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PIE (Principle of Inclusion-Exclusion)

|A �B| = |A| + |B|�|A ⇥B|

|A �B � C| = |A| + |B| + |C|
�|A ⇥B|� |A ⇥ C|� |B ⇥ C|
+|A �B � C|
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Surjections
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# of
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Derangement

Two decks, A and B, of cards:

 The cards of A are laid out in a row, 


and those of B are placed at random,

one at the top on each card of A.


What is the probability that 

no 2 cards are the same in each pair?

les problèmes des rencontrés:



Derangement

⇤i � [n], �(i) ⇥= i

permutation � of [n]

“permutations with no fixed point”

U : permutations of [n]

!n
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Derangement

⇤i � [n], �(i) ⇥= i

permutation � of [n]

“permutations with no fixed point”
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Permutations with 
restricted positions

derangement:

permutation � of [n]

⇤i � [n], �(i) ⇥= i

generally: �(i1) �= j1,�(i2) �= j2, . . .

B ⇥ [n]� [n]

⇤i � [n], (i, �(i)) ⇥� B

forbidden positions



Chess board

permutation � of [n]
{(i,�(i)) | i � [n]}

“A placement of 

non-attacking rooks”

B ⇥ [n]� [n]forbidden positions

derangement:

B = {(i, i) | i � [n]}
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B ⇥ [n]� [n]

For a particular set of

forbidden positions

the # of placements of n non-attacking rooks?

N0 :
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Derangement again

rk :

B = {(i, i) | i � [n]}
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Problème des ménages
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d
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E A n couples sit around a table

•male-female alternative

•no one sit next to spouse



Problème des ménages

B

C

D

E A “Lady first!”

2(n!) ways

“Gentlemen, please sit.”

permutation � of [n]

i : husband of the lady at the i-th position

�(i) : his seat �(i) ⇥= i

�(i) ⇥� i + 1 (mod n)



Problème des ménages
B = {(i, i), (i, (i + 1) mod n)}

rk : # of ways of placing k 
non-attacking rooks in B



# of ways of choosing k
non-consecutive points

from a circle of 2n points

Problème des ménages
B = {(i, i), (i, (i + 1) mod n)}

rk :

1
2

3

4
5

6
2n objects in a circle

choose k 
non-consecutive objects



1 2 3 m

m objects in a line

choose k non-consecutive objects

m-k objects, m-k+1 space

choose k from m-k+1 space

L(m,k):
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m objects in a circle

choose k non-consecutive objectsC(m,k):

m
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(m-k)C(m,k): 1.choose k non-consecutive objects 
from a circle


2.mark one of the remaining objects

m L(m-1,k): 1.mark one object in the circle, cut 
the circle by removing the object


2.choose k non-consecutive objects 
from the m-1 objects in a line



Problème des ménages
B = {(i, i), (i, (i + 1) mod n)}
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Inversion

f : 2[n] � N

:  -dimensional vector space of all mappingsV 2n
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Bipartite Perfect 

4 Perfect matchings in bipartite graphs. Consider a bipartite graph with bi-
partition (N,N), where N = {1, . . . , n}, and edge set E ⊆ N × N . A perfect
matching is an edge subset M ⊆ E that includes every node as an endpoint
exactly once. See Fig. 3 for some interpretations.

Fig. 3. Row 1: A bipartite
graph and its three perfect
matchings. Row 2: In the
graph’s adjacency matrix
A, every perfect matching
corresponds to a permuta-
tion π for which Ai,π(i) = 1
for all i ∈ [n]. Row 3: In
the directed n-node graph
defined by A, every perfect
matching corresponds to
a directed cycle partition.
Bottom row: an equiva-
lent formulation in terms
of non-attacking rooks on
a chess board with forbid-
den positions.

1 1 1

1 1 0

0 1 1

1 1 1

1 1 0

0 1 1

1 1 1

1 1 0

0 1 1

1 1 1

1 1 0

0 1 1

1

23

1

23

1

23

1

23

VR
VR

VR

VR
VR

VR

VR
VR
VR

The Ryser formula for counting the perfect matchings in such a graph can
be given as

∑

π∈Sn

n
∏

i=1

[iπ(i) ∈ E] =
∑

S⊆N

(−1)|N\S|
n
∏

i=1

∑

j∈S

[ij ∈ E] , (4)

where Sn denotes the set of permutations from N to N . The left hand side
succinctly describes the problem as iterating over all permutations and checking
if the corresponding edges (namely, 1π(1), 2π(2), . . ., nπ(n)) are all in E. Direct
evaluation would require n! iterations. The right hand side provides an equivalent
expression that can be evaluated in time O(2nn2), see Fig. 4.

Proof of (4). For fixed i ∈ N , the value
∑

j∈S [ij ∈ E] counts the number of i’s
neighbours in S ⊆ N . Thus the expression

n
∏

i=1

∑

j∈S

[ij ∈ E] (5)

is the number of ways every node i ∈ N can choose a neighbour from S. (This
allows some nodes to select the same neighbour.) Consider such a choice as a
mapping g : N → N , not necessarily onto, with image R = g(N). The contribu-
tion of g to (5) is 1 for every S ⊇ R, and its total contribution to the right hand
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Ryser’s formula
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Ryser’s formula
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Sieve of Eratosthenes



Euler Totient Function
�(n)

# of a ∈{1,2,...,n} relative prime to n
= |{1≤a≤n | gcd(a,n)=1 }|

n = pk1
1 pk2

2 · · · pkr
rprime decomposition:

�(n) = n
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1 � 1

pi
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Euler Totient Function
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rprime decomposition:
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