Combinatorics

Basic Enumeration

尹一通 Nanjing University, 2025 Spring

Course Info

- Instructor: 尹一通
 - Email: yinyt@nju.edu.cn
- Office hour:
 - 804, Tuesday 2-4pm
 - QQ group: 260501949
- Course homepage:
 - http://tcs.nju.edu.cn/wiki/

扫一扫二维码,加入群聊

Textbooks

van Lint and Wilson.
 A course in Combinatorics,
 2nd Edition.

Jukna.

Extremal Combinatorics: with applications in computer science, 2nd Edition.

Combinatorics:

A math for finite structures (not really)

- It is difficult to give rigorous definition of Combinatorics.
- According to Wikipedia, subfields of combinatorics include:
- Problems enumerative combinatorics, extremal combinatorics, combinatorial design
 - algebraic combinatorics, analytic combinatorics, probabilistic combinatorics, geometric combinatorics, topological combinatorics, arithmetic combinatorics
- Objects partition theory, graph theory, finite geometry, order theory, matroid theory, combinatorics on words, infinitary combinatorics
 - In The Princeton Companion to Mathematics, there are two branches of mathematics on the subject of combinatorics:
 - Enumerative and Algebraic Combinatorics (Counting)
 - Extremal and Probabilistic Combinatorics (Hungarian)

Combinatorics:

by the types of problems it studies

- Enumeration (counting) of finite structures (e.g. solutions/ assignments/arrangements/configurations of finite systems) satisfying certain given constraints.
- Existence of finite structures satisfying certain given constraints.
 - Extremal problems: How large/small a finite structure can be to satisfy certain given constraints?
 - Ramsey problems: When a finite structure becomes large enough, some regularity must show up somewhere.
- Construction (design) of such finite structures.
- Optimization: to find the best structure/solution in some sense.

References

Stanley.
 Enumerative Combinatorics,
 Volume 1, 2nd Edition.

Graham, Knuth, and Patashnik.
 Concrete Mathematics:
 A Foundation for Computer Science.

References

Aigner and Ziegler.
 Proofs from THE BOOK,
 6th Edition.

Lovász and Plummer.
 Matching Theory.

Enumeration (Counting)

- How many ways are there:
 - to rank n people?
 - to assign m zodiac signs to n people?
 - to choose m people out of n people?
 - to partition n people into m groups?
 - to distribute m yuan to n people?
 - to partition m yuan to n parts?
 -

Basic Enumeration: The Twelvefold Way

Gian-Carlo Rota (1932-1999)

The Twelvefold Way

$$f: N \to M$$
 $|N| = n, |M| = m$

elements of N	elements of M	any f	1-1	on-to
distinct	distinct			
identical	distinct			
distinct	identical			
identical	identical			

Knuth's version (in TAOCP vol.4A)

n balls are put into m bins

balls per bin:	unrestricted	≤ 1	≥ 1
n distinct balls, m distinct bins	m^n		
n identical balls, m distinct bins			
n distinct balls, m identical bins			
n identical balls, m identical bins			

Tuples

$$\{1, 2, \dots, m\}$$

$$[m] = \{0, 1, \dots, m \mid 1\}$$

$$[m]^n = \underbrace{[m] \times \cdots \times [m]}_{n}$$

$$|[m]^n| = m^n$$

Product rule:

For finite sets S and T

$$|S \times T| = |S| \cdot |T|$$

Functions

count the # of functions

$$f:[n] \to [m]$$

$$(f(1), f(2), \dots, f(n)) \in [m]^n$$

one-one correspondence

$$[n] \rightarrow [m] \Leftrightarrow [m]^n$$

Functions

count the # of functions

$$f:[n] \to [m]$$

one-one correspondence

$$[n] \rightarrow [m] \Leftrightarrow [m]^n$$

Bijection rule:

For finite sets S and T

$$\exists \phi : S \xrightarrow{1-1} T \implies |S| = |T|$$

Functions

count the # of functions

$$f:[n] \to [m]$$

one-one correspondence

$$[n] \rightarrow [m] \Leftrightarrow [m]^n$$

$$|[n] \to [m]| = |[m]^n| = m^n$$

"Combinatorial proof."

Injections

count the # of 1-1 functions

$$f: [n] \xrightarrow{1-1} [m]$$

one-to-one correspondence

$$\pi = (f(1), f(2), \dots, f(n))$$

n-permutation: $\pi \in [m]^n$ of distinct elements

$$(m)_n = m(m-1)\cdots(m-n+1) = \frac{m!}{(m-n)!}$$

"m lower factorial n"

```
subsets of { 1, 2, 3 }:
                   Ø,
                   {1}, {2}, {3},
                   {1, 2}, {1, 3}, {2, 3},
                  {1, 2, 3}
 [n] = \{1, 2, \dots, n\}
Power set: 2^{[n]} = \{S \mid S \subseteq [n]\}
                       \left|2^{[n]}\right| =
```

$$[n] = \{1,2,\ldots,n\}$$
 Power set:
$$2^{[n]} = \{S \mid S \subseteq [n]\}$$

$$\left|2^{[n]}\right| =$$

Combinatorial proof:

A subset $S \subseteq [n]$ corresponds to a string of n bits, where the i-th bit indicates whether $i \in S$.

$$[n] = \{1,2,\ldots,n\}$$
 Power set:
$$2^{[n]} = \{S \mid S \subseteq [n]\}$$

$$\left|2^{[n]}\right| =$$

Combinatorial proof:

$$S \subseteq [n] \iff \chi_S \in \{0,1\}^n \quad \chi_S(i) = \begin{cases} 1 & i \in S \\ 0 & i \notin S \end{cases}$$

one-to-one correspondence

$$[n] = \{1,2,\ldots,n\}$$
 Power set:
$$2^{[n]} = \{S \mid S \subseteq [n]\}$$

$$\left|2^{[n]}\right| =$$

A not-so-combinatorial proof:

Let
$$f(n) = \left| 2^{[n]} \right|$$

$$f(n) = 2f(n-1)$$

$$f(n) = \left| 2^{[n]} \right|$$

$$f(n) = 2f(n-1)$$

$$2^{[n]} = \{ S \subseteq [n] \mid n \not\in S \} \cup \{ S \subseteq [n] \mid n \in S \}$$

$$\left|2^{[n]}\right| = \left|2^{[n-1]}\right| + \left|2^{[n-1]}\right| = 2f(n-1)$$

Sum rule:

For **disjoint** finite sets S and T $|S \cup T| = |S| + |T|$

$$[n] = \{1, 2, \dots, n\}$$

Power set:
$$2^{[n]} = \{S \mid S \subseteq [n]\}$$

$$\left|2^{[n]}\right| = 2^n$$

A not-so-combinatorial proof:

Let
$$f(n) = \left| 2^{[n]} \right|$$

$$f(n) = 2f(n-1)$$
 $f(0) = |2^{\emptyset}| = 1$

$$f(0) = |2^{\emptyset}| = 1$$

Basic Rules for Counting

Sum rule:

For **disjoint** finite sets S and T

$$|S \cup T| = |S| + |T|$$

Product rule:

For finite sets S and T

$$|S \times T| = |S| \cdot |T|$$

Bijection rule:

For finite sets S and T

$$\exists \phi : S \xrightarrow{1-1} T \Longrightarrow |S| = |T|$$

Subsets of fixed size

2-subsets of { 1, 2, 3 }: {1, 2}, {1, 3}, {2, 3}

$$\begin{array}{l} \textit{k}\text{-uniform} & \begin{pmatrix} S \\ k \end{pmatrix} = \{T \subseteq S \mid |T| = k\} \\ \end{array}$$

$$\binom{n}{k} = \left| \binom{[n]}{k} \right|$$

"n choose k"

Subsets of fixed size

$$\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{k(k-1)\cdots1} = \frac{n!}{k!(n-k)!}$$

of ordered k-subsets of [n]:

$$n(n-1)\cdots(n-k+1)$$

of permutations of a k-set:

$$k(k-1)\cdots 1$$

Binomial Coefficients

Binomial coefficient: $\binom{n}{k}$

$$\binom{n}{k}$$

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

$$1. \qquad \binom{n}{k} = \binom{n}{n-k} \qquad | \qquad |$$

$$\sum_{k=0}^{n} \binom{n}{k} = 2^n$$

choose a *k*-subset ⇔ choose its compliment

0-subsets + 1-subsets + ... + n-subsets = all subsets

Binomial Theorem

Binomial Theorem:

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$$

Proof:

$$(1+x)^n = \underbrace{(1+x)(1+x)\cdots(1+x)}_n$$

of x^k : choose k factors out of n

Binomial Theorem:

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$$

$$\sum_{k=0}^{n} \binom{n}{k} = 2^n \qquad \text{Let } x = 1.$$

$$S = \{x_1, x_2, \dots, x_n\}$$

of subsets of S of odd sizes = # of subsets of S of even sizes

Let
$$x = -1$$
.

The Twelvefold Way

n balls are put into m bins

balls per bin:	unrestricted	≤ 1	≥ 1
n distinct balls, m distinct bins	m^n	$(m)_n$	
n identical balls, m distinct bins		$\binom{m}{n}$	
n distinct balls, m identical bins			
n identical balls, m identical bins			

How many ways to assign *n* beli to *k* pirates?

How many ways to assign n beli to k pirates, so that each pirate receives at least 1 beli?

$$n \in \mathbb{Z}^+$$

k-composition of *n*:

an ordered sum of k positive integers

a
$$k$$
-tuple $(x_1, x_2, ..., x_k)$ satisfying $x_1 + x_2 + \cdots + x_k = n$ and $x_i \in \mathbb{Z}^+$

$$n \in \mathbb{Z}^+$$

k-composition of n:

a
$$k$$
-tuple $(x_1, x_2, ..., x_k)$ satisfying $x_1 + x_2 + \cdots + x_k = n$ and $x_i \in \mathbb{Z}^+$

of
$$k$$
-compositions of n ? $\binom{n-1}{k-1}$

$$n$$
 identical balls x_1 x_2 x_k

a
$$k$$
-tuple $(x_1, x_2, ..., x_k)$ satisfying $x_1 + x_2 + \cdots + x_k = n$ and $x_i \in \mathbb{Z}^+$

of
$$k$$
-compositions of n ? $\binom{n-1}{k-1}$

$$\phi((x_1, x_2, \dots, x_k)) = \{x_1, x_1 + x_2, x_1 + x_2 + x_3, \dots, x_1 + x_2 + \dots + x_{k-1}\}$$

 ϕ is a 1-1 correspondence between $\{k\text{-compositions of }n\}$ and $\binom{\{1,2,\ldots,n-1\}}{k-1}$

weak k-composition of n:

an ordered sum of k nonnegative integers

a
$$k$$
-tuple $(x_1, x_2, ..., x_k)$ satisfying $x_1 + x_2 + \cdots + x_k = n$ and $x_i \in \mathbb{N}$

weak *k*-composition of *n*:

a
$$k$$
-tuple $(x_1, x_2, ..., x_k)$ satisfying $x_1 + x_2 + \cdots + x_k = n$ and $x_i \in \mathbb{N}$

of weak k-compositions of n? $\binom{n+k-1}{k-1}$

$$\binom{n+k-1}{k-1}$$

$$(x_1+1)+(x_2+1)+\cdots+(x_k+1)=n+k$$

a k-composition of n + k1-1 correspondence

Multisets

k-subset of S "k-combination of S without repetition"

3-combinations of { 1, 2, 3, 4 }

without repetition:

```
{1,2,3}, {1,2,4}, {1,3,4}, {2,3,4}
```

with repetition:

```
{1,1,1}, {1,1,2}, {1,1,3}, {1,1,4}, {1,2,2}, {1,3,3}, {1,4,4}, {2,2,2}, {2,2,3}, {2,2,4}, {2,3,3}, {2,4,4}, {3,3,3}, {3,3,4}, {3,4,4}, {4,4,4}
```

Multisets

multiset M on set S:

$$m:S\to\mathbb{N}$$

multiplicity of $x \in S$

m(x): # of repetitions of x in M

cardinality
$$|M| = \sum_{x \in S} m(x)$$

"k-combination of S with repetition" k-multiset on S

$$\binom{n}{k}$$
 : # of k -multisets on an n -set

Multisets

$$\binom{n}{k} = \binom{n+k-1}{n-1} = \binom{n+k-1}{k}$$

$$k$$
-multiset on $S = \{x_1, x_2, ..., x_n\}$

$$m(x_1) + m(x_2) + \dots + m(x_n) = k$$
$$m(x_i) \ge 0$$

a weak n-composition of k

Multinomial Coefficients

permutations of a multiset on k elements of size n with multiplicities m_1, m_2, \ldots, m_k

of reordering of "multinomial" permutations of {a, i,i, l,l, m,m, n, o, t, u}

assignments of n distinct balls to k distinct bins with the i-th bin receiving m_i balls

multinomial coefficient
$$\begin{pmatrix} n \\ m_1, \dots, m_k \end{pmatrix}$$
 $m_1 + m_2 + \dots + m_k = n$

Multinomial Coefficients

of permutations of a multiset on k elements of size n with multiplicities m_1, m_2, \ldots, m_k

of assignments of n distinct balls to k distinct bins with the i-th bin receiving m_i balls

$$\binom{n}{m_1,\ldots,m_k} = \frac{n!}{m_1!m_2!\cdots m_k!}$$

$$\binom{n}{m, n-m} = \binom{n}{m}$$

Multinomial Theorem

Multinomial Theorem:

$$(x_1 + x_2 + \dots + x_k)^n$$

$$= \sum_{m_1 + \dots + m_k = n} {n \choose m_1, \dots, m_k} x_1^{m_1} x_2^{m_2} \dots x_k^{m_k}$$

Proof:
$$(x_1 + x_2 + \dots + x_k)^n$$

= $\underbrace{(x_1 + x_2 + \dots + x_k) \cdot \dots \cdot (x_1 + x_2 + \dots + x_k)}_{n}$
of $x_1^{m_1} x_2^{m_2} \cdot \dots \cdot x_k^{m_k}$:

assign n factors to k groups of sizes m_1, m_2, \ldots, m_k

balls per bin:	unrestricted	≤ 1	≥ 1
n distinct balls, m distinct bins	m^n	$(m)_n$	
n identical balls, m distinct bins	$\binom{m}{n}$	$\binom{m}{n}$	$\binom{n-1}{m-1}$
n distinct balls, m identical bins			
n identical balls, m identical bins			

balls per bin:	unrestricted	≤ 1	≥ 1
n distinct balls, m distinct bins	m^n	$(m)_n$	
n identical balls, m distinct bins	$\binom{n+m-1}{m-1}$	$\binom{m}{n}$	$\binom{n-1}{m-1}$
n distinct balls, m identical bins			
n identical balls, m identical bins			

Partitions of a Set

 $P = \{A_1, A_2, ..., A_k\}$ is a partition of S:

- $A_i \neq \emptyset$;
- $A_i \cap A_j = \emptyset$;
- $\bullet \ A_1 \cup A_2 \cup \cdots \cup A_k = S.$

Partitions of a Set

 $P = \{A_1, A_2, ..., A_k\}$ is a partition of S:

- $A_i \neq \emptyset$;
- $A_i \cap A_j = \emptyset$;
- $\bullet \ A_1 \cup A_2 \cup \cdots \cup A_k = S.$

 ${n \brace k}$: # of k-partitions of an n-set

"Stirling number of the second kind"

$$B_n = \sum_{k=1}^n \begin{Bmatrix} n \\ k \end{Bmatrix}$$
 : total # of partitions of an n -set

"Bell number"

Stirling Number of the 2nd Kind

$${n \brace k}$$
: # of k -partitions of an n -set

$${n \brace k} = k \begin{Bmatrix} n-1 \cr k \end{Bmatrix} + \begin{Bmatrix} n-1 \cr k-1 \end{Bmatrix}$$

Case.1: $\{n\}$ is not a partition block

n is in one of the k blocks in a k-partition of [n-1]

Case.2: $\{n\}$ is a partition block

the remaining k-1 blocks forms a (k-1)-partition of [n-1]

balls per bin:	unrestricted	≤ 1	≥ 1
n distinct balls, m distinct bins	m^n	$(m)_n$	
n identical balls, m distinct bins	$\binom{m}{n}$	$\binom{m}{n}$	$\binom{n-1}{m-1}$
n distinct balls, m identical bins	$\sum_{k=1}^{m} \begin{Bmatrix} n \\ k \end{Bmatrix}$	$\begin{cases} 1 & \text{if } n \le m \\ 0 & \text{if } n > m \end{cases}$	$\binom{n}{m}$
n identical balls, m identical bins			

Surjections

$$f: [n] \xrightarrow{\text{on-to}} [m]$$

$$\forall i \in [m]$$

$$f^{-1}(i) \neq \emptyset$$

$$(f^{-1}(1), f^{-1}(2), \dots, f^{-1}(m))$$

ordered m-partition of [n]

$$m! \begin{Bmatrix} n \\ m \end{Bmatrix}$$

balls per bin:	unrestricted	≤ 1	≥ 1
n distinct balls, m distinct bins	m^n	$(m)_n$	$m! \begin{Bmatrix} n \\ m \end{Bmatrix}$
n identical balls, m distinct bins	$\binom{m}{n}$	$\binom{m}{n}$	$\binom{n-1}{m-1}$
n distinct balls, m identical bins	$\sum_{k=1}^{m} \begin{Bmatrix} n \\ k \end{Bmatrix}$	$\begin{cases} 1 & \text{if } n \le m \\ 0 & \text{if } n > m \end{cases}$	$\binom{n}{m}$
n identical balls, m identical bins			

Partitions of a Number

a partition of number n into k parts:

an unordered sum of k positive integers

Partitions of a Number

a partition of n into k parts: "positive"

```
n = 7 {1,6}, {2,5}, {3,4}
 {1,1,5}, {1,2,4}, {1,3,3}, {2,2,3}
 {1,1,1,4}, {1,1,2,3}, {1,2,2,2}
 {1,1,1,1,1,1,1,1}
 {1,1,1,1,1,1,1}
```

 $p_k(n)$: # of partitions of n into k parts

$p_k(n)$: # of partitions of n into k parts

integral
$$\begin{cases} x_1 + x_2 + \dots + x_k = n \\ x_1 \geq x_2 \geq \dots \geq x_k \geq 1 \end{cases}$$
 solutions to

$$p_k(n) = ?$$

$$\begin{cases} x_1 + x_2 + \dots + x_k = n \\ x_1 \ge x_2 \ge \dots \ge x_k \ge 1 \end{cases}$$

$$p_k(n) = p_{k-1}(n-1) + p_k(n-k)$$

Case. I $x_k = 1$

 (x_1,\ldots,x_{k-1}) is a (k-1)-partition of n-1

Case.2 $x_k > 1$

 (x_1-1,\ldots,x_k-1) is a k-partition of n-k

$$\begin{cases} x_1 + x_2 + \dots + x_k = n \\ x_1 \ge x_2 \ge \dots \ge x_k \ge 1 \end{cases}$$

$$\begin{cases} x_1 + x_2 + \dots + x_k = n \\ x_i \ge 1 \end{cases}$$

$$(x_1,\cdots,x_k)$$

permutation

"on-to"

$$k!p_k(n) \ge \binom{n-1}{k-1}$$

partition
$$\{x_1, \cdots, x_k\}$$
 $y_i = x_i + k - i$

$$y_i = x_i + k - i$$

$$x_1 \ge x_2 \ge \dots \ge x_{k-2} \ge x_{k-1} \ge x_k \ge 1$$

+ $k-1$ + $k-2$ + 2 + 1

$$y_1 > y_2 > \dots > y_{k-2} > y_{k-1} > y_k > 1$$

composition of $n+\frac{k(k-1)}{2}$ (y_1,y_2,\ldots,y_k)

$$(y_1, y_2, \ldots, y_k)$$

$$k!p_k(n) \le \binom{n + \frac{\kappa(\kappa - 1)}{2} - 1}{k - 1}$$

$$\frac{\binom{n-1}{k-1}}{k!} \le p_k(n) \le \frac{\binom{n + \frac{k(k-1)}{2} - 1}{k-1}}{k!}$$

If k is fixed,

$$p_k(n) \sim rac{n^{k-1}}{k!(k-1)!} \quad \text{as} \quad n o \infty$$

G. H. Hardy (1877-1947)

Srinivasa Ramanujan (1887-1920)

$$p(n) = \sum_{k=1}^{n} p_k(n)$$

$$\approx \frac{1}{4n\sqrt{3}} \exp\left\{\pi\sqrt{\frac{2n}{3}}\right\}$$

The Man Who Knew Infinity (2015 film)

Ferrers diagram

(Young diagram)

partition
$$\begin{cases} x_1 + x_2 + \dots + x_k = n \\ x_1 \ge x_2 \ge \dots \ge x_k \ge 1 \end{cases}$$

one-to-one correspondence

of partitions of n into k parts

of partitions of n with largest part k

of partitions of n = $\frac{\text{# of partitions of } n}{\text{into } k \text{ parts}} = \frac{\text{# of partitions of } n}{\text{with largest part } k}$

$$p_k(n) = \sum_{j=1}^{\kappa} p_j(n-k)$$

balls per bin:	unrestricted	≤ 1	≥ 1
n distinct balls, m distinct bins	m^n	$(m)_n$	$m! \left\{ {m \atop m} \right\}$
n identical balls, m distinct bins	$\binom{m}{n}$	$\binom{m}{n}$	$\binom{n-1}{m-1}$
n distinct balls, m identical bins	$\sum_{k=1}^{m} \begin{Bmatrix} n \\ k \end{Bmatrix}$	$\begin{cases} 1 & \text{if } n \le m \\ 0 & \text{if } n > m \end{cases}$	$\binom{n}{m}$
n identical balls, m identical bins	$\sum_{k=1}^{m} p_k(n)$	$\begin{cases} 1 & \text{if } n \le m \\ 0 & \text{if } n > m \end{cases}$	$p_m(n)$