# Combinatorics

The Probabilistic Method

# The Probabilistic Method



Paul Erdős (1913-1996)

# Ramsey Number

"In any party of six people, either at least three of them are mutual strangers or at least three of them are mutual acquaintances"

• For any edge-2-coloring of  $K_6$ , there is a *monochromatic*  $K_3$ .

## Ramsey Theorem

If  $n \ge R(k, k)$ , for any edge-2-coloring of  $K_n$ , there is a monochromatic  $K_k$ .



Ramsey number: R(k, k)

# Theorem (Erdős 1947)

If  $\binom{n}{k} \cdot 2^{1-\binom{k}{2}} < 1$  then it is possible to color the edges of  $K_n$  with 2 colors so that there is no monochromatic  $K_k$  subgraph.



For any  $K_k$  subgraph:

Pr[the 
$$K_k$$
 is monochromatic] = Pr[ $K_k$  or  $K_k$ ]  
=  $2^{1-\binom{k}{2}}$ 

# Theorem (Erdős 1947)

If  $\binom{n}{k} \cdot 2^{1-\binom{k}{2}} < 1$  then it is possible to color the edges of  $K_n$  with 2 colors so that there is no monochromatic  $K_k$  subgraph.

Each edge 
$$e \in K_n$$
 is colored  $\begin{cases} \bullet & \text{with prob } 1/2 \\ \bullet & \text{with prob } 1/2 \end{cases}$ 

$$\Pr[\exists K_k \text{ is monochromatic}] \le \binom{n}{k} 2^{1-\binom{k}{2}} < 1$$

$$\implies$$
 Pr[no  $K_k$  is monochromatic] > 0

 $\Longrightarrow$   $\exists$  a 2-coloring of edges of  $K_n$  without monochromatic  $K_k$ 

# **Tournament**

T(V, E)

n players, each pair has a match.

 $u \rightarrow v$  iff u beats v.

## *k*-paradoxical:

For every k-subset S of V, there is a player in  $V \setminus S$  who beats all players in S.



"Does there exist a k-paradoxical tournament for every finite k?"

If 
$$\binom{n}{k} \left(1 - 2^{-k}\right)^{n-k} < 1$$
 then there is a  $k$ -paradoxical tournament of  $n$  players.

Pick a random tournament T on n players [n].

Fixed any 
$$S \in \binom{[n]}{k}$$

Event  $A_S$ : no player in  $V \setminus S$  beat all players in S.

$$\Pr[A_S] = (1 - 2^{-k})^{n-k}$$

If 
$$\binom{n}{k} \left(1 - 2^{-k}\right)^{n-k} < 1$$
 then there is a  $k$ -paradoxical tournament of  $n$  players.

Pick a random tournament T on n players [n].

Event  $A_S$ : no player in  $V \setminus S$  beat all players in S.

$$\forall S \in \binom{[n]}{k} : \operatorname{Pr}[A_S] = (1 - 2^{-k})^{n-k}$$

$$\Pr\left| \bigvee_{S \in \binom{[n]}{k}} A_S \right| \leq \sum_{S \in \binom{[n]}{k}} (1 - 2^{-k})^{n-k} < 1$$

If  $\binom{n}{k} \left(1 - 2^{-k}\right)^{n-k} < 1$  then there is a k-paradoxical tournament of n players.

Pick a random tournament T on n players [n].

Event  $A_S$ : no player in  $V \setminus S$  beat all players in S.

$$\Pr\left[\bigvee_{S\in\binom{[n]}{k}}A_S\right]<1$$

$$\Pr[T \text{ is } k\text{-paradoxical}] = 1 - \Pr\left[\bigvee_{S \in \binom{[n]}{k}} A_S\right] > 0$$

If 
$$\binom{n}{k} \left(1 - 2^{-k}\right)^{n-k} < 1$$
 then there is a  $k$ -paradoxical tournament of  $n$  players.

Pick a random tournament T on n players [n].

$$Pr[T \text{ is } k\text{-paradoxical}] > 0$$

There is a k-paradoxical tournament on n players.

# The Probabilistic Method

Pick random ball from a box,
 Pr[the ball is blue]>0.



 $\Rightarrow$  There is a blue ball.

• Define a probability space  $\Omega$ , and a property P:

$$\Pr_{x}[P(x)] > 0$$

 $\Longrightarrow \exists$  a sample  $x \in \Omega$  with property P.

# **Averaging Principle**

- Average height of the students in class is *l*.
  - $\Rightarrow$  There is a student of height  $\geq l \ (\leq l)$



- For a random variable *X*,
  - $\exists x \le E[X]$ , such that X = x is possible;
  - $\exists x \ge E[X]$ , such that X = x is possible.

# **Hamiltonian Paths in Tournament**

## Hamiltonian path:

a path visiting every vertex *exactly* once.



Theorem (Szele 1943)

There is a tournament on n players with at least  $n!2^{-(n-1)}$  Hamiltonian paths.

**Theorem** (Szele 1943)

There is a tournament on n players with at least  $n!2^{-(n-1)}$  Hamiltonian paths.

Pick a random tournament T on n players [n].

For every permutation  $\pi$  of [n],

$$X_{\pi} = \begin{cases} 1 & \pi \text{ is a Hamiltonian path} \\ 0 & \pi \text{ is } not \text{ a Hamiltonian path} \end{cases}$$

# Hamiltonian paths: 
$$X = \sum_{\pi} X_{\pi}$$
 
$$E[X_{\pi}] = \Pr[X_{\pi} = 1] = 2^{-(n-1)}$$

Theorem (Szele 1943)

There is a tournament on n players with at least  $n!2^{-(n-1)}$  Hamiltonian paths.

Pick a random tournament T on n players [n].

# Hamiltonian paths: 
$$X=\sum_{\pi}X_{\pi}$$
 
$$\mathrm{E}[X_{\pi}]=\mathrm{Pr}[X_{\pi}=1]=\ 2^{-(n-1)}$$
 
$$\mathrm{E}[X]=\sum_{\pi}\mathrm{E}[X_{\pi}]=n!2^{-(n-1)}$$

# Large Independent Set

- Graph G(V, E)
- independent set  $S \subseteq V$ 
  - no adjacent vertices in S
- max independent set is NP-hard



# **Theorem:** G has n vertices and m edges



 $\exists$  an independent set S of size

$$\frac{n^2}{4m}$$

- Draw a random independent set  $S \subseteq V$ (How?)
  - each  $v \in V$  is selected into a random set Rindependently with probability p (to be fixed later)
  - for every  $uv \in E$ : delete one of u, v from R if  $u, v \in R$
  - the resulting set is an independent set S

• Show that 
$$\mathbf{E}[|S|] \ge \frac{n^2}{4m}$$

- G(V, E): n vertices, m edges
- 1. sample a random R: each vertex is chosen independently with probability p
  - 2. modify R to S: independent set!

 $\forall uv \in E \quad \text{if } u, v \in R$ 

delete one of u, v from R

$$Y$$
: # of edges in  $R$   $Y = \sum_{uv \in E} Y_{uv}$   $Y_{uv} = \begin{cases} 1 & u,v \in S \\ 0 & \text{o.w.} \end{cases}$ 

$$\mathbf{E}[|S|] \ge \mathbf{E}[|R| - Y] = \mathbf{E}[|R|] - \mathbf{E}[Y]$$

$$\mathbf{E}[|R|] = np \qquad \mathbf{E}[Y] = \sum_{uv \in E} \mathbf{E}[Y_{uv}] = mp^2$$

G(V, E): n vertices, m edges

- 1. sample a random R: each vertex is chosen independently with probability p
  - 2. modify R to S: independent set!

 $\forall uv \in E \quad \text{if } u, v \in R$  delete one of  $u, v \in R$ 

$$\mathbf{E}[|S|] \ge np - mp^2 = \frac{n^2}{4m}$$

when 
$$p = \frac{n}{2m}$$

G(V, E): n vertices, m edges

average 
$$d = \frac{2m}{n}$$

random independent set S:

$$\mathbf{E}[|S|] \ge \frac{n^2}{4m} = \frac{n}{2d}$$

**Theorem:** G has n vertices and m edges



 $\exists$  an independent set S of size  $\frac{n^2}{4m}$ 

# **Theorem:** G has n vertices and m edges



 $\exists$  an independent set S of size  $\frac{n^2}{2m+n}$ 

$$\frac{n^2}{2m+n}$$

- Draw a random independent set  $S \subseteq V$ 
  - each  $v \in V$  draws a real number  $r_v \in [0,1]$ uniform and independent at random
  - each  $v \in V$  joins S iff  $r_v$  is local maximal within the neighborhood of v
  - S must be an independent set

• 
$$\forall v \in V$$
:  $\Pr[v \in S] = \frac{1}{d_v + 1} \Longrightarrow \mathbf{E}[|S|] = \sum_{v \in V} \frac{1}{d_v + 1}$ 

(Cauchy-Schwarz)  $\geq \frac{n^2}{2m + n}$ 

# Markov's Inequality

## Markov's Inequality:

For *nonnegative* X, for any t > 0,

$$\Pr[X \ge t] \le \frac{\mathbf{E}[X]}{t}.$$



# Markov's Inequality

## Markov's Inequality:

For *nonnegative* X, for any t > 0,

$$\Pr[X \ge t] \le \frac{\mathbf{E}[X]}{t}.$$

#### **Proof**:

Let 
$$Y = \begin{cases} 1 & \text{if } X \ge t, \\ 0 & \text{otherwise.} \end{cases} \Rightarrow Y \le \left\lfloor \frac{X}{t} \right\rfloor \le \frac{X}{t},$$

$$\Pr[X \ge t] = \mathbf{E}[Y] \le \mathbf{E}\left[\frac{X}{t}\right] = \frac{\mathbf{E}[X]}{t}.$$

Graph G(V, E)

girth g(G): length of the shortest cycle

chromatic number  $\chi(G)$ :

minimum number of color to properly color the vertices of G.

$$\triangle g(G) = 3 \quad \chi(G) = 3$$

$$g(G) = 4 \quad \chi(G) = 2$$

Intuition: Large cycles are easy to color!

# Theorem (Erdős 1959)

For all  $k, \ell$ , there exists a finite graph G with  $\chi(G) \geq k$  and  $g(G) \geq \ell$ .

# coloring classes:

equivalence classes of vertices

"Independent sets!"



# independence number $\alpha(G)$ :

size of the largest independent set in G.

$$n \text{ vertices} \qquad \chi(G) \geq \frac{n}{\alpha(G)} \leq \frac{n}{k} \qquad \geq k$$

For all  $k, \ell$ , there exists a graph G on n vertices with  $\alpha(G) \leq \frac{n}{k}$  and  $g(G) \geq \ell$ .

$$|V| = n \qquad \forall \{u, v\} \in \binom{V}{2}$$

independently  $\Pr[\{u,v\} \in E] = p$ 

# Random Graphs



Paul Erdős (1913 - 1996)



Alfréd Rényi (1921 - 1970)

## Erdős-Rényi 1960 paper:

#### ON THE EVOLUTION OF RANDOM GRAPHS

by

#### P. ERDÖS and A. RÉNYI

Institute of Mathematics Hungarian Academy of Sciences, Hungary

#### 1. Definition of a random graph

Let  $E_n$ , N denote the set of all graphs having n given labelled vertices  $V_1, V_2, \cdots$ ,  $V_n$  and N edges. The graphs considered are supposed to be not oriented, without parallel edges and without slings (such graphs are sometimes called linear graphs). Thus a graph belonging to the set  $E_n$ , N is obtained by choosing N out of the possible  $\binom{n}{2}$  edges between the points  $V_1, V_2, \cdots, V_n$ , and therefore the number of elements of  $E_n$ , N is equal to  $\binom{n}{2}$ . A random graph  $\Gamma_n$ , N can be defined as an element of  $E_n$ , N chosen at random, so that each of the elements of  $E_n$ , N have the same probability to be chosen, namely  $1/\binom{n}{2}$ . There is however an other slightly different point of view, which has some advantages. We may consider the formation of a random graph as a stochastic process defined as follows: At time t=1 we choose one out of the  $\binom{n}{2}$  possible edges connecting the points  $V_1$ ,  $V_2, \cdots, V_n$ ,



$$|V| = n \quad \forall u, v \in V$$

independently  $\Pr[\{u,v\} \in E] = p$ 

uniform random graph:  $G(n, \frac{1}{2})$ 

For all  $k, \ell$ , there exists a graph G on n vertices with  $\alpha(G) \leq \frac{n}{k}$  and  $g(G) \geq \ell$ .

fix any large k, l exists n

$$G \sim G(n,p)$$

### Plan:

$$Pr[\alpha(G) > n/k] < 1/2$$
 $Pr[g(G) < l] < 1/2$ 



$$\Pr[\alpha(G)>n/k \vee g(G)< l\ ]<1$$

$$\Pr[\alpha(G) \leq n/k \land g(G) \geq l > 0]$$

## $G \sim G(n,p)$

$$\Pr[\alpha(G) \ge n/k] \le \Pr[\exists \text{ind. set of size } n/k]$$

$$\leq \Pr[\exists S \in \binom{[n]}{n/k} \forall \{u, v\} \in \binom{S}{2}, uv \notin G]$$

$$\leq \sum_{S \in \binom{[n]}{n/k}} \Pr[\forall \{u, v\} \in \binom{S}{2}, uv \notin G]$$
 union bound

$$= \sum_{S \in \binom{[n]}{n/k}} \prod_{\{u,v\} \in \binom{S}{2}} \Pr[uv \notin G] = \binom{n}{n/k} (1-p)^{\binom{n/k}{2}}$$

$$\leq n^{n/k} (1-p)^{\binom{n/k}{2}}$$

$$G \sim G(n,p)$$
  $\Pr[\alpha(G) \ge n/k] \le n^{n/k} (1-p)^{\binom{n/k}{2}}$ 

 $\Pr[g(G) > l] < ?$ 

for each *i*-cycle  $\sigma: u_1 \to u_2 \to \ldots \to u_i \to u_1$ 

 $\Pr[\sigma \text{ is a cycle in } G] = p^i$ 

$$X_{\sigma} = \begin{cases} 1 & \sigma \text{ is a cycle in } G \\ 0 & \text{otherwise} \end{cases}$$

# of length $\leq l$  cycles in G  $X = \sum_{i=3}^{\infty} \sum_{\sigma: |\sigma|=i}^{\infty} X_{\sigma}$ 

$$\mathbb{E}[X] = \sum_{i=3}^{\ell} \sum_{\sigma: |\sigma|=i} \mathbb{E}[X_{\sigma}] = \sum_{i=3}^{\ell} \sum_{\sigma: |\sigma|=i} p^{i}$$

$$= \sum_{i=3}^{\ell} \frac{n(n-1)\cdots(n-i+1)}{2i} p^{i} \leq \sum_{i=3}^{\ell} \frac{n^{i}}{2i} p^{i}$$

$$G \sim G(n,p) \qquad k = \frac{np}{3 \ln n} \qquad n/k = \frac{3 \ln n}{p}$$

$$\Pr[\alpha(G) \ge n/k] \le n^{n/k} (1-p)^{\binom{n/k}{2}}$$

$$\le n^{n/k} e^{-p\binom{n/k}{2}}$$

$$= (ne^{-p(n/k-1)/2})^{n/k} = o(1)$$

## X: # of length $\leq l$ cycles in G

$$\begin{split} \mathbb{E}[X] &\leq \sum_{i=3}^{\ell} \frac{n^i}{2i} p^i \ = \sum_{i=3}^{\ell} \frac{n^{\theta i}}{2i} = o(n) \\ p &= n^{\theta-1} \quad \theta < \frac{1}{2\ell} \\ \Pr[X \geq \frac{n}{2}] \leq \frac{2\mathbb{E}[X]}{n} = o(1) \\ &\qquad \qquad \text{Markov} \end{split}$$

$$G \sim G(n,p)$$

$$p = n^{\theta - 1}$$
  $\theta < \frac{1}{2\ell}$   $k = \frac{np}{3\ln n} = \frac{n^{1/2\ell}}{3\ln n}$ 

$$\Pr[\alpha(G) \ge n/k] = o(1)$$

X: # of length $\leq l$  cycles in G

$$\Pr[X \ge \frac{n}{2}] = o(1)$$

$$\exists G: \quad \alpha(G) < n/k$$

# of length $\leq l$  cycles in G < n/2

delete 1 vertex per each length $\leq l$  cycle in  $G \subseteq G'$ 

$$g(G') > l$$
  $\alpha(G') \le \alpha(G) < n/k$ 

# Theorem (Erdős 1959)

For all  $k, \ell$ , there exists a finite graph G with  $\chi(G) \geq k$  and  $g(G) \geq \ell$ .

# coloring classes:

equivalence classes of vertices

"Independent sets!"



# independence number $\alpha(G)$ :

size of the largest independent set in G.

$$n \text{ vertices} \qquad \chi(G) \geq \frac{n}{\alpha(G)} \leq \frac{n}{k} \quad \geq k$$

# Lovász Local Lemma

# Ramsey Number

"In any party of six people, either at least three of them are mutual strangers or at least three of them are mutual acquaintances"

• For any edge-2-coloring of  $K_6$ , there is a *monochromatic*  $K_3$ .

## Ramsey Theorem

If  $n \ge R(k, k)$ , for any edge-2-coloring of  $K_n$ , there is a monochromatic  $K_k$ .



Ramsey number: R(k, k)

" $\exists$  a 2-coloring of  $K_n$  with no monochromatic  $K_k$ ."

The Probabilistic Method:

a random 2-coloring of  $K_n$ 

$$\forall S \in \binom{[n]}{k}$$

event  $A_S$ : S is a monochromatic  $K_k$ 

To prove:

Der en casing 
$$S \in \binom{[n]}{k}$$

# Lovász Sieve

- Bad events:  $A_1, A_2, \ldots, A_n$
- None of the bad events occurs:

$$\Pr\left[\bigwedge_{i=1}^{n} \overline{A_i}\right]$$

The probabilistic method: being good is possible

$$\Pr\left[\left| \bigwedge_{i=1}^{n} \overline{A_i} \right| > 0\right]$$

events:  $A_1, A_2, \ldots, A_n$ 

dependency graph: D(V, E)

$$V = \{1, 2, ..., n\}$$

 $ij \in E \iff A_i \text{ and } A_j \text{ are dependent}$ 

d: max degree of dependency graph



d: max degree of dependency graph

## Lovász Local Lemma

• 
$$\forall i$$
,  $\Pr[A_i] \le p$   
•  $ep(d+1) \le 1$   $\Pr\left| \bigwedge_{i=1}^n \overline{A_i} \right| > 0$ 

#### General Lovász Local Lemma

$$\exists x_1, \dots, x_n \in [0, 1)$$

$$\forall i, \Pr[A_i] \le x_i \prod_{j \sim i} (1 - x_j)$$

$$\Pr\left[\bigwedge_{i=1}^n \overline{A_i}\right] \ge \prod_{i=1}^n (1 - x_i)$$

$$R(k,k) \ge n$$

" $\exists$  a 2-coloring of  $K_n$  with no monochromatic  $K_k$ ." a random 2-coloring of  $K_n$ :

 $\forall \{u, v\} \in K_n$ , uniformly and independently  $\left\{ egin{align*}{l} uv \\ uv \end{array} \right.$ 

 $\forall S \in {[n] \choose k}$  event  $A_S$ : S is a monochromatic  $K_k$   $\Pr[A_S] = 2 \cdot 2^{-{k \choose 2}} = 2^{1-{k \choose 2}}$ 

 $A_S, A_T \text{ dependent} \iff |S \cap T| \geq 2$  max degree of dependency graph  $d \leq \binom{k}{2} \binom{n}{k-2}$ 

To prove: 
$$\Pr \left| \bigwedge_{S \in \binom{[n]}{k}} \overline{A_S} \right| > 0$$

## Lovász Local Lemma

• 
$$\forall i$$
,  $\Pr[A_i] \le p$   
•  $ep(d+1) \le 1$   $\Pr\left[\bigwedge_{i=1}^n \overline{A_i}\right] > 0$ 

$$\Pr[A_S] = 2^{1 - \binom{k}{2}}$$
 for some  $n = ck2^{k/2}$  with constant  $c$  
$$d \le \binom{k}{2} \binom{n}{k-2}$$
 
$$e2^{1 - \binom{k}{2}} (d+1) \le 1$$

$$e2^{1-\binom{k}{2}}(d+1) \le 1$$

To prove:  $\Pr \left| \bigwedge_{S \in \binom{[n]}{k}} \overline{A_S} \right| > 0$ 

$$R(k,k) \ge n = \Omega(k2^{k/2})$$

## General Lovász Local Lemma

$$\exists x_1, \dots, x_n \in [0, 1)$$

$$\forall i, \Pr[A_i] \le x_i \prod_{j \sim i} (1 - x_j)$$

$$Pr\left[\bigwedge_{i=1}^n \overline{A_i}\right] \ge \prod_{i=1}^n (1 - x_i)$$

$$\Pr\left[\bigwedge_{i=1}^{n} \overline{A_i}\right] \ge \prod_{i=1}^{n} (1 - x_i)$$

$$\Pr\left[\bigwedge_{i=1}^{n} \overline{A_i}\right] = \prod_{i=1}^{n} \Pr\left[\overline{A_i} \middle| \bigwedge_{j=1}^{i-1} \overline{A_j}\right] = \prod_{i=1}^{n} \left(1 - \Pr\left[A_i \middle| \bigwedge_{j=1}^{i-1} \overline{A_j}\right]\right)$$

# Lemma For any $\mathcal{E}_1, \mathcal{E}_2, \dots, \mathcal{E}_n$ , $\Pr\left[\bigwedge_{i=1}^n \mathcal{E}_i\right] = \prod_{k=1}^n \Pr\left[\mathcal{E}_k \mid \bigwedge_{i < k} \mathcal{E}_i\right].$ $\Pr\left[\sum_{i=1}^{n-1} \mathcal{E}_i\right] = \Pr\left[\bigwedge_{i=1}^{n-1} \mathcal{E}_i\right]$ $\Pr\left[\sum_{i=1}^{n-1} \mathcal{E}_i\right]$ $\Pr\left[\sum_{i=1}^{n-1} \mathcal{E}_i\right]$ $\Pr\left[\sum_{i=1}^{n-1} \mathcal{E}_i\right]$

proof:

$$\Pr\left[\mathcal{E}_{n} \middle| \bigwedge_{i=1}^{n-1} \mathcal{E}_{i}\right] = \frac{\Pr\left[\bigwedge_{i=1}^{n} \mathcal{E}_{i}\right]}{\Pr\left[\bigwedge_{i=1}^{n-1} \mathcal{E}_{i}\right]}$$
recursion!

events:  $A_1, A_2, \dots, A_n$ 

## General Lovász Local Lemma

$$\exists x_1, \dots, x_n \in [0, 1)$$

$$\forall i, \Pr[A_i] \le x_i \prod_{j \sim i} (1 - x_j)$$

$$Pr\left[\bigwedge_{i=1}^n \overline{A_i}\right] \ge \prod_{i=1}^n (1 - x_i)$$

I.H.

$$\Pr\left[A_{i_1} \mid \overline{A_{i_2}} \cdots \overline{A_{i_m}}\right] \leq x_{i_1} \text{ for any } \{i_1, \dots, i_m\}$$

induction on *m*:

$$m=1$$
, trivial

events:  $A_1, A_2, \dots, A_n$ 

$$\exists x_1, \dots, x_n \in [0, 1)$$
$$\forall i, \Pr[A_i] \le x_i \prod_{j \sim i} (1 - x_j)$$

I.H. 
$$\Pr\left[A_{i_1} \mid \overline{A_{i_2}} \cdots \overline{A_{i_m}}\right] \leq x_{i_1} \text{ for any } \{i_1, \dots, i_m\}$$

suppose  $i_1$  adjacent to  $i_2, ..., i_k$ 

$$\Pr\left[A_{i_1} \mid \overline{A_{i_2}} \cdots \overline{A_{i_m}}\right] = \frac{\Pr\left[A_{i_1} \overline{A_{i_2}} \cdots \overline{A_{i_k}} \mid \overline{A_{i_{k+1}}} \cdots \overline{A_{i_m}}\right]}{\Pr\left[\overline{A_{i_2}} \cdots \overline{A_{i_k}} \mid \overline{A_{i_{k+1}}} \cdots \overline{A_{i_m}}\right]}$$

$$\leq \Pr\left[A_{i_1} \mid \overline{A_{i_{k+1}}} \cdots \overline{A_{i_m}}\right] = \Pr\left[A_{i_1}\right] \leq x_{i_1} \prod_{j=2}^k (1 - x_{i_j})$$

$$= \prod_{j=2}^{k} \Pr\left[\overline{A_{i_j}} \mid \overline{A_{i_{j+1}}} \cdots \overline{A_{i_m}}\right] = \prod_{j=2}^{k} \left(1 - \Pr\left[A_{i_j} \mid \overline{A_{i_{j+1}}} \cdots \overline{A_{i_m}}\right]\right)$$

$$| \mathbf{H}_{\cdot} | \geq \prod_{i=2} (1 - x_{i_j})$$

## General Lovász Local Lemma

$$\exists x_1, \dots, x_n \in [0, 1)$$

$$\forall i, \Pr[A_i] \le x_i \prod_{j \sim i} (1 - x_j)$$

$$Pr\left[\bigwedge_{i=1}^n \overline{A_i}\right] \ge \prod_{i=1}^n (1 - x_i)$$

$$\Pr\left[\bigwedge_{i=1}^{n} \overline{A_i}\right] \ge \prod_{i=1}^{n} (1 - x_i)$$

$$\Pr\left[A_{i_1} \mid \overline{A_{i_2}} \cdots \overline{A_{i_m}}\right] \leq x_{i_1} \text{ for any } \{i_1, \dots, i_m\}$$

$$\Pr\left[\bigwedge_{i=1}^{n} \overline{A_{i}}\right] = \prod_{i=1}^{n} \Pr\left[\overline{A_{i}} \middle| \bigwedge_{j=1}^{i-1} \overline{A_{j}}\right] = \prod_{i=1}^{n} \left(1 - \Pr\left[A_{i} \middle| \bigwedge_{j=1}^{i-1} \overline{A_{j}}\right]\right)$$

$$\geq \prod_{i=1}^{n} \left(1 - x_{i}\right) > \mathbf{0}$$

d: max degree of dependency graph

## Lovász Local Lemma

• 
$$\forall i$$
,  $\Pr[A_i] \le p$   
•  $ep(d+1) \le 1$   $\Pr\left| \bigwedge_{i=1}^n \overline{A_i} \right| > 0$ 

#### General Lovász Local Lemma

$$\exists x_1, \dots, x_n \in [0, 1)$$

$$\forall i, \Pr[A_i] \le x_i \prod_{j \sim i} (1 - x_j)$$

$$\Pr\left[\bigwedge_{i=1}^n \overline{A_i}\right] \ge \prod_{i=1}^n (1 - x_i)$$

# Constraint Satisfaction Problem (CSP)

- Variables:  $x_1, ..., x_n \in [q]$
- (local) Constraints:  $C_1, ..., C_m$ 
  - each  $C_i$  is defined on a subset  $\operatorname{vbl}(C_i)$  of variables

$$C_i: [q]^{\mathsf{vbl}(C_i)} \to \{\mathsf{True}, \mathsf{False}\}$$

- Any  $x \in [q]^n$  is a CSP solution if it satisfies all  $C_1, ..., C_m$
- Examples:
  - *k*-CNF, (hyper)graph coloring, set cover, unique games...
  - vertex cover, independent set, matching, perfect matching, ...

# **Hypergraph Coloring**

- k-uniform hypergraph H = (V, E):
  - . V is vertex set,  $E \subseteq \binom{V}{k}$  is set of hyperedges
- degree of vertex  $v \in V$ : # of hyperedges  $e \ni v$
- proper q-coloring of H:
  - $f: V \rightarrow [q]$  such that no hyperedge is *monochromatic*

$$\forall e \in E, |f(e)| > 1$$

**Theorem:** For any k-uniform hypergraph H of max-degree  $\Delta$ ,

$$\Delta \leq \frac{q^{k-1}}{ek} \implies H \text{ is } q\text{-colorable}$$

$$k \ge \log_q \Delta + \log_q \log_q \Delta + O(1)$$

# **Hypergraph Coloring**

**Theorem:** For any k-uniform hypergraph H of max-degree  $\Delta$ ,

$$\Delta \le \frac{q^{k-1}}{ek} \implies H \text{ is } q\text{-colorable}$$

- Uniformly and independently color each  $v \in V$  a random color  $\in [q]$
- Bad event  $A_e$  for each hyperedge  $e \in E \subseteq \binom{V}{k}$ : e is monochromatic
  - $\Pr[A_e] \le p = q^{1-k}$
- Dependency degree for bad events  $d \le k(\Delta 1)$

• 
$$\Delta \leq \frac{q^{k-1}}{e^k} \implies ep(d+1) \leq 1$$
 Apply LLL