Combinatorics

Existence Problems

尹一通 Nanjing University, 2025 Spring

Counting Argument

Circuit Complexity

Boolean function $f: \{0,1\}^n \rightarrow \{0,1\}$

Boolean circuit

- DAG (directed acyclic graph)
- Nodes:
 - inputs: x_1, \ldots, x_n
 - gates: ∧ ∨ ¬
- Complexity: #gates

Theorem (Shannon 1949)

There is a boolean function $f: \{0,1\}^n \to \{0,1\}$ which cannot be computed by any circuit with $\frac{2^n}{3n}$ gates.

Claude Shannon (1916–2001)

of
$$f: \{0,1\}^n \to \{0,1\}$$
 $\left| \{0,1\}^n \to \{0,1\} \right| = 2^{2^n}$

$$\{0,1\}^n \to \{0,1\} = 2^{2^n}$$

of circuits with t gates:

$$< 2^{t}(2n+t+1)^{2t}$$

$$x_1,\ldots,x_n,\neg x_1,\ldots,\neg x_n,0,1$$

De Morgan's law:

$$\neg (A \lor B) = \neg A \land \neg B$$
$$\neg (A \land B) = \neg A \lor \neg B$$

$$x_i, \neg x_i, 0, 1$$
other $(t-1)$ gates

Theorem (Shannon 1949)

Almost all

There is a boolean function $f: \{0,1\}^n \to \{0,1\}$ which cannot be computed by any circuit with $\frac{2^n}{2^n}$ gates.

one circuit computes one function

#f computable by t gates ≤ #circuits with t gates ≤

Double Counting

"Count the same thing twice. The result will be the same."

Handshaking Lemma

A party of *n* guests.

Handshaking Lemma: The number of people who shake an odd number of other people's hands is even.

Represented by graph:

n guests $\Leftrightarrow n$ vertices

handshaking ⇔ edge

of handshaking ⇔ degree

Handshaking Lemma (Euler 1736)

$$\sum_{v \in V} d(v) = 2|E|$$

Leonhard Euler

In the 1736 paper of Seven Bridges of Königsberg

Handshaking Lemma (Euler 1736)

$$\sum_{v \in V} d(v) = 2|E|$$

Count the # of edge orientations:

$$(u,v):\{u,v\}\in E$$

Count by vertex:

$$\forall v \in V$$

d directed edges

$$(v, u_1) \cdots (v, u_d)$$

Count by edge:

$$\forall \{u,v\} \in E$$

2 orientations

$$(u,v)$$
 and (v,u)

Handshaking Lemma (Euler 1736)

$$\sum_{v \in V} d(v) = 2|E|$$

Corollary

of odd-degree vertices is even.

Sperner's Lemma

line segment: *ab* divided into small segments

each endpoint: red or blue

ab are colored differently

∃ small segment •—•

Emanuel Sperner (1905–1980)

Sperner's Lemma

triangle: abc

triangulation

proper coloring:

3 colors red, blue, green abc is tricolored lines ab, bc, ac are 2-colored

Sperner's Lemma (1928)

∀ properly colored triangulation of a triangle,
 ∃ a properly colored small triangle.

Sperner's Lemma (1928)

∀ properly colored triangulation of a triangle,
 ∃ a properly colored small triangle.

partial dual graph:

each \triangle is a vertex the outer-space is a vertex

add an edge if 2 △ share a • edge

degree of node: 1
degree of or node: 2

other cases: 0 degree

Sperner's Lemma (1928)

∀ properly colored triangulation of a triangle,
 ∃ a properly colored small triangle.

partial dual graph:

degree of \bigwedge node: 1

degree of other \triangle : even

handshaking lemma:

of odd-degree vertices is even.

of ___: odd ≠0

Sperner's Lemma (1928)

∀ properly colored triangulation of a triangle,
 ∃ a properly colored small triangle.

high-dimension: triangle simplex triangulation simplicial subdivision

Brouwer's fixed point theorem (1911)

 \forall continuous function $f:B\to B$ of an n-dimensional ball B, \exists a fixed point x=f(x).

Averaging Principle

Pigeonhole Principle

"n + 1 pigeons cannot sit in n holes so that every pigeon is alone in its hole."

Pigeonhole Principle

If > mn objects are partitioned into n classes, then some class receives > m objects.

Schubfachprinzip

"drawer principle"

Dirichlet Principle

Johann Peter Gustav Lejeune Dirichlet (1805 – 1859)

Dirichlet's approximation

Approximate any irrational x by a rational with bounded denominator.

Theorem (Dirichlet 1879)

 \forall irrational x and natural number n, \exists a rational $\frac{p}{q}$ such that $1 \le q \le n$ and

$$\left| x - \frac{p}{q} \right| < \frac{1}{nq}$$

Theorem (Dirichlet 1879)

 \forall irrational x and natural number n, \exists a rational $\frac{p}{q}$ such that $1 \le q \le n$ and

$$\left| x - \frac{p}{q} \right| < \frac{1}{nq} \iff |qx - p| < \frac{1}{n}$$

fractional part:
$$\{x\} = x - \lfloor x \rfloor$$

$$(n + 1)$$
 pigeons: $\{kx\}$ for $k = 1, 2, ..., n + 1$

n holes:
$$\left(0,\frac{1}{n}\right), \left(\frac{1}{n},\frac{2}{n}\right), \dots, \left(\frac{n-1}{n},1\right)$$

fractional part:
$$\{x\} = x - \lfloor x \rfloor$$

$$(n + 1)$$
 pigeons: $\{kx\}$ for $k = 1, 2, ..., n + 1$

n holes:
$$\left(0,\frac{1}{n}\right), \left(\frac{1}{n},\frac{2}{n}\right), \dots, \left(\frac{n-1}{n},1\right)$$

$$\exists 1 \leq b < a \leq n+1 \quad \{ax\}, \{bx\} \text{ in the same hole }$$

$$|(a-b)x - (\lfloor ax \rfloor - \lfloor bx \rfloor)| = |\{ax\} - \{bx\}| < \frac{1}{n}$$

integers: $q \leq n$ p

$$|qx-p|<\frac{1}{n}\qquad \qquad |x-\frac{p}{q}|<\frac{1}{nq}.$$

An initiation question to Mathematics

$$\forall S \subseteq \{1,2,\dots,2n\} \ \ \text{that} \ \ |S| > n$$

 $\exists a, b \in S \text{ such that } a \mid b$

$$\forall a \in \{1, 2, \dots, 2n\}$$

 $a=2^k m$ for an odd m

$$C_m = \{2^k m \mid k \ge 0, 2^k m \le 2n\}$$

>n pigeons: S

n pigeonholes: $C_1, C_3, C_5, ..., C_{2n-1}$

$$a < b \quad a, b \in C_m \quad \square \quad a \mid b$$

Paul Erdős (1913–1996)

Monotonic subsequences

sequence: (a_1, \ldots, a_n) of n different numbers

$$1 \le i_1 < i_2 < \dots < i_k \le n$$

subsequence:

$$(a_{i_1}, a_{i_2}, \dots, a_{i_k})$$

increasing:

$$a_{i_1} < a_{i_2} < \ldots < a_{i_k}$$

decreasing:

$$a_{i_1} > a_{i_2} > \ldots > a_{i_k}$$

Theorem (Erdős-Szekeres 1935)

A sequence of > mn different numbers must contain either an increasing subsequence of length m+1, or a decreasing subsequence of length n+1.

 (a_1, \ldots, a_N) of N different numbers N > mn

associate each a_i with (x_i, y_i)

 x_i : length of longest increasing subsequence ending at a_i

 y_i : length of longest decreasing subsequence *starting* at a_i

$$\forall i \neq j, \quad (x_i, y_i) \neq (x_j, y_j)$$

assume

Cases.: $a_i < a_j$ \longrightarrow $x_i < x_j$

Cases.2: $a_i > a_j$ \longrightarrow $y_i > y_j$

(a_1, \ldots, a_N) of N different numbers

N > mn

 x_i : length of longest increasing subsequence *ending* at a_i

"N pigeons" (a_1,\ldots,a_N)

 y_i : length of longest decreasing subsequence *starting* at a_i

 a_i is in hole (x_i, y_i)

m

n

"One pigeon per each hole."

No way to put N pigeons into *mn* holes.

Theorem (Erdős-Szekeres 1935)

A sequence of > mn different numbers must contain either an increasing subsequence of length m+1, or a decreasing subsequence of length n+1.

$$(a_1,\ldots,a_N)$$
 $N>mn$

 x_i : length of longest increasing m subsequence ending at a_i

 y_i : length of longest *decreasing* subsequence *starting* at a_i

