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Ramsey Number

“In any party of six people, either at least three of them are mutual
strangers or at least three of them are mutual acquaintances”

« For any edge-2-coloring of K,
there is a monochromatic K;.

| Ramsey Theorem

If n > R(k, k), for any edge-
2-coloring of K, there is a
monochromatic K.

Ramsey number: R(k, k)



" Theorem (Erdés 1947)

[k
If (Z) .2 <2) < 1 then it is possible to color
the edges of K, with 2 colors so that there is
no monochromatic K, subgraph.

) with prob 1/2
8 with prob 1/2

Each edge ¢ € K, is colored

For any K; subgraph:

Pr[the K} is monochromatic] = Pr[Kk or K, |

_ ")



" Theorem (Erdés 1947)

k

If (Z) : 21_<2) < 1 then it is possible to color
the edges of K, with 2 colors so that there is
no monochromatic K, subgraph.

) with prob 1/2

Each edge ¢ € K, is colored ® with prob 1/
with pro

k

Pr| 4K, is monochromatic] < <:>21‘<2> <1

—> Pr[no K, is monochromatic] > 0

— d a 2-coloring of edges of K, without monochromatic K,



Tournament

I(V,E)
n players, each pair has a match.

u — v iff u beats v. @_)@
k-paradoxical: T >< l
For every k-subset S of V,

there is a player in V\.S who @ ¢ @

beats all players in .

“Does there exist a k-paradoxical tournament for every finite k?”



Theorem (Erdds 1963)

If (Z) (1 — 2"“)”4C < 1 then there is a
k-paradoxical tournament of n players.

Pick a random tournament 1" on n players [n].
. 1]
Fixed any S € !

Event A no player in V\S beat all players in S.

PrlAg] = (1—27%)"""



Theorem (Erdds 1963)

If (Z) (1 — 2"“)”4C < 1 then there is a
k-paradoxical tournament of n players.

Pick a random tournament 1" on n players [n].
Event A no player in V\S beat all players in S.

VS € ([Z]) - Pr[dg]=(1-2"F)""

Py \/ Aol < Z (1—27Fr—k <1
se (i) se (')




Theorem (Erdds 1963)

If (Z) (1 — 2"“)”4C < 1 then there is a
k-paradoxical tournament of n players.

Pick a random tournament 1" on n players [n].

Event A no player in V\S beat all players in S.

Pr

_SE([Z])

V s

<1

Pr[T is k-paradoxical] =1-Pr| \/ As| >0




Theorem (Erdds 1963)

If (Z) (1 — 2"“)”4C < 1 then there is a
k-paradoxical tournament of n players.

Pick a random tournament 1" on n players [n].

Pr|T is k-paradoxical] > 0

There is a k-paradoxical tournament on n players.



The Probabilistic Method

e Pick random ball from a box, O O O
Pr{the ball is bluel}>0. O . O
= There is a blue ball.

* Define a probability space (2, and a property P:
Pr[P(x)] > O

—> 1 a sample x € Q with property P.



Averaging Principle

* Average height of the students in class is /.

= There is a student of height >/ (< /)

e For a random variable X,

e 1 x < E[X], such that X = x is possible;
e 3 x > E[X], such that X = x is possible.



Hamiltonian Paths in Tournament

Hamiltonian path:

a path visiting every
vertex exactly once.

Theorem (Szele 1943)

There is a tournament on 7n players with at
least n!2~ "~V Hamiltonian paths.



Theorem (Szele 1943)

There is a tournament on 7n players with at
least n!2~ """~V Hamiltonian paths.

Pick a random tournament 7 on n players [n].

For every permutation x of [n],
1 mIs a Hamiltonian path
Xp =

0 mis not a Hamiltonian path

# Hamiltonian paths: X =) X,
JT

E[X,]= Pr[X,=1]= 2~ "D



Theorem (Szele 1943)

There is a tournament on 7n players with at
least n!2~ """~V Hamiltonian paths.

Pick a random tournament 7 on n players [n].
# Hamiltonian paths: X =) X,
T

E[X,]= Pr[X,=1]= 2"}

E[X] =) E[X;]=nl2”"""D



Large Independent Set

e Graph G(V, E)

¢ ndependent set
SCV

¢ No adjacent
vertices in S

e max independent set
iIs NP-hard



Theorem: G has 7 vertices and m edges

n2

> 3 an independent set S of size o
m

e Draw arandom independentset S C V. (How?)

e cachv € Vs selected into a random set R
independently with probability p (to be fixed later)

o for every uv € E: delete one of u, v from R if
u,v € R

e the resulting set is an independent set S
2

o Show that E[ | S]] Zn—
dm



G(V,E): n vertices, m edges

1. sample a random R : each vertex is chosen
independently with probabillity p

2. modify Rto §: independent set!

Yuv e E ifu,v €R
delete one of u, v from R

Y: #ofedgesin R Y = ZYW Yw{l u,v €S

wocE 0O o.w.

E[|S[] =z E[|R|-Y]=E[|R]|] - E[Y]

E[|R[1=np E[Y]= ) E[Y,]=mp’

uvek



G(V,E): n vertices, m edges

1. sample a random R : each vertex is chosen
independently with probabillity p

2. modify Rto §: independent set!

Yuv e E ifu,v €R
delete one of u, v from R

n2

E[|S|]>np—mp* = —

4m

n

when P = 5
m



average 2m

G(V,E): nvertices, m edges _m

degree n,

random independent set 5:

2

n n
E[|S|]|>— = —
3 ‘]_4m 2d

Theorem: G has 7 vertices and m edges

_ n’

> 1 an independent set S of size e
m




Theorem: G has 7 vertices and m edges

n2

> 1 an independent set S of size

2m+n

e Draw arandom independentset S C V

e eachv € Vdraws areal number r, € [0,]1]
uniform and independent at random

e eachv € Vjoins S iff r, is local maximal within
the neighborhood of v

e S must be an independent set

1
v € V:Prlv € 5] =——— == E[|5]] 2d+1

v veVy VY

n2

(Cauchy-Schwarz) >
2m+n



Markov’s Inequality

Markov’s Inequality:
For nonnegative X, tor any ¢ > 0,
E[X]

PriX =t1] < .

p.d.f.
A E[X]

\ PiX = a]

0 a X




Markov’s Inequality

Markov’s Inequality:
For nonnegative X, tor any ¢ > 0,
E[X]
PriX = 1] < at
Proof:
1 ifX=>t, X| X
Let Y =1 . :>Y§[—J5_,
0 otherwise. t t
X
Pr(X=t]=E[Y]| =E |7 &;ﬂ

QED



Graph G(V, F)

girth g(G): length of the shortest cycle

chromatic number y(G):

minimum number of color to
properly color the vertices of G.

A g@)=3 xG)=3

1 2G) =4 yG=2

Intuition: Large cycles are easy to color!



Theorem (Erdos 1959)

For all k, £, there exists a finite graph G with
X(G) > k and g(G) > /.

coloring classes:

equivalence classes of vertices

“Independent sets!”

independence number a(G):

size of the largest independent set in G.

n vertices




For all k,{, there exists a graph G on n vertices

with o(G) < # and g(G) > /.

Vien Viuo)e (Z)

independently Prj{u,v} € E| =p



Random Graphs
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Erdds-Rény1 1960 paper:

ON THE EVOLUTION OF RANDOM GRAPHS

by

P. ERDOS and A. RENYI

Institute of Mathematics
Hungarian Academy of Sciences, Hungary

1. Definition of a random graph

Let E,, ~ denote the set of all graphs having n given labelled vertices Vi,V3,- -,
Va and N edges. The graphs considered are supposed to be not oriented, without
parallel edges and without slings (such graphs are sometimes called linear graphs).
Thus a graph belonging to the set E,,~ is obtained by choosing N out of the

possible (5) edges between the points Vi, Va,---, Vi, and therefore the number of

elements of E., » is equal to ((%)) A random graph I's,» can be defined as an

4
element of E,, ~ chosen at random, so that each of the elements of E,, y have the

same probability to be chosen, namely 1/ ((’2;)) There is however an other slightly

different point of view, which has some advantages. We may consider the forma-
tion of a random graph as a stochastic process defined as follows: At time t=1

we choose one out of the (Z) possible edges connecting the points Vi, Vi, Vi,




Vi=n Yu,v €V
independently Pr|{u,v} € E|=p

uniform random graph: G(n, %)



For all k,{, there exists a graph G on n vertices

with o(G) < # and g(G) > /.

fix any large k, [
G~G(n,p)
Plan:

Pr[ o(G) > nlk ] < 1/2

Pr g(G) <[] < 1/2

exists n

¥

union
bound

> Pr[ a(G)>nlk V 2(G)<l I<1
Pr| a(G)=<n/k N g(G)=[ |>0



G~G(n.p)

Prla(G) > n/k] < Pr[dind. set of size n/k|

< Pr[3s e (TE/]]C)V{u v} € <§>uv Z G
Z Pr[V{u,v} € ( > wv € G|  unhion bound

SE(n/k)

LY L mwra - ()aont

SE( ){u U}G )

<n"/k(1—p)"5)



G~G(np)  Prla(@) = n/k] <n™*(1-p))

Prl g(G)>1]<?

for each i-cycle o:u; — us — ... = u; — uyg

Prlo is a cycle in G| = p’

P 1 oisacyclein G
> 10 otherwise

# of length<l/ cyclesin G =~ X = Z Z Xo

1=3 o:|o|=1

=iz 1= Y

1=3 o:|o|=1 i=3 o:|o|=1

‘ n(n —1) (n—z+)i £ nt .
Z P ZQ—ZP

1=3 1=3




np 3inn

G~Gnp) "= JInn n/k = D
Pria(G) > n/k] < n™*k(1 — p)("2)
< nn/ke_p(nék)

= (ne~P(n/k=L)/Zyn/k — (1)

X : #oflengths/ cyclesin G

01

¢ : ¢
X <35 =20
21 ; 21
=3 =3
1
p:ne_l 9<2—€
Prlx > 1 < 2EXT o)
27— n

Markov



G~G(n.p)
1 np

/26
01 1 _ _
p=n 0<%, F=3mn ~ 3mnn

Prla(G) > n/k] = o(1)

X : #oflength</ cyclesin G
Pr[X > g] — o(1)

1G: afG) <n/k
# of length</ cycles in G < n/2

delete 1 vertex per each length</ cycle in G

>

o(GY>1 oG <alG) < n/k



Theorem (Erdos 1959)

For all k, £, there exists a finite graph G with
X(G) > k and g(G) > /.

coloring classes:

equivalence classes of vertices

“Independent sets!”

independence number a(G):

size of the largest independent set in G.

n vertices




Lovasz Local Lemma



Ramsey Number

“In any party of six people, either at least three of them are mutual
strangers or at least three of them are mutual acquaintances”

« For any edge-2-coloring of K,
there is a monochromatic K;.

| Ramsey Theorem

If n > R(k, k), for any edge-
2-coloring of K, there is a
monochromatic K.

Ramsey number: R(k, k)



R(k.k) > ?

“3 a 2-coloring of K, with no monochromatic K,.”

The Probabilistic Method:

a random 2-coloring of K,
vs e ()
event Ag: S is a monochromatic K,

Pr /\ Ag| =0
SE([Z])

To prove:




Lovasz Sieve

e Bad events: A, Ao,..., Ay

e None of the bad events occurs:
o

Pr| A\ A;

=1 ]

e [he probablilistic method: being good is possible

n —
Pr A;jl >0
-1

l

h




events: A, A,,...,A,
dependency graph: D(V, E)
V={12,..n}
jek <le> A; and A; are dependent

d : max degree of dependency graph

A
y A3(Xp, X3) O

Xi,..., X4 mutually independent



events: A, A,, ...,

A

n

d : max degree of dependency graph

Lovasz Local Lemmma

o Vi, Pr[Ai] =p
sepd+1)=<1

:>Prr/n\ziq>0

=1

General Lovasz Local Lemmma

dx1,...,T, € [0,1)

Vi, Pr[A;] < x; H(1 — ;)

D> ne[fx

L 1=1

lﬁll—xZ



R(kk)=n
“3 a 2-coloring of K, with no monochromatic K,.”

a random 2-coloring of K, :

Uy
Viu,v} € K ,uniformly and independently { .

VS € ([Z’]) event As: S is a monochromatic Kx
Pr[Ag] = 2.2-(5) = 21-(5)
Ag, Ay dependent (> [SNT| ZkQ )
max degree of dependency graph d < <2> (k B 2>

To prove: Pr| A\ As| >0
se (')



Lovasz Local Lemmma

o Vi, Pr[Ai]<p
cep(d+1)=<1

Pr[Ag] = 21— (3)
(0]

To prove: Pr

:>Prr

h

l

n —
Aj
g | J

>0

for some n = ck2k/?

:> with constant ¢

e21(2) (d+1) <1

A As| >0

R(kJ)=n = Q(k2F/?)



events: A, A,, ...,

A

n

General Lovasz Local Lemmma

Hx]_,...,ajn

Vi, Pr|A;] < z; H(l — ;)

€ [0,1)

jrvi

- " _1 " o l_l_’
PriA\Ai|=]]Pr|A:i| ANAj| =]1
=1 | =1 =t 1 =1
Lemma For any 51,52, . 5n7

Pr /\gf,,

:HPI’ gk’/\g
k=1

i 1<k

Pr [gn | n/_\l 52} =



events: A, A,,...,A

n

General Lovasz Local Lemama

Hxlw..,xn

€ [0,1)

Vi, Pr|4;] < sz(l — z;) ::> br /\ A; 1;[ (1 — )

L 1=1

jri

|.H.

Aj | Aj,

iInduction on m:

Alm] le'l for any {llyylm}

m = 1, trivial



events: A, A,,...,A

n

qu,...gﬁnéf[o,l)

Vi, Pr[A;] < x; H(1 — z;)

jri

|.H. PI‘[AZ'I ‘AlgAlm] le'l for any {lly)lm}

suppose {; adjacent to 1,, ..., I,

A

Pr( Ay, | Apy -+ A,y | =

m

Pr[AilA_iz---A,-k 1A

T+l

)

Pr| Ay, -+ Ai, | A;

e+l

SPI[A- L+ 1"'Aim] :Pr[Ail] Smilﬁ(l_gjij)
—]HzPr[Allel]H~ lm] f[(l Pr|A;, | Az, A,—m])

j=2
k
H l—xzj



events: A, A,,...,A

n

General Lovasz Local Lemama

3561,...

Xy €10,1)

Vi, PI‘[AZ] S X, H(l — Zl?j)

g~
Pr| Ay, | A,
n n [ pi-1 ]
Pri/N\Ai|=]]Pr|A:i| \A;
=1 | i=1 | j=1

>

A, Eifi(l—-xﬂ

1=1

1=1

---A,-m] < Xx;, forany {i1,...,im}

n r
H(l—Pr A
i=1 _

i-1_ |
N4 )
J=1 )

>[[Q-x) >0
i=1



events: A, A,, ...,

A

n

d : max degree of dependency graph

Lovasz Local Lemmma

o Vi, Pr[Ai] =p
sepd+1)=<1

:>Prr/n\ziq>0

=1

General Lovasz Local Lemmma

dx1,...,T, € [0,1)

Vi, Pr[A;] < x; H(1 — ;)

D> ne[fx

L 1=1

lﬁll—xZ



Constraint Satisfaction Problem (CSP)

e Variables: x{, ..., x, € [q]

e (local) Constraints: Cy, ..., C,,

» each C; is defined on a subset vbl(C;) of variables
C; : [q]"® = {True,False)

« Anyx € [g]" is a CSP solution if it satisfies all C;, ..., C

m

« Examples:

« k-CNF, (hyper)graph coloring, set cover, unique games...

* vertex cover, independent set, matching, perfect matching, ...



Hypergraph Coloring

e k-uniform hypergraph H = (V, E):

. Visvertex set, E C (Z) is set of hyperedges

« degree of vertex v € V: # of hyperedges ¢ D v

« proper g-coloring of H:
e f:V — [qg] such that no hyperedge is monochromatic
VeeE, |f(e)|>1

Theorem: For any k-uniform hypergraph H of max-degree A,

qk—l

ek

A <

—> H is g-colorable

k > log, A +log, log, A + O(1)



Hypergraph Coloring

Theorem: For any k-uniform hypergraph H of max-degree A,

qk—l

ek

A <

—> H is g-colorable

« Uniformly and independently color each v € V a random color € [g]

Vv

« Bad event A, for each hyperedge e € £ C < L

>: e 1S monochromatic
+ PrfA, ] <p=¢q'™*

» Dependency degree for bad events d < k(A — 1)

k—1

A< = epd+1) <] Apply LLL




