same 7 j> same as

3X C [N],|X| > 2n, (%) monochromatic =>> Sorted




jsxes?” ze[N Se (M

Theorem (Yao 1981)
For sufficiently large NV, on any implicit data

structure, any search Alg requires £2(log n)
accesses Iin the worst-case.

implicit data structure:

1X C |[N], | X| > 2n, (f) monochromatic j> > log n
accesses




Local Computation

maximal independent set (MIS)

for any input ring,
locally compute the MIS

f-local algorithm:

L : {t-permutations of [n|} — {0,1}

> f: (@) — {0,1}

far,...,ar}) = L(a,...,a)
a1 < ao < ... < Qy



Local Computation

maximal independent set (MIS)

f-local algorithm:
f: ([?D — {0,1}
n> Ri(2;t+ 2,1+ 2)
3 a monochromatic (j) S| =1t+2

S:{al,...,at,&t+1,&t+2} a1 < ...<qp <41 < Q42



Local Computation

distributed computing in a ring

n nodes, ID from [n]

maximal independent set (MIS)

--------

f-local algorithm:
L : {t-permutations of [n|} — {0,1}

n 2> Rt(2§t+ 2,1+ 2) ::> 35 = {&17 ce 7@t,@t+1,@t+2}

L(ala .. °7at) — ’C(a’Qa R 7at-|-1) — E(Cl,g, R 7at—|—2)

construct a bad ring starting with

tradiction
(a1,a9,...,0¢, Qrai1,Qra2) Contradiction



Local Computation

distributed computing in a ring

n nodes, ID from [n]

maximal independent set (MIS)

--------

f-local algorithm:
L : {t-permutations of [n|} — {0,1}
.2ct

n<Rg(2;t+2,t+2) <22

—
> t = Q(log™ n)

t




Ramsey Theory



2-coloring of 1 to 12

1

2

34

S

67

3

9 10

11

Arithmetic Progression

12

monochromatic arithmetic progression

Can you give a 2-coloring of I\, no infinite

monochromatic arithmetic progression!?

1234567891011 1213141516 -



Van der Waerden Theorem

W(rk) = the smallest integer satisfying:

if n= W(r k), for any r-coloring of [n], there exists a
monochromatic arithmetic progression of length k

VdW Theorem
(Van der Waerden 1927)

W(r k) is finite.

Bartel Leendert van der Waerden

(1903-1996)



Van der Waerden Theorem

W(rk) = the smallest integer satisfying:

if n= W(r k), for any r-coloring of [n], there exists a
monochromatic arithmetic progression of length k

VAW Theorem W(r.k) is finite.

N=CiUCyU---UC,

> some (; contains arbitrarily long
arithmetic progression.




Hales-Jewett Theorem




Hales-Jewett Theorem

[k] = {1...., k}:an alphabet of £k symbols
[k]": n-dimensional discrete cube

combinatorial line: Ly ={t(1),7(2),...,T(k)}
T€ ([kKlu{x})" 7 contains “x”

Vielk], 7t(i)=replacingxbyiinTt

B (121312
T=1ex3x2 L= 122322
k=4 123332

1243421



Hales-Jewett Theorem

[k] = {1...., k}:an alphabet of £k symbols
[k]": n-dimensional discrete cube

combinatorial line:
HJ(r k) 2 the smallest integer satisfying:

If n= HJ(r k), for every r-coloring of the cube [£],
there exists a monochromatic combinatorial line.

Hales-Jewett Theorem HJ(r k) is finite.



AJT — VdW

If n= HJ(r k), for every r-coloring of the cube [£],
there exists a monochromatic combinatorial line.

reduction @: [k]"— [NV]
vx e [k]" @(x) = x1+x2+.. x5

combinatorial line L;={1(1),...,1(k)}
arithmetic progression {¢p(7(1)),...,d(T(k))}

T=12%3 %2 L, = {121312,122322
123332, 124342 }

if N> W(r k), for any r-coloring of [N], there exists a
monochromatic arithmetic progression of length k



AJT — VdW

If n= HJ(r k), for every r-coloring of the cube [£],
there exists a monochromatic combinatorial line.

reduction @: [k]"— [NV]
vx e [k]" @(x) = x1+x2+.. x5

combinatorial line L;={1(1),...,1(k)}

arithmetic progression {¢p(7(1)),...,p(T(k))}

fiINI=[r] => "™ — [

f(x) = fp(x)

if N> W(r k), for any r-coloring of [N], there exists a
monochromatic arithmetic progression of length k




Szemeredi’s
Regularity Lemma




History

e Ramsey theory
e \an der Waerden's theorem (1927)
e Erdds-Turan conjecture (1936)
e Szemerédi's theorem (1969,1975)
e Szemerédi regularity lemma (1975, 1978)



2-coloring of 1 to 12

1

2

34

S

67

3

9 10

11

Arithmetic Progression

12

monochromatic arithmetic progression

Can you give a 2-coloring of I\, no infinite

monochromatic arithmetic progression!?

1234567891011 1213141516 -



Van der Waerden Theorem

W(rk) = the smallest integer satisfying:

if n= W(r k), for any r-coloring of [n], there exists a
monochromatic arithmetic progression of length k

VdW Theorem
(Van der Waerden 1927)

W(r k) is finite.

Bartel Leendert van der Waerden

(1903-1996)



Erdos-Turan Conjecture

if n= W(r k), for any r-coloring of [n], there exists a
monochromatic arithmetic progression of length k&

3 )

1=
sl

ErdOs-Turan (1936): Coloring is not essential!

A :".:'.'
¢ N /
. 3
g ]

J

Every dense enough integer set has
long arithmetic progression.



Erdos-Turan Conjecture

if n= W(r k), for any r-coloring of [n], there exists a
monochromatic arithmetic progression of length k&

V density 0 < 6 < 1,V integer k, 3N (4, k)

n > N(6, k) :> every on-subset § of [n] contains

a length-k arithmetic progression

ErdOs-Turan (1936): Coloring is not essential!

Every dense enough integer set has
long arithmetic progression.



Szemereédi's Theorem

Theorem (Szemerédi 1975)
V density 0 < 0 < 1,V integer k, I N (4, k)

n > N(6, k)

key ingredient of the proof:

Szemeredi Regularity Lemma

-

every on-subset S of [n] contains
a length-k arithmetic progression




Szemeredi Regularity Lemma

Every large enough graph can be
approximated by a simple object of
constant complexity.

Vv sufficient large graph

can be partitioned into
constant equal-sized parts

Vi, Vo, ..., Vk

most (V.,V;) look like
random bipartite graphs




Regularity

not random random oris it?



Regularity

p LEX)Y)={w|ue X,veY}

density:
i(x,v) = 2& )
X Y XY

in a random graph: VAC X, BCY

E[E(A,B)| = |A|[B| - d(X,Y)

E[d(A, B)] = d(X,Y)



Regularity

p LEX)Y)={w|ue X,veY}

density:
EF(X,Y
d(X,Y) = (X, Y)
X Y XY

e-regularity: 0<e<1
VAC X,B CY with |A| > ¢/X]| and |B| > €|Y

d(A,B) —d(X,Y)| <e

regularity = uniformity



Regular Partitions

G(V.E)

g-regular partition:

{R,V1,Vo,...,Vi} of V

garbage

2. V1| =|Vo| =+ = |Vi|;

3. all but €k? pairs of (V;, V;) are e-regular.



' Theorem (Szemeredi 1978)

Vo<e<l,m=>1, dM and N

every G(V,E) with |V| > N has an e-partition
{R,Vi,...,Vi} withm < k < M.

every large enough graph can be partitioned
into bounded # of equal-sized parts that

interact mostly in a regular way

one may pick the error ¢ and the complexity m

Rough structure result for all graphs.

One of the most powerful tool in graph theory.



Proof of Regularity Lemma

Theorem (Szemeredi 1978)

Vo<e<l,m=>1,dM and N
every G(V,E) with |V| > N has an e-partition
{R,Vl,...,Vk} with m < k< M.

classic proof: potential function + regularization

mean square density partition P ={R. V;,...,V;}

Vi
q(P) = qujpde(‘/i,‘/}) pi = ||V|‘
1,

q(P) € [0,1] q(P") > q(P) if P’ refines P




Proof of Regularity Lemma

| Theorem (Szemeredi 1978)

Vo<e<l,m=>1,dM and N
every G(V,E) with |V| > N has an e-partition
{R,Vl,...,Vk} with m < k< M.

classic proof: potential function + regularization
mean square density partition P ={R. V;,...,V;}
q(P) € [0,1] q(P’) > q(P) if P’ refines P

if P is not an &-regular partition
3 a refinement P’ of P to <k2k parts, s.t. q(P’) > q(P) + ce®



Proof of Regularity Lemma

Theorem (Szemeredi 1978)

Vo<e<l,m=>1,dM and N
every G(V, E) with |V| > N has an e-partition
{R,Vi,...,Vi} withm < k < M.

a new proof by Tao (2007):

structure + pseudorandomness



| Theorem (Szemeredi 1978)

Vo<e<l,m=>1, dM and N
every G(V, FE) with |V| > N has a partition of V
into R, Vi,..., Vi with m < k < M, satistfying:

1. |R| < €|V];
2. V1| = Vo] =+ = |Vi|;

3. all but ek? pairs of (V;,V}) are e-regular.

every large enough graph can be partitioned
into bounded # of equal-sized parts that
interact mostly in a regular way

one may pick the error ¢ and the complexity m



Applying Regularity Lemma

Goal:
a theorem holding for

all large enough graphs|

<

every large enough
graph looks random

the theorem holds
for random graphs |

—— In some way |
B




Extremal Graph Theory

Fix a graph H.
ex(n, H)

largest possible number of edges
of G 2 H on n vertices

ex(n,H) = max |E(G)
G2H
V(G)|=n

|El > ex(n, H) forces subgraph H in G([n].E)



Complete multipartite graph K,

K223

Turan graph T(n, r)
T(”? T) — Knl,ng,...,nr

ny+nNg+-+MNp="n me{

1,702,503y

=S

S S




Erdos-Stone theorem

(Fundamental theorem of extremal graph theory)

K;=Ks s ... s=T(rs,r)
N\’

™

complete r-partite graph 3
with s vertices in each part 15

Theorem (ErdOs—Stone 1946)

ex(n, KT) = ( 2(7;__21) : 0(1)) n




Theorem (ErdOs—Stone 1946)
r— 2

ex(n, K" = (2(7« 7 | 0(1)> n”

ex(n, H)/(}) extremal density of subgraph H

| Corollary
For any nonempty graph H

i ex(n,H) x(H)—2




Theorem (ErdOs—Stone 1946)

2

2(r —1)

5)

K

)

n

(

€




reduced graph
cluster graph):

vertex < part

positive density

edge &
e-regular

with enough edge density 3 K, in the reduced graph



Applying Regularity Lemma

certain edge density forces subgraph H
in large enough graphs

® Edge density of G implies edge density of
the reduced graph GR&.

® Apply extremal argument to the reduced
graph G® to locate a subgraph HR.

® Embed H in HR with guaranteed density
and regularity.



