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Reference reading;:
Vallis Chapter 6.5-6.7; Charney 1947; Eady 1949



Observations

= Summary:

= Zonal-mean flow:

= Ferrel Cell: an indirect cell centered at 40-60 degree, with
strong seasonal variation in N.H.

= Westerly jet: surface westerlies centered at 40-60 degree

» Eddies: transient eddies are dominant with stationary eddies
only obvious in N.H.

= Kinetic energy
= Momentum flux

= Heat flux
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i .7| The Ferrel Cell

eddy-zonal flow interaction (I
= The simplified equations:

= Momentum equation:

Olu] — O(lu*v
ot oy
= Continuity equation: o] Ol
oy Op 0
= Thermodynamic equation: 5,k R/cp
%JFM(?HS :_8([9v])+<&> Q]
ot Op oy D Cp

(8- (8) (), ()&
dt/, ot/ oz ), o/, Op

Under the quasi-geostrophic approximation (R, < 1)
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The Ferrel Cell

= The balance equations:

Tropopause

90, 9[6v7]
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Boundary
fv ~ 'rﬁsurf > O Iayer

Ground

_ Subtopies  Lafitude  Subpolar



Outline

m  (Observations
B The Ferrel Cell

= Baroclinic eddies

= Review: baroclinic instability and baroclinic eddy life cycle
m  Eddy-mean flow interaction, E-P flux

m  Transformed Eulerian Mean equations
= Eddy-driven jet

® Energy cycle
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Baroclinic eddies
- baroclinic instability

= |nstability:

= Phenomenon: Given a basic flow with perturbations at the initial

moment, if the perturbation grows with time, the basic flow is always taken
unstable.

= Mathematics: P oc Ae*, 3a >0 -
B3 Fimmnmg: P oo Ae™)

" Energy: SR —> | HEhEhRE !

= Linear Instability: the instability that arises in a linear system.
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Baroclinic eddies
- baroclinic instability

= Baroclinic Instability - “is an instability that arises in rotating,

stratified fluids that are subject to a horizontal temperature gradient’.
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Baroclinic eddies
- baroclinic instability

Baroclinic Instability - “is an instability that arises in rotating,

stratified fluids that are subject to a horizontal temperature gradient’.

From A to B: negative buoyant

——p density increasing

If Aand C are interchanged:

low density

high temperature PE = .[pgdz
density decreasing APE = g(paza+ pczc — pcza — pazc)
= g(za —zc)(pa — pc)
3 Righ density = gApAz
low temperature APE = g(Lg—Z + L tan a%)l} tan o

Assume small a and ¢
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Baroclinic eddies
- baroclinic instability

Baroclinic Instability - “is an instability that arises in rotating,

stratified fluids that are subject to a horizontal temperature gradient’.

From A to B: negative buoyant

——p density increasing

If Aand C are interchanged:

Iqw density
high temperature PE — ngdz
density decreasing 8
APE = g1228 (1 _ 9)
Ay ¢

-

%igh density . o« .
ow emperature Q¢ 18 called mixing slope.

warm \ cold. If < ¢, a loss of potential energy.

1
If a= §gb, APE is strongest.
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Baroclinic eddies
- baroclinic instability

Baroclinic Instability - “is an instability that arises in rotating,

stratified fluids that are subject to a horizontal temperature gradient’.

Energetics: 'PE! =>1KE.

Mathematics:

Linear Baroclinic Instability

Eady’s model (1949)

Linear baroclinic system ==3» Charney’s model (1947)
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roclinic eddies
- linear baroclinic instability

ady’s model (1949 Charney’s model (1947)

VOL. 4, NO. 5 JOURNAL OF METEOROLOGY OCTOBER 1947

Long Waves and Cyclone Waves
THE DYNAMICS OF LONG WAVES IN A BAROCLINIC
WESTERLY CURRENT
By J. G. Charney

University of California at Los Angeles

By E. T. EADY, Imperial College of Science, London

{(Manuscript reccived 28 Febr. 1949)

(Manuscript received 9 December 1946)

Abstract ABSTRACT

Previous studies of the long-wave perturbations of the free have been based on
models which either fail to take properly into account the continuous vertical shear in the zonal current or
else neglect the variations of the vertical component of the earth's angular velocity. The present treatment
attempts to supply both these clements and thereby to lead to a solution more nearly in accord with the
observed behavior of the atmosphere.

By eliminating from consideration at the outset the meteorologically unimportant acoustic and shearing-
gravitational oscillations, the perturbation equations are reduced to a system whose solution is readily
obtained.

Exact stability criteria are deduced, and it is shown that the instability increases with shear, lapse rate,
and latitude, and decreases with wave length. Application of the criteria to the seasonal averages of zonal
wind suggests that the westerlics of middle latitudes are a seat of constant dynamic instability.

“The unstable waves are similar in many respects to the observed perturbations: The speed of propagation
is generally toward the cast and is approximately equal to the speed of the surface zonal current. The waves

By obtaining complete solutions, satisfying all the relevant simultancous differential
equations and boundary conditions, representing small disturbances of simple states of
steady baroclinic large-scale atmospheric motion it is shown that these simple states of
motion are almost invariably unstable. An arbitrary disturbance (corresponding to some
inhomogeneity of an actual system) may be regarded as analysed into “components” of
a certain simple type, some of which grow exponentially with time. In all the cases ¢
amined there cxists one particular component which grows faster than any other. It is
shown how, by a process analogous to “natural selection”, this component becomes
dominant in that almost any disturbance tends eventually to a definite size, structure and
ﬁmwxll—ratc (and to a characteristic life-history aftcr the disturbance has ceased to be

small””), which depends only on the broad characteristics of the initial (unperturbed) exhibit thermal asymmetry and a westward tilt of the wave pattern with height. I[n the lower troposphere the
system. The cllmmcrcn.\uc disturbances (forms of breakdown) of certain types of initial maximum positive vertical velocities occur between the trough and the nodal line to the east in the pres-
system (approximating to those observed in practice) are identified as the ideal forms of sure field.
the observed cyclone waves and long waves of middle and high latitudes. The implica- The distribution of the horizontal mass divergence is calculated, and it is shown that the notion of a
tions regarding the ultimate limitations of weather forecasting are discussed. fixed level of nondivergence must be replaced by that of a sloping surface of nondivergence. i

5 The Rossby formula for the speed of propagation of the barotropic wave is generalized to a baroclinic
atmosphere. It is shown that the barotropic formula holds if the constant value used for the zonal wind is
) that observed in the neighborhood of 600 mb.

he present paper aims at developing from  motion, we may then by successive approxi
principles a quantitative theory of the tion take into account any or all of the te
al stages of development of wave-cyclones  originally omitted. In the present instance
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explanation of the origin and development of these
cyclones. The first significant step toward a solution
was taken in 1916 by V. Bjerknes [8, p. 7857, who
advanced the theory, based upon general hydro-
dynamic considerations, that cyclones originate as
dynamically unstable wavelike disturbances in the
westerly current. The subsequent discovery of the
polar front by J. Bjerknes [2] made possible an
empirical confirmation of the theory, for, following
this discovery, the synoptic studies of J. Bjerknes and
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37 Baroclinic eddies
N - linear baroclinic instability

= Eady’s model = Charney’s model

Eric Thomas Eady Jule Gregory Charney
(1915-1966)

........ I )

4 1917 - 1981 L

R 3



“ JULE CHARNEY was one
of the dominant figures in
atmospheric science in the
three decades following
World War II. Much of the
change in meteorology
from an art to a science is
due to his scientific vision
and his thorough
commitment to people and
programs in this field.”

-- by Norman Phillips

Baroclinic eddies
- linear baroclinic instability

Charney’s model

................................

1917 - 1981

1
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Baroclinic eddies
- linear baroclinic instability

ey
-2

Eady’s model (1949) Charney’s model (1947)

a) The basic zonal flow has uniform
vertical shear,

U,(Z)=AZ, Ai tant .
(Z) 15 a consta The most distinguished

difference with Eady’s

model is that beta effect
IS considered.

b) The fluid is uniformly stratified,
N? is a constant.

c) Two rigid lids at the top and bottom,
flat horizontal surface, that is

w=0at Z=0and H.

d) The motion is on the f -plane, that
is
5=0

RIRZUM: skiF 19



Baroclinic eddies
- linear baroclinic instability

Small amptl_itude Variable = Basic state + Perturbation
‘ aszti;t%;on u(x,t) = U(z) +u'(x,t)

/
Linear baroclinic system: u(x,t) <U(2)

Eady model Linearized PV equation (q=PV):
Charney model 5 5 o0 0
! _— =
(8t+U8) Tt ray =
Normal mode
assumption /= *y O S 0 (ps 8¢’)
AR 0x> " Oy ' ps 0z \N? 0z
_ 82¢ f2 Ps 81/)
1= Gp Tt 5 <N2 82)

Obtain the solutions, e.g.

instability conditions R, BASTRRLRAN
growth rate

most unstable mode \ ¢/<x,t) — Apilkx—wt)
~. Find the conditions for non-trivial

solutions and Ci >0

RIRZM: oK+ 16



Baroclinic eddies
- linear baroclinic instability

Conclusions:

Necessary condition for baroclinic instability: PV gradient changes sign in the interior
or boundaries (Charney-stern theory), according to which the midlatitude atmosphere is baroclinic
unstable. Different models. i.e. Eady and Charney models have more rigorous conditions.

To

Growth rate: o = kc¢; =~ 0.3 A== in both Eady and Charney models!

N
NH\™' -
Most unstable mode: k., oc L' = ( 7 ) Frmax Aﬁf;[
Eady Charney

Discussion
Normal mode assumption

Small amplitude assumption, linearization
Assumption: uniform vertical shear of the zonal flow

RiRZUm: ki 17
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Baroclinic eddies

- baroclinic eddy life cycle

Jet

CR s e ———
4441m - -p

¢

Numerical simulations
with idealized GCM:

(Thorncroft et al, 1993, Q.J.R.)

Basic state at the initial moment:
close to real atmosphere.

Results: Capture the synoptic feature of
baroclinic eddies.

RiRZUM: skiF 18



17| Baroclinic eddies
T - baroclinic eddy life cycle

Eddies’ development

Small amplitude " .
perturbations .




Baroclinic eddies
- baroclinic eddy life cycle

Mean flow adjustment Numerical results from
Gutowski et al, 1989, JAS,

where F and H indicate simulations with
friction, diabatic heating, respectively

0 0
0.2} (b) - 0.2k i
0.4 ] 0.4} -
s : 1 i i
0.6 | . 0.6 | -
i INVISCID | i N
0.8 wmatl 7 0.8 7
] A N 10l |
0 10 20 30 40 \S\K 0
ZONAL VELOCITY (M S ) at day 9 N? (10 %s 2
Weaker vertical shear Much more stable
mean reduced stratification in the lower
temperature gradient. troposphere.
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Baroclinic eddies
- baroclinic eddy life cycle

Westerly jet and energy cycle:

3k C(Az—Ag)/ [/

N
I

Numerical results from
Simmons and Hoskins,
1978, JAS

Energy conversions Wm™
(=)

u(ms1)

30 | | | | |
0
time (days)
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Baroclinic eddies

® From linear to nonlinear

Fe=======ssm---- , ~Linear Reduce the zonal flow

: Basic flow , process temperature gradient;

: or : stablize the lower level

: Pre-existing flow : stratification; enhance the

; (without zqn_al variation | westerly jet

» and baroclinic unstable) :

¢ Small 1 Nonlinear
perturbation | /interactions
............... R

|

Equilibrated states between
the adjusted zonal flow
and baroclinic eddies

Perturbations

grow with time
(finite amplitude pert.) !

Eddy-mean interactions
(Adjust the zonal flow)

----ﬁ---
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Baroclinic eddies

® From linear to nonlinear

| Small
perturbation

spinup of Numerical results from a QG model
eddie (Zhang, 2009)
FesTT T ST : 40; . - 40
: Basic flow : - ;
: or 1 Nonlinear : —_ €
n L 5 - ; Equilibrium £
i Pre-existing flow 1+ < adjustment : G o
. (without zonal variation | X% . 207
» and baroclinic unstable) 1 W 200 : g
LI ! w
| 1
| 1
|
|
|
r
|

Perturbations _ _ Equilibrated states between
grow with time Edg()j/.-mtet?]n mterlafcl;tlons —3 the adjusted zonal flow
(finite amplitude pert.) | (Adjust the zonal flow) and baroclinic eddies

----ﬁ---
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Baroclinic eddies

® From linear to nonlinear

spinup of Numerical results from a QG model
eddiex (Zhang, 2009)
[ 1
) 400 '
. Basic flow . : :
' or 2 T Nonlinear : <=
1 . . 1 = . 1 =
» Pre-existing flow 1 < adjustment ; %
. (without zonal variation | X% . X
» and baroclinic unstable) & W 200F ; w
= . w
‘ 1 } ]
Small : 0 100 200 350 400 500 600
perturbation | day
1
--------------- r----------------------------------------
1

Perturbations _ _ Equilibrated states between
grow with time Ed%.—mtet?]n mterlafcl:tlons —3 the adjusted zonal flow
(finite amplitude pert.) (Adjust the zonal flow) and baroclinic eddies

----ﬁ---

RIRZUM: oKiF 24



Outline

= (Qbservations
= The Ferrel Cell

= Baroclinic eddies

= Review: baroclinic instability and baroclinic eddy life cycle
" Eddy-mean flow interaction, E-P flux

= Transformed Eulerian Mean equations
= Eddy-driven jet

= The energy cycle
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1i]| The Ferrel Cell

eddy-zonal flow interaction (I)
Start from the equations:

Moment tion: WY o= (2
omentum equation: it ), v = B

Continuity equation: Vp-v+

Thermodynamic equation: (d;;@

(8), (), (@), (5, 5
dt/, ot/ oz ), o/, Op
Decompose into zonal mean and eddy components:

A = [A] + A*

RIRZUM: o5KiF
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17| The Ferrel Cell

eddy-zonal flow interaction (I)
The simplified equations:

Momentum equation:

bl Sd R F,
1y 5y 1+ [
Continuity equation: ol Ol

oy Op 0
Thermodynamic equation: 5,k R/cp
@Hw]aes :_6([9v])+(&> Q]
ot Op oy D Cp

(8- (8) (), ()&
dt/, ot/ oz ), o/, Op

Under the quasi-geostrophic approximation (R, < 1)
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127 Baroclinic eddies

- E-P flux
= |n a steady, adiabatic and frictionless flow:

= Momentum equation: o]  O(lu*v*])
£ = P + flv] + [72]
= Continuity equation: 5 9
[v] n Wl _,
oy Op

= Thermodynamic equation:
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127 Baroclinic eddies

- E-P flux
= |na QG, steady, adiabatic and frictionless flow:

7 ' -
L

= Momentum equation:

= Continuity equation:

= Thermodynamic equation:

0] = 22 (o))
/9y Define Eliassen-Palm flux:
_ 0 [9*’0*] ) — [, *,,%] 2 [U*H*]
=5, (aes/ap =~ +ff‘%)s/f?p X
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127 Baroclinic eddies

- E-P flux
[v*6"]

k
00 /0p

= —[uv]j+ f

In a QG, steady, adiabatic and frictionless flow:

10 0 (1] S
o= 1) = () v F=0

In a QG, steady flow:

f[v]_a(["cg;/v ) ] =0
99, (")) (P [Q
Wh%4- dy __<5> z;_o

The meridional overturning flow, in addition to the eddy forcing, has
to balance the external forcing.

RIRZUM: o5KiF
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