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Limit Theorems
Let X, X,, ... bei.id. random variables with 4 = E[X,] and Var[X,] = ¢°.

And let X, = — Z X: be the sample mean.
=1

 Law of large numbers (LLN): sample mean — expectation

X,—> U as n— oo
o Central limit theorem (CLT): standardized sample mean — standard normal
X —

of \f

—>N(O,1) as n — oo



Convergence

. Areal sequence {q,} converges to a € R, denoted lim a, = aora, — a,
n—00

if for all € > 0, thereis N such that |a, —a| < eforalln > N

» Asequence fi,/5, ... : £ = R is said to converge pointwise to f : 2 = R,
if and only if lim f, (x) f(x) for all x € Q2
n—~oo

 For random variables X, X,, ... and X on probability space (£2, 2, Pr):

» random variables X, X,, ... : £ = R and X : 2 — R are functions

&
+ CDFs Fx,Fy,... : R = [0,1]and Fy : R — [0,1] are functions _g

- Should X, — X be: X, — X pointwise or I'y — Fy pointwise?




Convergence of
Random Variables

. = U[O,l]



Modes of Convergence

» Let X, X{,X,, ... : £ = R berandom variables on prob. space (£2, 2, Pr).

» {X,} converges in distribution (& %% % 4%) to X, denoted X, 20X, if
FXn(x) =Pr(X, <x) = Fy(x) =Pr(X<x) as n— o

for all x € R at which Fy(x) is continuous

LF 0 8%) to X, denoted X, LXif

« {X } converges in probability (4 #

Pr(| X, — X|>¢€)=0

as n—> oo foralle>0

. {X } converges almost surely to X, denoted X, =5 X, if JA € X such that
Ilm X (w) = X(w) forallw € A, and Pr(A) =1

n— 00



Modes of Convergence
 Let X, X,, ... and X be random variables on probability space (£2, 2, Pr).

D

« X — X (convergence in distribution / in law / weak convergence of measure) if
n—-oo on continuous set

for all x € R at which Fy(x) is continuous

¢ X N ¢ (convergence in probability / in measure) if
lim Pr(| X, — X| >€)=0 forall € >0 ian’;;f,e

n— o0
. X 5 X (convergence almost surely / almost everywhere / w.p. 1) if

n
Pr( Iim X = X) — 1 X, — X pointwise
n

11— 00 on a set of measure 1




Convergence in Distribution

Let X, X5, ... and X be random variables on probability space (€2, 2, Pr).

D

X, — X (convergence in distribution / in law / weak convergence of measure) if
n—-oo on continuous set

for all x € R at which Fy(x) is continuous

The restriction on continuity set is necessary, consider:
uniform X, on (0,1/n), which satisfies X Lid X, where Pr( X =0) = 1

X _)X and FX FY — X _) Y (convergence in di;ﬁribufic.)n

depends only on distribution)

X, 2 Xis a weak convergence of measures




Convergence in Probability
 Let X, X,, ... and X be random variables on probability space (£2, 2, Pr).

¢ X —P> X (convergence in probability) if
lim Pr(|X, — X|>e)=0 forall € >0

n— o0

X, =X

IN measure

» Functions X, : £2 — R converges to X : {2 — R in_ measure Pr

X 5X = X, 35X
 Counterexample for converse: X is uniformon [0,1]and X, =1 — X

D . P
e If X, > ¢, where ¢ € R is a constant, then X, — ¢

* Proof: Pr(|X — ]| >€)=Pr(Xn<c—€)+Pr(Xn>€+c)—>Oian2>c



Almost Sure Convergence
 Let X, X,, ... and X be random variables on probability space (£2, 2, Pr).

¢ X, X (convergence almost surely / almost everywhere / w.p. 1) if

Pr{ ImX =X]| =1 X, — X pointwise
& on a set of measure 1

n— Qoo

» X, : Q — R converges to X : 2 — R almost everywhere except a null set

. Theevent Iim X, = X is: (- Ui

n— Q00

{weQ||X,(w)—X(w)| < 1/m}

nno

c X S x = x Bx

. Counterexample for converse: { X | are independent Bernoulli(1/n).
We have X 5 0, but we do not have X, = () almost everywhere as n — .



o

SR

A

Borel-Cantelli Lemmas*
(HBER—RFAFNE/ EER-KEAHF] 3 / zero-one law)

« Let A, A,, ... be a sequence of events from a probability space (£2, 2, Pr).
Let A be the event that infinitely many of the A, occurs:

=AU

denoted A, infinitely often, or A, i.o.

. (Istlemma) i Pr(A) <o = Pr(A) =0

n=1

. (2nd lemma) Z Pr(A,)) = 0 and A, A,, ... are independent — Pr(A) =1

n=1



Continuity of Probability Measures*

« LetA; C A, C A; C ... be anincreasing sequence of events, and write A for their limit
0
A=|JA =limA4,.
i1 [— 00

Then Pr(A) = lim Pr(A)).

[— 00
» Proof: Express A as a disjoint union A = A; W (A,\A,) W (A;\A,) W ---. Then

Pr(A) = Pr(A) + ) Pr(A;,,\A)
=1

n—1
Pr(A,) + lim 2 [Pr(A,, ) — Pr(A)]

i=1
lim Pr(A,)

n—~odo



Continuity of Probability Measures*

« LetA; C A, C A; C ... be anincreasing sequence of events, and write A for their limit

A= OA,: lim A, .

, [— 00
=1

Then Pr(A) = lim Pr(A)).

[— 00

« LetB, 2 B, 2 B; 2 ... be an decreasing sequence of events, and write B for their limit

B:ﬁBi:IimBi.

, [— 00
=1

Then Pr(B) = lim Pr(B)).

[— 00

- Proof: Consider the complements B; C B; C B; C ... which is an increasing sequence.



Borel-Cantelli Lemmas*

A:@QAm

(1st lemma) Z Pr(A)) < oo = Pr(A) =0

n=1

Proof: By union bound, Pr( UAm) < Z Pr(A, ), which — Oas n — oo,

assuming that Z Pr(A,) < oo converges.

n=1

n— Qoo

And by continuity of Pr, we have Pr(A) = lim Pr( U Am> = ()



Borel-Cantelli Lemmas*

A=NU

n=1 m=n

(2nd lemma) 2 Pr(A,) = coand A, A,, ... are independent =— Pr(A) = 1

n=1
Proof: By independence, Pr ( ﬁ A,f,;) = H (1 — Pr(Am)) < exp (— i Pr(Am)) =0,

0
assuming the divergence of Z Pr(A,) = oo.

n=1

By continuity of Pr, Pr(A¢) = Pr ( N A,;) = lim Pr( f A,;) =0 = Pr(4) =1

n— 00
n=1 m=n



Strength of Convergence
e (X, X)) = X, LX) = X, 5 X)
Proof” (X, DX = X, kit X): LetA (¢) = {|X,— X| > €}. Then forany € > 0

lim X, =X = O ﬁA,;;(e)

n—~0o0

n=1 m=n
Assume X, “5 X.Then 1 = Pr ( lim X, = X) = Pr ( U ﬂ A&(e))
oo n=1 m=n
—> () =Pr ( ﬂ U Am(€)> = lim Pr( U Am(e)) (by continuity of probability measure)
n=1 m=n e m=n

— Pr(| X, — X| > €) = Pr(4, (¢)) SPr( UAm(€)> — (0 asn —> o©

m=n

— X, L X



Strength of Convergence

XX = X, LX) =

(X, > X)

Proof* (X, > X => X, 3 X): Fixany € > 0. It holds that

(X <x}C{X<x+e}U{|X —-X
(X<x—€e}C{X <x}U{|X —X

— Fy(x—¢€)—Pr(| X, — X] >€)§FXn(x)SFX(x+€)+Pr(\Xn—X\ > €)

> e} = Fy (x) < Fx(x +¢€) + Pr(| X, — X
> e} = Fy(x —¢) < Fy (x) + Pr(| X, — X

> €)
> €)

Assume X £ X. Then Pr(| X, — X| > €) = Oasn — oo forall € > 0. Therefore,

Fy(x —€) < lim int FX,,,(X) < lim sup FXn(x) < Fy(x+e¢€) foralle >0

n—~oo

n— Qoo

Furthermore, if F'y is continuous at x, then

Fy(x—¢€) 1 Fy(x)and Fy(x +€) | Fy(x) ase | 0.



Condition for Almost Sure Convergence*

| ZPr(\Xn—Xl > €) < oofcraII€>O,thean2>'X

Proof: Foranye > 0,let A, (e) = { | X, — X| > €}. Then due to Borel-Cantelli: Ve > 0

ZA () < 0 = Pr(ﬂ UA (e)) Pr A ~(€) infinitely often) =0

n=1 m=n
— Pr ( U ﬂ U Am(l/k)> 0 by countable additivity
k=1 n=1 m=
— Pr ( lim X, :X) = Pr(ﬂ g ﬂA,;(l/k)) —
e k=1 n=1 m=n
S.



Almost Sure vs. In Probability Convergence*

» Let { X } be independent Bernoulli trials with parameter 1/n. Then

X, Z, 0, but it does not hold X =50

|
Proof: Foranye > 0, Pr(| X, | > ¢) <Pr(X,=1)=——>0 asn - o© =>Xn—P>O
n

0 0
1
(X, } are independent and Z Pr(X, = 1) = Z —= o0, then by Borel-Cantelli:

Pr(X, = 1 infinitely often) = 1 = Pr ( lim X = O) =0 = X, =% 0 does not hold

n—~oo



Coupling*

 Skorokhod’s representation theorem:

Iif X ke X, then there exist random variables Y, ¥,, ... and ¥ on some
(L2, #,P), satisfying 'y = Fy foralln > 1 and Fy = Fy, suchthat Y, Y

Proof: Apply inverse transform sampling. Let " = [0,1], & the Borel o-field on [0, 1],
and [P the uniform law. For u € Q" = [0,1], let

Y (u) =1inf{x | u < Fx (x)} and Y(u) = inf{x | u < Fy(x)}

Due to inverse transform sampling, Fy, = Fy foralln > 1 and Fy = Fjy.

It can also be verified that Y, («) — Y(u) for all points u of continuity of ¥, meanwhile the
set D C |0,1] of discontinuities of Y is countable , thus [P(D) = 0, which implies

Y =5Y




Continuous Mapping Theorem*

e Continuous mapping theorem: If ¢ : R — R is continuous, then

XngX —> g(X) = g(X)
XniX —> g(X)) 5 g(X)
X, 5 X = g(X,) = g(X)

Proof (for convergence in distribution):
Construct { Y, } and Y as in Skorokhod’s representation theorem. By continuity of g,

Y, (u) = Y(u) = g(¥,(0)) — g(Y(n)) = g(¥,) = g(¥) = g(X) 5 g(X)



Other Convergence Modes*

¢ X —1> X (convergence in mean) if
lim E [|X,—X]|| =0

n— o0

e X 5 X (convergence in rth mean / in the L"-norm) if

lim E [|X,—X|"| =0
XS =X5X) = X,5X)
h
X, 5X) =X 5X) = X, > X)
(fors > r > 1)




LLN and CLT
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Bernoulli’s Law of Large Number
In Ars Conjectandi (1713)

» Let X, X,, ... beiid. Bernoullitrials with E[X;] =p € [0,1]. T

X1+X2+"'+Xn
Prl] | ——————p|>¢ ] >0 asn—> 00 forale>0
n

— P — — X1+X2+"’+Xn
.e. X, — p,where X isthesamplemean X = ———
n

p(l —p)
ne?

Proof: By Chebyshev’s inequality, Pr(| X —p| > ¢) < — 0asn — o

(This is of course not the original proof of Bernoulli.)




Law of Large Numbers (LLN)

Let X, X5, ... be i.i.d. random variables with finite mean E| X | = u.

_ I
And let X, = — Z X; be the sample mean.
n
i=1

 Weak law (Khinchin’s law) of large number:

7 7
. — W as n— oo

o Strong law (Kolmogorov’s law) of large number:

XCI.S.
,— 1 as n — oo

(The deviation | X, — u| is always small for all sufficiently large n)



Weak LLN Assuming Bounded Variance

 Let X, X,, ... be independent random variables with finite mean E|X;| = u
and finitely bounded variance Var[X.] < o,

_ 1 +«
Then the sample mean X, = — ) X, has
n
=1

X, 5 uas n— oo
_ o’
Proof: By Chebysev’s inequality, Pr(| X, —u| >¢) < —— = 0asn - o

ne?



De Moivre—Laplace Theorem

(B2 9 — 325 07 T 2

» Letp € (0,1) and X, ~ B(n, p). Then its standardization
Xn — np D

?—)N(O,l) as 71 — o0
VHAPAUL =P

 Foranyp € (0,1), any radius r > 0, and any € > 0, there is an n, such that

(k —np)/y/np(1 —p)| <,
(k = np)*

ny\ , s 1
P —pytelxo————e s
k \/2rnp(1 — p)

for all n > ny and all k such that




Central Limit Theorem (CLT)

. Let X;,X,, ... bei.i.d. random variables with E[X;] = u and Var[X,] = ¢°.

_ |
And let X, = — Z X; be the sample mean.
=1
» Classical (Lindeberg-Lévy) central limit theorem:

Y —
n— F S NO,1) as n— o

o/ ﬁ



Convergence Rate of CLT

(Berry-Esseen theorem)

« Berry-Esseen theorem: Let X, X,, ... be i.i.d. random variables with

R
“[X,]=u. Var[X] = 0% and p = E[| X, — p|’]. And let X, = — ) X,
n
=1

There is an absolute constant C, such that for any z

)_(n —H Cp
Pr <z ]|—-DP)]| <
o/\/n 03\/5

where @ stands for the CDF for standard normal distribution N(0,1)




Characteristic
Function




Characteristic Functions

» The moment generating function (MGF) of X is the function My : R — R,
My (1) = _[etX]

 The characteristic function (44£:% %%) of X is the function ¢y : R — C
Py (1) = “[e'%], wherei=1/—1

. Fourier transform: @y () = Jeitx dFy(x) = E[cos tX] + iE[sin £X]

« Unlike MGF, ¢, always exists and is finite, because \eitx\ = ]



Boundedness of Characteristic Function

px(t) = E[e™]
e |py(t)| < 1lforallt el
. If E[|X*|] < o0, then
k ' =1+1
(X (x() = 1 + iut + o) )
) = tY + o(t* o + i
Px(1) Z; i izy +o(r') (1) = 1 + it — - ;ﬂ)t2+0(t2))

Proof: | py (1) | < Jle"tx\ dFy(x) = {dFX(x) = 1 (for Lebesgue-Stieltjes integral)

kK vi kK Trvi
Taylor’s expansion: @,(1) = [e] = E [2 £J(it)j + o(tk)} = [.)'(J] (it) + o(t)
. ]
j=0

=0/



Normal Characteristic Function

e If X ~ N(O,1), then

' 2
¢X(t) — _[ell‘X] — e—t /2
Proof (using complex integration):
O o0
px(1) = E[e"™] = X2y = =112 Hain® 4y = g1 12

_l(x_ll‘)z . . .
because 2 x = 1 via contour integration

— 0 271'



Normal Characteristic Function
e If X ~ N(O,1), then

_ X1 . a—t22
px(1) = Ele"™ ] =€
Proof (without using complex integration): ¢y(f) = E[e"*] = E[cos tX] + iE[sin tX]
o0 i 0.Q) o0
= c:os(tx)e‘xz/2 dx 4 sin(tx)e_xz/2 dx = c:os(tx)e‘xz/2 dx
271 J— o 27t J_oo odd function 271 J— o
do, (1 de'™ . —1 [
#x(1) = [E = E[iXe"™] = iE[X cos tX] — E[X sin tX] = xsin(tx)e_xz/2 dx
dz¢ d? odd function 27— oo
= sin(zx) de™72 = sin(tx)e_xz/ 2 t cos(tx)e_xz/ 2dx = cos(tx)e_xz/ 2 dx
V27 ) V2r V27 ) V27 )
dx(1) —1212 - - i-0-X
— = —1py(1) = @x(t)=¢ (solving the ODE subject to ¢, (0) = E[e"V ] = 1)

ds



Linear Transformation

» If X and Y are independent, then @y, (1) = @x(?)@y(7)

e IfY=aX+ bfora,b €l

Proof: For independent X an
§0X+Y(t) = [Ele
For Y = aX + b,

@y(t) = ke

it(X+Y)] —

dY,

“[e

it(aX+b)] — eitb

 then (1) = e"’py(ar)

HE[e™] = Px(H)Py(1)

— [eitaX] — Eitbgﬂx(dt)




Continuity Theorem

 |f X is continuous with density function fX and characteristic function ¢y, then
(by Fourier inversion theorem)

Px(1) = J e fy(x)dx and fi(x) = Z_nJ e™ " px(1) dt

Hence, the distribution of continuous X is uniquely identified by ¢y.

* For general random variables: (it's more complicated, but similarly)

Fy = Fy iff oy = @y

» Lévy’s continuity theorem: Let { X, } and X be random variables.

X, 2 X iff ¢x — (@x pointwise on R asn — oo



Convolution of Normal Distribution

. If X ~ N(u, %) and Y ~ N(v, 7°) are independent, then
e X+ Y ~Nu+v,c*+ 1%
Proof (by characteristic function): Let Z ~ N(O,1).

X ~ N(//t, 02) — X = o/ + U = g”X(t) — €it’uqﬂz(0t) — eitﬂ—62t2/2

ity—1t%12

By the same calculation: Y ~ N(v, 72) —> @y(1) = ¢

' 242 1 — 242 - 2, 2\.2
Oy /(1) = Qx(Dy(f) = =012 . =712 — gitlputv)=(e™+T17/2

which is the characteristic function of normal distribution N(u + v, o + 72).



Law of Large Numbers (LLN)

Let X, X5, ... be i.i.d. random variables with finite mean E| X | = u.

_ 1 «
And let X, = — Z X; be the sample mean.
=
 Weak law (Khinchin’s law) of large number:

7 7
. — W as n— oo



Proof of the Weak Law of Large Numbers

_ 1
Let X, X, ... beiid. with finite mean £[X| = u. Let X = — ZX]
n
J=1

. The characteristic function quj(t) = E[e"™] = 1 + iut + o(?)

— (p)—(n(t) = (pX1+,,,+Xn(t/n) = H(p)(j(t/n) = (1 + lLt + o <£>>

. n n
J=1
— e forallteR as n — o
» Meanwhile, @y(f) = “[e*] = e for constant X = 7,

. => X, 3 4 by Lévy’s continuity theorem = X, = 4 for constant



Central Limit Theorem (CLT)

. Let X;,X,, ... bei.i.d. random variables with E[X;] = u and Var[X,] = ¢°.
X, —u

Let Z, =

_ 1
be the standardized sample mean, where X, = — Z X
U/W n i—=1

» Classical (Lindeberg-Lévy) central limit theorem:

anN(O,l) as n — o0



Proof of the Central Limit Theorem

_ |
Let X, X,, ... be ii.d. with finite E[X,] = y and Var[X,] = 6% Let X, = — Z X,
n
j=1

. For standardized ¥; = (X; — u)/o = qpyj(t) = E[e"] =1 — % + o(t?)
X —u Y +-+7Y

The standardized sample mean: Z, = — —

o/ Vn
— 0,0 =010, (V7)< [T () = (1= 5 +0(5))
j=1

e foralltER as n — oo (characteristic function of N(0,1))

. =7 27~ N(0,1) by Lévy’s continuity theorem



