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E-P flux, TEM and Residual Circulation 
-  Summary
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Outline

n Observations 

n The Ferrel Cell 

n Baroclinic eddies 
n Review: baroclinic instability and baroclinic eddy life cycle 

n Eddy-mean flow interaction, E-P flux 

n Transformed Eulerian Mean equations 

n Eddy-driven jet 

n The energy cycle 
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Baroclinic eddy life cycle 
-  An E-P flux view

Numerical results from 
Simmons and Hoskins,  

1978, JASEddies: generate at lower level, 
propagate upwards and away from the 

eddy source region 
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Fig. 12.17 The Eliassen–Palm flux in an idealized primitive equation of the atmo-
sphere. (a) The EP flux (arrows) and its divergence (contours, with intervals of
2 m s�1/day). The solid contours denote flux divergence, a positive PV flux, and
eastward flow acceleration; the dashed contours denote flux convergence and de-
celeration. (b) The EP flux (arrows) and the time and zonally averaged zonal wind
(contours). See the appendix for details of plotting EP fluxes.

From Vallis (2006)

From Vallis (2006)
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E-P flux 
-  The westerly jet

Wave energies: 
propagate upwards and 
away from the center of 

the jet 

Divergence

Convergence

Accelerating the lower jet 
decelerating the upper jet 

reduce the vertical shear of U

In the vertical direction:

Review
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Fig. 12.3 Generation of zonal flow on a �-plane or on a rotating sphere. Stirring
in mid-latitudes (by baroclinic eddies) generates Rossby waves that propagate away
from the disturbance. Momentum converges in the region of stirring, producing
eastward flow there and weaker westward flow on its flanks.

From Vallis (2006)

From Vallis (2006)
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Fig. 12.3 Generation of zonal flow on a �-plane or on a rotating sphere. Stirring
in mid-latitudes (by baroclinic eddies) generates Rossby waves that propagate away
from the disturbance. Momentum converges in the region of stirring, producing
eastward flow there and weaker westward flow on its flanks.
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In equilibrium:
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In equilibrium:

There MUST be surface 
westerlies at midlatitudes.

Review
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Fig. 12.3 Generation of zonal flow on a �-plane or on a rotating sphere. Stirring
in mid-latitudes (by baroclinic eddies) generates Rossby waves that propagate away
from the disturbance. Momentum converges in the region of stirring, producing
eastward flow there and weaker westward flow on its flanks.

From Vallis (2006)

From Vallis (2006)

Eddy-driven jet: 
-  the momentum  budget

In equilibrium:

There MUST be surface 
westerlies at midlatitudes.

Review
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E-P flux 
- in the real atmosphere

~F = ~cgA
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E-P flux 
- in the real atmosphere

~F = ~cgA

Vertical component 
is dominant.



ht
tp

://
w

w
w

.a
du

ltp
df

.c
om

C
re

at
ed

 b
y 

Im
ag

e 
To

 P
D

F 
tri

al
 v

er
si

on
, t

o 
re

m
ov

e 
th

is
 m

ar
k,

 p
le

as
e 

re
gi

st
er

 th
is

 so
ftw

ar
e.

8授课教师：张洋

F ⌘ �[u⇤v⇤] j+ f
[v⇤✓⇤]

@✓s/@p
k

E-P flux 
- in the real atmosphere

~F = ~cgA

Vertical component 
is dominant.

EP divergence in 
the lower layers; 
convergence in the 
upper layers. 
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E-P flux and the eddy-driven jet 
-summary
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E-P flux and the eddy-driven jet 
-summary

• Numerical results and observations: eddies generate in the lower level, 
propagate upwards and away from the eddy source region. 
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E-P flux and the eddy-driven jet 
-summary

• Numerical results and observations: eddies generate in the lower level, 
propagate upwards and away from the eddy source region. 

• Accelerating the lower jet, decelerating the upper jet, reduce the 
vertical shear of U
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E-P flux and the eddy-driven jet 
-summary

• Numerical results and observations: eddies generate in the lower level, 
propagate upwards and away from the eddy source region. 

• Accelerating the lower jet, decelerating the upper jet, reduce the 
vertical shear of U

• Momentum budget indicates that there MUST be surface westerlies 
in the eddy source latitude.
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Outline

n Observations 

n The Ferrel Cell 

n Baroclinic eddies 
n Review: baroclinic instability and baroclinic eddy life cycle 

n Eddy-mean flow interaction, E-P flux 

n Transformed Eulerian Mean equations 

n Eddy-driven jet 

n The energy cycle 
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Energy cycles   
in the baroclinic eddy-mean flow interactions

n Basic forms of energy: 
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in the baroclinic eddy-mean flow interactions

n Basic forms of energy: 

n Kinetic energy (动能): 

n Latent energy (相变潜热能): 

n Internal energy (内能): 

n Gravitational-potential energy (位能): 
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I = cvT
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Energy cycles   
in the baroclinic eddy-mean flow interactions

n Basic forms of energy: 

n Kinetic energy (动能): 

n Internal energy (内能): 

n Gravitational-potential energy (位能): 
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However, we note that in a stably stratified atmosphere like ours much of the TPE can 

never be released or converted to KE. In particular, consider a typical arrangement of the 

isentropic surfaces as shown in the first diagram below. 
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Figure by MIT OCW. 

!
6 
> !

5
... > !

1
.  As we see there are horizontal gradients and because of this PE can be 

released by the motions in spite of the stable stratification. Consider for example a 

displacement like that shown below. 
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in the baroclinic eddy-mean flow interactions
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Fig. 6.9 A steady basic state giving rise to baroclinic instability. Potential density de-
creases upwards and equatorwards, and the associated horizontal pressure gradient
is balanced by the Coriolis force. Parcel ‘A’ is heavier than ‘C’, and so statically sta-
ble, but it is lighter than ‘B’. Hence, if ‘A’ and ‘B’ are interchanged there is a release
of potential energy.
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Figure by MIT OCW. 

In this new state, since !" 
!z 

> 0,  there are no displacements which can release PE, 

because now for any displacement, w '! ' < 0 . Thus the PE of this state is unavailable. 

This led Lorenz (1955) to define the available potential energy as the difference between 

the TPE in the actual atmosphere and that in the adjusted state just described. If we call 

this P, then for a given system or region, 
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n Basic forms of energy: 
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State A State B = Available potential energy

n Available potential energy (有效位能): 
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From the “approximate” expression 
of Lorenz (1955)
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n Kinetic energy (动能): 
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n Tendency equations: 
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n Equations under the Quasi-geostrophic assumption: 
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n Equations under the Quasi-geostrophic assumption: 
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n Equations under the Quasi-geostrophic assumption: 
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Fig. 9.9 Top: energy conversion and dissipation processes in a numerical simulation
of an idealized atmospheric baroclinic lifecycle, simulated with a GCM. Bottom: evo-
lution of the maximum zonal-mean velocity. AZ and AE are zonal and eddy available
potential energies, and KZ and KE are the corresponding kinetic energies. Initially
baroclinic processes dominate, with conversions from zonal to eddy kinetic energy
and then eddy kinetic to eddy available potential energy, followed by the barotropic
conversion of eddy kinetic to zonal kinetic energy. The latter process is reflected in
the increase of the maximum zonal-mean velocity at about day 10.6
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of an idealized atmospheric baroclinic lifecycle, simulated with a GCM. Bottom: evo-
lution of the maximum zonal-mean velocity. AZ and AE are zonal and eddy available
potential energies, and KZ and KE are the corresponding kinetic energies. Initially
baroclinic processes dominate, with conversions from zonal to eddy kinetic energy
and then eddy kinetic to eddy available potential energy, followed by the barotropic
conversion of eddy kinetic to zonal kinetic energy. The latter process is reflected in
the increase of the maximum zonal-mean velocity at about day 10.6
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Edward N. Lorenz

Edward N. Lorenz, a Meteorologist and a Father of
Chaos Theory, Dies at 90
By KENNETH CHANG
Published: April 17, 2008

Edward N. Lorenz, a meteorologist who tried to predict the weather

with computers but instead gave rise to the modern field of chaos

theory, died Wednesday at his home in Cambridge, Mass. He was 90.

The cause was cancer, said his

daughter Cheryl Lorenz.

In discovering “deterministic chaos,”

Dr. Lorenz established a principle that

“profoundly influenced a wide range

of basic sciences and brought about

one of the most dramatic changes in mankind’s view of

nature since Sir Isaac Newton,” said a committee that

awarded him the 1991 Kyoto Prize for basic sciences.

Dr. Lorenz is best known for the notion of the “butterfly

effect,” the idea that a small disturbance like the flapping

of a butterfly’s wings can induce enormous consequences.

As recounted in the book “Chaos” by James Gleick, Dr. Lorenz’s accidental discovery of

chaos came in the winter of 1961. Dr. Lorenz was running simulations of weather using a

simple computer model. One day, he wanted to repeat one of the simulations for a longer

time, but instead of repeating the whole simulation, he started the second run in the

middle, typing in numbers from the first run for the initial conditions.

The computer program was the same, so the weather patterns of the second run should

have exactly followed those of the first. Instead, the two weather trajectories quickly

diverged on completely separate paths.

At first, he thought the computer was malfunctioning. Then he realized that he had not

entered the initial conditions exactly. The computer stored numbers to an accuracy of six

decimal places, like 0.506127, while, to save space, the printout of results shortened the

numbers to three decimal places, 0.506. When typing in the new conditions, Dr. Lorenz

had entered the rounded-off numbers, and even this small discrepancy, of less than 0.1

percent, completely changed the end result.

Even though his model was vastly simplified, Dr. Lorenz realized that this meant perfect

weather prediction was a fantasy.

A perfect forecast would require not only a perfect model, but also perfect knowledge of

wind, temperature, humidity and other conditions everywhere around the world at one

moment of time. Even a small discrepancy could lead to completely different weather.

Dr. Lorenz published his findings in 1963. “The paper he wrote in 1963 is a masterpiece of

clarity of exposition about why weather is unpredictable,” said J. Doyne Farmer, a

professor at the Santa Fe Institute in New Mexico.

The following year, Dr. Lorenz published another paper that described how a small

twiddling of parameters in a model could produce vastly different behavior, transforming

regular, periodic events into a seemingly random chaotic pattern.

At a meeting of the American Association for the Advancement of Science in 1972, he gave

a talk with a title that captured the essence of his ideas: “Predictability: Does the Flap of a

Butterfly’s Wings in Brazil Set Off a Tornado in Texas?”

Dr. Lorenz was not the first to stumble onto chaos. At the end of the 19th century, the

mathematician Henri Poincaré showed that the gravitational dance of as few as three
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n Observations 

n The Ferrel Cell 

n Baroclinic eddies 
n Review: baroclinic instability and baroclinic eddy life cycle 

n Eddy-mean flow interaction, E-P flux 

n Transformed Eulerian Mean equations 

n Eddy-driven jet 

n The energy cycle 

1. The role of moisture;
2. Quantify (parameterize) 
the relation between 
eddies and mean flow; 
3. Zonal variations.
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