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Extremal Combinatorics

“*how large or how small a collection of finite
objects can be, if it has to satisfy certain
restrictions”



Extremal Problem:

“What is the largest number of edges that
an n-vertex cycle-free graph can have?”

(n—1)

Extremal Graph:

spanning tree



Triangle-Freeness




Triangle-free graph

contains no £\ as subgraph

Example: bipartite graph

| E'| is maximized for
complete balanced bipartite graph

Extremal?



Mantel’s Theorem

Theorem (Mantel 1907)

If G(V,E) has | V| = n and is triangle-free,
2
n
then |E| < —.
4

For n is even,
extremal graph:

K

n
2°2




N-free = |E| < n’/4

First Proof. Induction on 7.

Basis: n = 1,2. trivial

Induction Hypothesis: foranyn < N
2

\E\>% — G2 A

Induction step: forn = N
dueto l.LH. [EB)| < (n—2)%/4

1/ 1BAB| = 1E|-|EB)| - 1

@ 2 — 2)?
__________________ > n (n ) ] = n — 2

pigeonhole! 4 4




N-free = |E| < n’/4

Second Proof. N\ -free
(du + dy) —>d,+d, <n, VYuvelkL

U U JL
Double counting: Z d? = Z d,+d)<n|E]

veV uvek

Cauchy-Schwarz (handshaking)

n*|E| > n2d§= (212>(Zd§) > (Zd,,)zz 4|E|*

veV vev vev vevV

= |E| < n’/4



N-free = |E| < n*/4

Third Proof.
A: maximum independent set o = |Al

VvveV, d, <«

B=V\A Bincidenttoalledges f =I|Bl

Inequality of the arithmetic and geometric mean

____________
- e

2

, \ 2
a+ 0 n
------------ E| < E dy <af = ( 5 ) =7

veEB




Turan’s
Theorem

Paul Turan
(1910-1976)



Turan’s Theorem

“Suppose G is a K. -free graph.

What is the largest number of
edges that G can have?”

Theorem (Turan 1941)
It G(V,E) has |V| =n and is K -free, then
r—2

I’l2
2(r — 1)

[E| <



Complete multipartite graph K

ny,mny,...,n,

K223

Turan graph 1(n, r):
I'(n,r) =K,

151Ny oo n,

where n; + -+ +n. = n and nie{{



Turan graph T(n, r):
I'(n,r) =K,

151y .+ n,

where n; + -+ +n. = n and n,-e{{

I'(n,r — 1) hasno K,

i

o< (7)) (




—2
r n2
(r—1)

K,-free = |E| <5

First Proof. (Induction)
Basis: n=1,2,....r— 1.
Induction Hypothesis: true forany n < N
Induction step: forn = N,

suppose G is maximum K -free

(r-1)-clique |
TN 3 1(r — 1)-clique

h..
-
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—2
r n2
(r—1)

K -free — |E| < :

First Proof. (Induction)
suppose G is maximum K -free

(r-1clique 1.H.: |EB)| < ==——(n—r+ 1)’

_______________ — 2(r—1)
A SRS 4 K-fr,e=>nou€B~alveA
B<@ - 8 = |EAB|<(r-2)n—r+1)

|[El=[E@A)|+|EB) |+ |EA,B)|

<<r_1)+ -2 m—r+ 1)+ -2)n—-r+1)
2 2(r_1)n r r n r




-2 72
1)

K -free = |E| < 2(r_

Second Proof. (weight shifting)

Assign each vertex v a weight w, > 0 s.t. ) w, =1

veV

Evaluate S(w) = Z W W,

uvek

Let W, = ZW" Foru ~ vthat W, > W,

w,+e)W, +(w,—e) 2w W, +wW,

shifting all weight of v to u => S(W) non-decreasing

S(W) is maximized = all weights on a clique
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1)

K -free — |E| < 2(r_

Second Proof. (weight shifting)

Assign each vertex v a weight w, > 0 s.t. ) w, =1

_ vevV
Evaluate S(w) = Z ww, < <r , 1) (r—11)2
uvek

S(W) is maximized = all weights on a clique

1
when all w, = —
n

-, |E|

S(w) = Z wWW, = "

uvek



| r—2 9
K -free — |E| < ="

Third Proof. (The probabilistic method)

cligue number w(G): size of the largest clique

random permutation 7 of V

w<G>ZZn_dV S={v|r,<rxr, = u~v}
IS a cligue

Linearity of expectation:

[ISI1= ) Prlve Sl > ) Pr[Vu=v:m, >z

veV veV

|
zzn—dv




| r—2 9
K -free — |E| < ="

Third Proof. (The probabilistic method)

w(G)zZn_ld

Cauchy-Schwarz

(2 (20

vevV
<w(G) ) (n—d,) =@—DHn*=2|E])
vev (handshaking)

2 2
1)”

_
—> ‘E‘ < 2



—2
r n2
(r—1)

K -free — |E| < :

Fourth Proof.

Suppose G is K -free with maximum edges.

uO————0Ov

(G does not have
Quw

By contradiction.
Case.l d, <d, or d, <d,

" e § duplicate u, delete w, still K -free

E'| = |El+dy — dw > |E



—2
r n2
(r—1)

K,-free = |E| <5

Fourth Proof.

Suppose G is K -free with maximum edges.

uO————0Ov

(G does not have
Qw

y Case.2 d, >d, Nd, > d,
delete u, v, duplicate w, twice

still K,-free

E'| = |E|+2d, — (d, +d, — 1) > |E]
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1)

K -free — |E| < 2(r_

Fourth Proof.

Suppose G is K -free with maximum edges.

uO————0Ov

(G does not have
Qw

u ~ v is an eguivalence relation
G is a complete multipartite graph
optimize K, , .

subjectton; +n,+ - +n.=n



Turan’s Theorem (clique)
It G(V,E) has |V| =n and is K -free, then
r—2

2
2(r—1)

[E| <

Turan’s Theorem (independent set)

If G(V,E)has |V| =nand |E| = m, then

( has an independent set of size

I’l2

>
2m+n




Parallel Max

e compute max of n distinct numbers

e computation model: parallel, comparison-based

e 1-round algorithm: (Z) comparisons of all pairs

e |lower bound for one-round:

. <2> comparisons are required in the worst case

&) adversary argument



Parallel Max

e 2-round algorithm:

e divide n numbers into k groups of n/k each

e 1st round: find max of each group;
k<”£ ") comparisons

e 2nd round: find the max of the kK maxes
comparisons

e total comparisons: k(”/ k) + (k) =0 <n4/3)

2 2
. for k = n?/3
3-round? optimal?



1st round:

Alg: m comparisons

2

. n s
of size > ——— (Turan)

choose an independent set
=/

make them local maximal

2nd round:

n2

a parallel max problem of size >

,n2

requires > <2m2+n) comparisons

2m +n

2

total comparisons > m+ (27;;* "’) — Q(n4/ 3)




Fundamental Theorem
of Extremal Graph Theory



Extremal Graph Theory

Fix a graph H.
ex(n, H)

largest possible number of edges
of G 2 H on n vertices

ex(n,H) = max |E(G)
G2H
V(G)|=n

Turan’s Theorem

— 2
ex(n, K,) = [T(n,r —1)] < — :

= 2(r — 1)n




Erdos-Stone theorem

(Fundamental theorem of extremal graph theory)

K;=Ks s ... s=T(rs,r)
N\’

™

complete r-partite graph
with s vertices in each part

Theorem (Erdos-Stone 1946)

ex(n, KT) = ( 2(7;__21) : 0(1)) n




Theorem (Erdos-Stone 1946)
r— 2

ex(n, K" = (2(7_ 0 | 0(1)) n”

ex(n, H)/ (Z) extremal density of subgraph H

| Corollary
For any nonempty graph H
H H)—2



X(H) =7

HZ T(n,r—1) for any n
ex(n,H) > |T'(n,r — 1)

H C K for sufliciently large s

ex(n, H) < ex(n, K})

= (26__21) | 0(1)> n-










Girth

girth g(G): length of the shortest cycle in G

Theorem
If G(V,E) has |V| =n and girth g(G) > 5,

1
then |F| < §n\/n— 1

2g(G) >S5 0 A\- and I:]-free



Vg(G)>5 = |E| < snyn—1

disjoint sets

)+ (dvy) —1)+ -+ (dvg) — 1) <n

Z dlv) <n-—1

vU~YU



g(G)>5 = |E|<zinyn-—1

Vu eV, Z d(v) <n—1

v.o~YU

(dy, + )
nn—1)>) » dv) =>» dv)
S (ngzd(v)) _ 4\Ji|2

Cauchy-Schwarz



Hamiltonian Cycle

Dirac’s Theorem
VvoeV, d, > g = G(V, F) is Hamiltonian.

By contradiction, suppose G is the maximum
non-Hamiltonian graph with Yo € V|, d, > %

adding 1 edge — Hamiltonian

a Hamiltonian path

say U1U2--*Un



(7 is non-Hamiltonian voeV, d,> 5%

a Hamiltonian path U1V2 -+ Un

1] vig1 ~v1}




