Probability Theory & Mathematical Statistics

Limit Theorems

Limit Theorems

Let X_1, X_2, \ldots be *i.i.d.* random variables with $\mu = \mathbb{E}[X_1]$ and $\mathbf{Var}[X_1] = \sigma^2$.

And let
$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$
 be the sample mean.

Law of large numbers (LLN): sample mean → expectation

$$\overline{X}_n \longrightarrow \mu \quad \text{as } n \to \infty$$

• Central limit theorem (CLT): standardized sample mean \rightarrow standard normal

$$\frac{\overline{X}_n - \mu}{\sigma / \sqrt{n}} \longrightarrow N(0,1) \quad \text{as } n \to \infty$$

Convergence

- A real sequence $\{a_n\}$ converges to $a\in\mathbb{R}$, denoted $\lim_{n\to\infty}a_n=a$ or $a_n\to a$, if for all $\epsilon>0$, there is N such that $|a_n-a|<\epsilon$ for all n>N
- A sequence $f_1, f_2, \ldots : \Omega \to \mathbb{R}$ is said to <u>converge pointwise</u> to $f : \Omega \to \mathbb{R}$, if and only if $\lim_{n \to \infty} f_n(x) = f(x)$ for all $x \in \Omega$
- For random variables X_1, X_2, \ldots and X on probability space (Ω, Σ, \Pr) :
 - random variables $X_1, X_2, \ldots : \Omega \to \mathbb{R}$ and $X : \Omega \to \mathbb{R}$ are functions
 - CDFs $F_{X_1}, F_{X_2}, \ldots : \mathbb{R} \to [0,1]$ and $F_X : \mathbb{R} \to [0,1]$ are functions
- Should $X_n \to X$ be: $X_n \to X$ pointwise or $F_{X_n} \to F_X$ pointwise?

Convergence of Random Variables

 $0. \hspace{1cm} \longrightarrow \hspace{1cm} U_{[0,1]}$

Modes of Convergence

- Let $X, X_1, X_2, \ldots : \Omega \to \mathbb{R}$ be random variables on prob. space (Ω, Σ, \Pr) .
- $\{X_n\}$ converges in distribution (依分布收敛) to X, denoted $X_n \overset{D}{\to} X$, if $F_{X_n}(x) = \Pr(X_n \le x) \to F_X(x) = \Pr(X \le x)$ as $n \to \infty$ for all $x \in \mathbb{R}$ at which $F_X(x)$ is continuous
- $\{X_n\}$ converges in probability (依概率收敛) to X, denoted $X_n \overset{P}{\to} X$, if $\Pr(|X_n X| > \epsilon) = 0$ as $n \to \infty$ for all $\epsilon > 0$
- $\{X_n\}$ converges almost surely to X, denoted $X_n \overset{a.s.}{\longrightarrow} X$, if $\exists A \in \Sigma$ such that $\lim_{n \to \infty} X_n(\omega) = X(\omega)$ for all $\omega \in A$, and $\Pr(A) = 1$

Modes of Convergence

- Let X_1, X_2, \ldots and X be random variables on probability space (Ω, Σ, \Pr) .
- $X_n \xrightarrow{D} X$ (convergence in distribution / in law / weak convergence of measure) if

$$\lim_{n\to\infty} F_{X_n}(x) = F_X(x) \qquad F_{X_n} \to F_X \text{ pointwise}$$
 on continuous set

for all $x \in \mathbb{R}$ at which $F_X(x)$ is continuous

• $X_n \stackrel{P}{\to} X$ (convergence in probability / in measure) if $\lim_{n \to \infty} \Pr(|X_n - X| > \epsilon) = 0 \quad \text{for all } \epsilon > 0 \quad \lim_{n \to \infty} X_n \stackrel{X_n \to X}{\to \infty}$ in measure

• $X_n \stackrel{a.s.}{\longrightarrow} X$ (convergence almost surely / almost everywhere / w.p. 1) if

$$\Pr\left(\lim_{n\to\infty}X_n=X\right)=1 \qquad \begin{array}{c} X_n\to X \text{ pointwise} \\ \text{on a set of measure 1} \end{array}\right.$$

Convergence in Distribution

- Let X_1, X_2, \ldots and X be random variables on probability space (Ω, Σ, \Pr) .
- $X_n \xrightarrow{D} X$ (convergence in distribution / in law / weak convergence of measure) if

$$\lim_{n\to\infty} F_{X_n}(x) = F_X(x) \qquad F_{X_n} \to F_X \text{ pointwise}$$
 on continuous set

for all $x \in \mathbb{R}$ at which $F_X(x)$ is continuous

- The restriction on continuity set is necessary, consider:
 - uniform X_n on (0,1/n), which satisfies $X_n \stackrel{D}{\rightarrow} X$, where $\Pr(X=0)=1$
- $X_n \stackrel{D}{\to} X$ and $F_X = F_Y \Longrightarrow X_n \stackrel{D}{\to} Y$ (convergence in distribution)
- $X_n \stackrel{D}{\rightarrow} X$ is a <u>weak convergence of measures</u>

Convergence in Probability

- Let X_1, X_2, \ldots and X be random variables on probability space (Ω, Σ, \Pr) .
- $X_n \stackrel{P}{\rightarrow} X$ (convergence in probability) if

$$\lim_{n\to\infty} \Pr(|X_n - X| > \epsilon) = 0 \quad \text{for all } \epsilon > 0 \quad \prod_{\text{in measure}} X_n \to X$$

- Functions $X_n:\Omega \to \mathbb{R}$ converges to $X:\Omega \to \mathbb{R}$ in measure \Pr
- $\bullet \ X_n \xrightarrow{P} X \implies X_n \xrightarrow{D} X$
 - Counterexample for converse: X is uniform on [0,1] and $X_n=1-X$
- If $X_n \overset{D}{\to} c$, where $c \in \mathbb{R}$ is a constant, then $X_n \overset{P}{\to} c$
 - Proof: $\Pr(|X_n c| > \epsilon) = \Pr(X_n < c \epsilon) + \Pr(X_n > \epsilon + c) \to 0 \text{ if } X_n \xrightarrow{D} c$

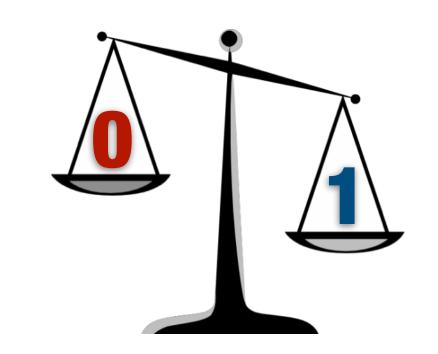
Almost Sure Convergence

- Let X_1, X_2, \ldots and X be random variables on probability space (Ω, Σ, \Pr) .
- $X_n \stackrel{a.s.}{\longrightarrow} X$ (convergence almost surely / almost everywhere / w.p. 1) if

$$\Pr\left(\lim_{n\to\infty}X_n=X\right)=1 \qquad \qquad \begin{array}{c} X_n\to X \text{ pointwise} \\ \text{on a set of measure 1} \end{array}\right.$$

- $X_n:\Omega \to \mathbb{R}$ converges to $X:\Omega \to \mathbb{R}$ almost everywhere except a null set
- $\text{. The event } \lim_{n\to\infty} X_n = X \text{ is: } \bigcap_{m=1}^\infty \bigcup_{n_0=1}^\infty \bigcap_{n=n_0}^\infty \left\{ \omega \in \Omega \mid |X_n(\omega) X(\omega)| \leq 1/m \right\}$
- $\bullet \ X_n \stackrel{a.s.}{\longrightarrow} X \implies X_n \stackrel{P}{\longrightarrow} X$
 - Counterexample for converse: $\{X_n\}$ are independent $\operatorname{Bernoulli}(1/n)$. We have $X_n \stackrel{P}{\to} 0$, but we do not have $X_n = 0$ almost everywhere as $n \to \infty$.

Borel-Cantelli Lemmas*



(博雷尔-坎特利引理/波莱尔-坎泰利引理/zero-one law)

• Let A_1, A_2, \ldots be a sequence of events from a probability space (Ω, Σ, \Pr) . Let A be the event that infinitely many of the A_n occurs:

$$A = \bigcap_{m=1}^{\infty} \bigcup_{m=n}^{\infty} A_m$$

denoted A_n infinitely often, or A_n i.o.

• (1st lemma) $\sum_{n=1}^{\infty} \Pr(A_n) < \infty \implies \Pr(A) = 0$

• (2nd lemma)
$$\sum_{n=1}^{\infty} \Pr(A_n) = \infty$$
 and A_1, A_2, \dots are independent $\Longrightarrow \Pr(A) = 1$

Continuity of Probability Measures*

• Let $A_1 \subseteq A_2 \subseteq A_3 \subseteq ...$ be an increasing sequence of events, and write A for their limit

$$A = \bigcup_{i=1}^{\infty} A_i = \lim_{i \to \infty} A_i.$$

Then
$$Pr(A) = \lim_{i \to \infty} Pr(A_i)$$
.

• **Proof**: Express A as a disjoint union $A = A_1 \uplus (A_2 \backslash A_1) \uplus (A_3 \backslash A_2) \uplus \cdots$. Then

$$Pr(A) = Pr(A_1) + \sum_{i=1}^{\infty} Pr(A_{i+1} \setminus A_i)$$

$$= Pr(A_1) + \lim_{n \to \infty} \sum_{i=1}^{n-1} [Pr(A_{i+1}) - Pr(A_i)]$$

$$= \lim_{n \to \infty} Pr(A_n)$$

Continuity of Probability Measures*

• Let $A_1 \subseteq A_2 \subseteq A_3 \subseteq ...$ be an increasing sequence of events, and write A for their limit

$$A = \bigcup_{i=1}^{\infty} A_i = \lim_{i \to \infty} A_i.$$

Then
$$Pr(A) = \lim_{i \to \infty} Pr(A_i)$$
.

• Let $B_1 \supseteq B_2 \supseteq B_3 \supseteq \dots$ be an decreasing sequence of events, and write B for their limit

$$B = \bigcap_{i=1}^{\infty} B_i = \lim_{i \to \infty} B_i.$$

Then
$$Pr(B) = \lim_{i \to \infty} Pr(B_i)$$
.

• **Proof**: Consider the complements $B_1^c \subseteq B_2^c \subseteq B_3^c \subseteq \dots$ which is an increasing sequence.

Borel-Cantelli Lemmas*

$$A = \bigcap_{m=1}^{\infty} \bigcup_{m=n}^{\infty} A_m$$

(1st lemma)
$$\sum_{n=1}^{\infty} \Pr(A_n) < \infty \implies \Pr(A) = 0$$

Proof: By union bound, $\Pr\left(\bigcup_{m=n}^{\infty}A_{m}\right)\leq\sum_{m=n}^{\infty}\Pr(A_{m})$, which $\to 0$ as $n\to\infty$, assuming that $\sum_{m=n}^{\infty}\Pr(A_{n})<\infty$ converges.

And by **continuity** of Pr, we have $\Pr(A) = \lim_{n \to \infty} \Pr\left(\bigcup_{m=n}^{\infty} A_m\right) = 0$

Borel-Cantelli Lemmas*

$$A = \bigcap_{m=1}^{\infty} \bigcup_{m=n}^{\infty} A_m$$

(2nd lemma)
$$\sum_{n=1}^{\infty} \Pr(A_n) = \infty$$
 and A_1, A_2, \dots are independent $\Longrightarrow \Pr(A) = 1$

Proof: By independence,
$$\Pr\left(\bigcap_{m=n}^{\infty}A_{m}^{c}\right) = \prod_{m=n}^{\infty}\left(1 - \Pr(A_{m})\right) \le \exp\left(-\sum_{m=n}^{\infty}\Pr(A_{m})\right) = 0$$
,

assuming the divergence of $\sum \Pr(A_n) = \infty$.

By continuity of Pr,
$$\Pr(A^c) = \Pr\left(\bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} A_m^c\right) = \lim_{n \to \infty} \Pr\left(\bigcap_{m=n}^{\infty} A_m^c\right) = 0 \implies \Pr(A) = 1$$

Strength of Convergence

•
$$(X_n \stackrel{a.s.}{\longrightarrow} X) \implies (X_n \stackrel{P}{\longrightarrow} X) \implies (X_n \stackrel{D}{\longrightarrow} X)$$

Proof*
$$(X_n \xrightarrow{a.s.} X \implies X_n \xrightarrow{P} X)$$
: Let $A_n(\epsilon) = \{|X_n - X| > \epsilon\}$. Then for any $\epsilon > 0$

$$\lim_{n \to \infty} X_n = X \implies \bigcup_{m=1}^{\infty} \bigcap_{m=n}^{\infty} A_m^c(\epsilon)$$

Assume
$$X_n \xrightarrow{a.s.} X$$
. Then $1 = \Pr\left(\lim_{n \to \infty} X_n = X\right) = \Pr\left(\bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} A_m^c(\epsilon)\right)$

$$\Longrightarrow 0 = \Pr\left(\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_m(\epsilon)\right) = \lim_{n \to \infty} \Pr\left(\bigcup_{m=n}^{\infty} A_m(\epsilon)\right) \text{ (by continuity of probability measure)}$$

$$\Longrightarrow \Pr(|X_n - X| > \epsilon) = \Pr(A_n(\epsilon)) \le \Pr\left(\bigcup_{m=n}^{\infty} A_m(\epsilon)\right) \to 0 \text{ as } n \to \infty$$

$$\implies X_n \stackrel{P}{\to} X$$

Strength of Convergence

$$\bullet \ (X_n \stackrel{a.s.}{\longrightarrow} X) \implies (X_n \stackrel{P}{\longrightarrow} X) \implies (X_n \stackrel{D}{\longrightarrow} X)$$

Proof*
$$(X_n \stackrel{P}{\to} X) \Longrightarrow X_n \stackrel{D}{\to} X)$$
: Fix any $\epsilon > 0$. It holds that

$$\{X_n \le x\} \subseteq \{X \le x + \epsilon\} \cup \{|X_n - X| > \epsilon\} \Longrightarrow F_{X_n}(x) \le F_X(x + \epsilon) + \Pr(|X_n - X| > \epsilon)$$

$$\{X \le x - \epsilon\} \subseteq \{X_n \le x\} \cup \{|X_n - X| > \epsilon\} \Longrightarrow F_X(x - \epsilon) \le F_{X_n}(x) + \Pr(|X_n - X| > \epsilon)$$

$$\implies F_X(x-\epsilon) - \Pr(|X_n - X| > \epsilon) \le F_{X_n}(x) \le F_X(x+\epsilon) + \Pr(|X_n - X| > \epsilon)$$

Assume $X_n \stackrel{P}{\to} X$. Then $\Pr(|X_n - X| > \epsilon) \to 0$ as $n \to \infty$ for all $\epsilon > 0$. Therefore,

$$F_X(x - \epsilon) \le \liminf_{n \to \infty} F_{X_n}(x) \le \limsup_{n \to \infty} F_{X_n}(x) \le F_X(x + \epsilon)$$
 for all $\epsilon > 0$

Furthermore, if F_X is continuous at x, then

$$F_X(x-\epsilon)\uparrow F_X(x)$$
 and $F_X(x+\epsilon)\downarrow F_X(x)$ as $\epsilon\downarrow 0$.

Condition for Almost Sure Convergence*

If
$$\sum_{n=1}^{\infty} \Pr(|X_n - X| > \epsilon) < \infty$$
 for all $\epsilon > 0$, then $X_n \stackrel{a.s.}{\longrightarrow} X$

Proof: For any $\epsilon > 0$, let $A_n(\epsilon) = \{ |X_n - X| > \epsilon \}$. Then due to Borel–Cantelli: $\forall \epsilon > 0$

$$\sum_{n=1}^{\infty} A_n(\epsilon) < \infty \Longrightarrow \Pr\left(\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_m(\epsilon)\right) = \Pr\left(A_n(\epsilon) \text{ infinitely often}\right) = 0$$

$$\Longrightarrow \Pr\left(\bigcup_{k=1}^{\infty}\bigcap_{n=1}^{\infty}\bigcup_{m=n}^{\infty}A_m(1/k)\right) = 0 \text{ by countable additivity}$$

$$\Longrightarrow \Pr\left(\lim_{n\to\infty} X_n = X\right) = \Pr\left(\bigcap_{k=1}^{\infty} \bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} A_m^c(1/k)\right) = 1$$

$$\Longrightarrow X_n \stackrel{a.s.}{\longrightarrow} X$$

Almost Sure vs. In Probability Convergence*

• Let $\{X_n\}$ be independent Bernoulli trials with parameter 1/n. Then

$$X_n \xrightarrow{P} 0$$
, but it does not hold $X_n \xrightarrow{a.s.} 0$

Proof: For any
$$\epsilon > 0$$
, $\Pr(|X_n| > \epsilon) \le \Pr(X_n = 1) = \frac{1}{n} \to 0$ as $n \to \infty \implies X_n \xrightarrow{P} 0$

$$\{X_n\}$$
 are independent and $\sum_{n=1}^{\infty} \Pr(X_n=1) = \sum_{n=1}^{\infty} \frac{1}{n} = \infty$, then by Borel–Cantelli:

$$\Pr(X_n = 1 \text{ infinitely often}) = 1 \implies \Pr\left(\lim_{n \to \infty} X_n = 0\right) = 0 \implies X_n \stackrel{a.s.}{\longrightarrow} 0 \text{ does not hold}$$

Coupling*

• Skorokhod's representation theorem:

If $X_n \overset{D}{\to} X$, then there exist random variables Y_1, Y_2, \ldots and Y on some $(\Omega', \mathscr{F}, \mathbb{P})$, satisfying $F_{X_n} = F_{Y_n}$ for all $n \geq 1$ and $F_X = F_Y$, such that $Y_n \overset{a.s.}{\to} Y$

Proof: Apply inverse transform sampling. Let $\Omega' = [0,1]$, \mathscr{F} the Borel σ -field on [0,1], and \mathbb{P} the uniform law. For $u \in \Omega' = [0,1]$, let

$$Y_n(u) = \inf\{x \mid u \le F_{X_n}(x)\} \text{ and } Y(u) = \inf\{x \mid u \le F_X(x)\}$$

Due to inverse transform sampling, $F_{X_n} = F_{Y_n}$ for all $n \ge 1$ and $F_X = F_{Y_n}$.

It can also be verified that $Y_n(u) \to Y(u)$ for all points u of continuity of Y, meanwhile the set $D \subseteq [0,1]$ of discontinuities of Y is countable , thus $\mathbb{P}(D) = 0$, which implies

$$Y_n \stackrel{a.s.}{\longrightarrow} Y$$

Continuous Mapping Theorem*

• Continuous mapping theorem: If $g: \mathbb{R} \to \mathbb{R}$ is continuous, then

$$X_n \stackrel{D}{\to} X \implies g(X_n) \stackrel{D}{\to} g(X)$$

$$X_n \stackrel{P}{\to} X \implies g(X_n) \stackrel{P}{\to} g(X)$$

$$X_n \stackrel{a.s.}{\longrightarrow} X \implies g(X_n) \stackrel{a.s.}{\longrightarrow} g(X)$$

Proof (for convergence in distribution):

Construct $\{Y_n\}$ and Y as in Skorokhod's representation theorem. By continuity of g,

$$Y_n(u) \to Y(u) \Longrightarrow g(Y_n(u)) \to g(Y(u)) \Longrightarrow g(Y_n) \stackrel{a.s.}{\longrightarrow} g(Y) \Longrightarrow g(X_n) \stackrel{D}{\longrightarrow} g(X)$$

Other Convergence Modes*

• $X_n \stackrel{1}{\rightarrow} X$ (convergence in mean) if

$$\lim_{n\to\infty} \mathbb{E}\left[|X_n - X|\right] = 0$$

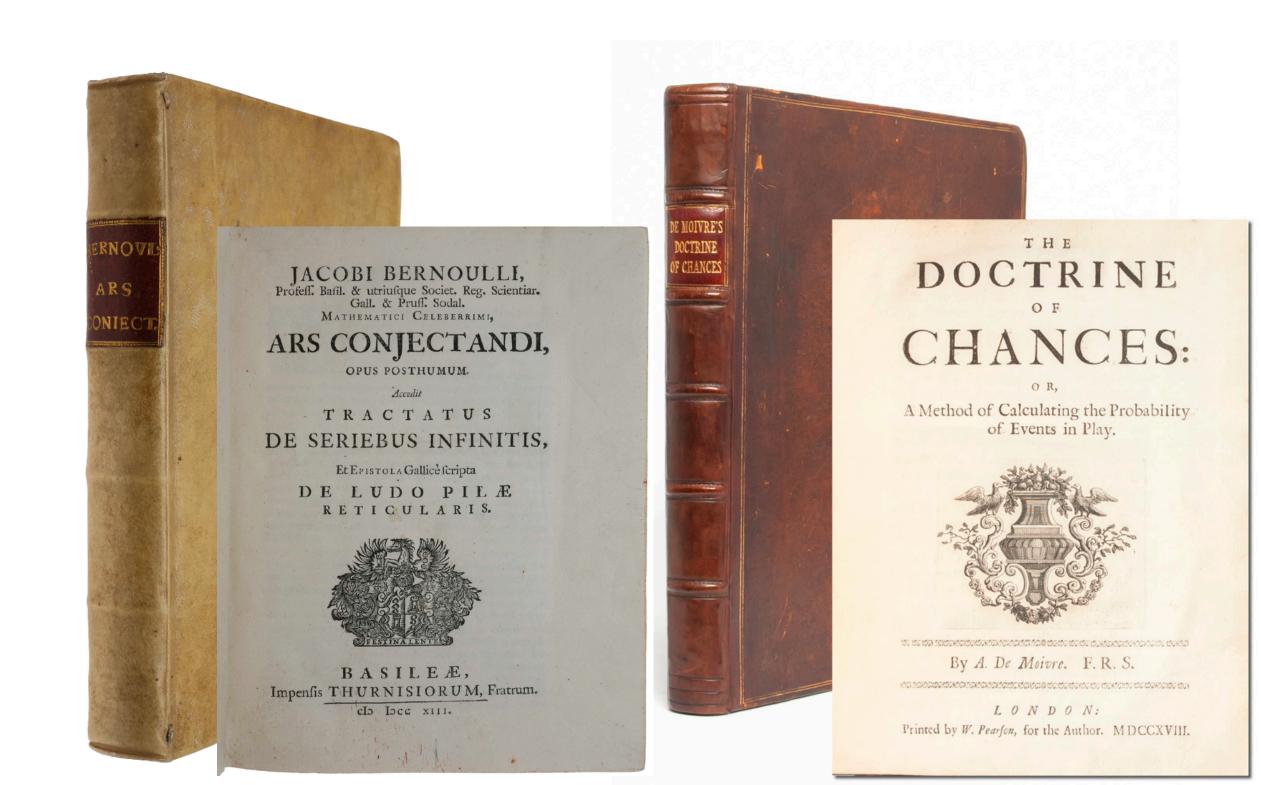
• $X_n \stackrel{r}{\rightarrow} X$ (convergence in rth mean / in the L^r -norm) if

$$\lim_{n\to\infty} \mathbb{E}\left[\left|X_n - X\right|^r\right] = 0$$

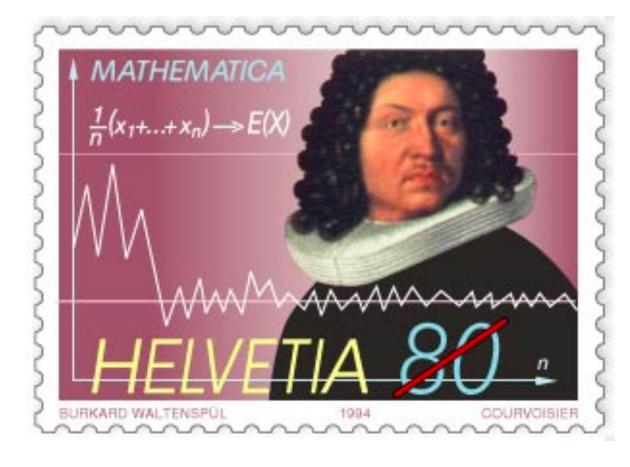
$$(X_n \xrightarrow{a.s.} X) \Longrightarrow (X_n \xrightarrow{P} X) \Longrightarrow (X_n \xrightarrow{D} X)$$

$$(X_n \xrightarrow{s} X) \Longrightarrow (X_n \xrightarrow{r} X) \Longrightarrow (X_n \xrightarrow{1} X)$$
(for $s \ge r \ge 1$)

LLN and CLT



Bernoulli's Law of Large Number In *Ars Conjectandi* (1713)



• Let X_1, X_2, \ldots be *i.i.d.* Bernoulli trials with $\mathbb{E}[X_1] = p \in [0,1]$. Then

$$\Pr\left(\left|\frac{X_1 + X_2 + \dots + X_n}{n} - p\right| > \epsilon\right) \to 0 \quad \text{as } n \to \infty \quad \text{for all } \epsilon > 0$$

i.e. $\overline{X}_n \stackrel{P}{\to} p$, where \overline{X}_n is the sample mean $\overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}$

Proof: By Chebyshev's inequality, $\Pr(|\overline{X}_n - p| > \epsilon) \le \frac{p(1-p)}{n\epsilon^2} \to 0 \text{ as } n \to \infty$

(This is of course not the original proof of Bernoulli.)

Law of Large Numbers (LLN)

Let X_1, X_2, \ldots be *i.i.d.* random variables with finite mean $\mathbb{E}[X_1] = \mu$.

And let
$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$
 be the sample mean.

• Weak law (Khinchin's law) of large number:

$$\overline{X}_n \xrightarrow{P} \mu \text{ as } n \to \infty$$

• Strong law (Kolmogorov's law) of large number:

$$\overline{X}_n \stackrel{a.s.}{\longrightarrow} \mu \text{ as } n \to \infty$$

(The deviation $|\overline{X}_n - \mu|$ is always small for all sufficiently large n)

Weak LLN Assuming Bounded Variance

• Let $X_1, X_2, ...$ be independent random variables with finite mean $\mathbb{E}[X_i] = \mu$ and finitely bounded variance $\mathbf{Var}[X_i] \leq \sigma^2$.

Then the sample mean
$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$
 has

$$\overline{X}_n \xrightarrow{P} \mu \text{ as } n \to \infty$$

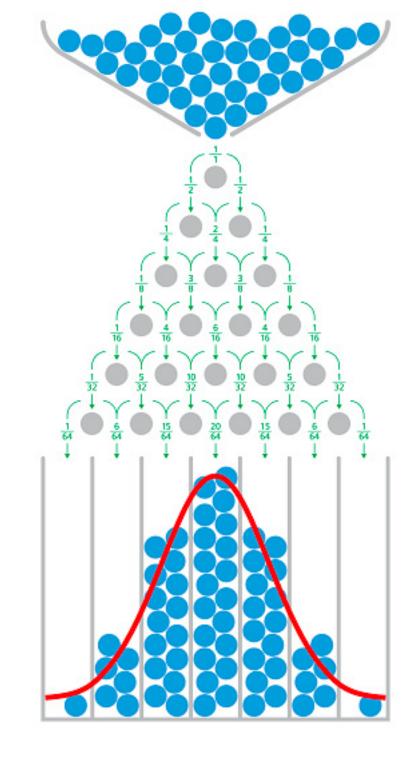
Proof: By Chebysev's inequality, $\Pr(|\overline{X}_n - \mu| > \epsilon) \le \frac{\sigma^2}{n\epsilon^2} \to 0$ as $n \to \infty$

De Moivre—Laplace Theorem

(棣莫弗-拉普拉斯定理)

• Let $p \in (0,1)$ and $X_n \sim B(n,p)$. Then its standardization

$$\frac{X_n - np}{\sqrt{np(1-p)}} \xrightarrow{D} N(0,1) \text{ as } n \to \infty$$



• For any $p\in (0,1)$, any radius r>0, and any $\epsilon>0$, there is an n_0 such that for all $n>n_0$ and all k such that $\left|(k-np)/\sqrt{np(1-p)}\,\right|< r$,

$$\binom{n}{k} p^k (1-p)^{n-k} \in (1 \pm \epsilon) \frac{1}{\sqrt{2\pi np(1-p)}} e^{-\frac{(k-np)^2}{2np(1-p)}}$$

Central Limit Theorem (CLT)

• Let X_1, X_2, \ldots be *i.i.d.* random variables with $\mathbb{E}[X_1] = \mu$ and $\mathbf{Var}[X_1] = \sigma^2$.

And let
$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$
 be the sample mean.

• Classical (Lindeberg-Lévy) central limit theorem:

$$\frac{\overline{X}_n - \mu}{\sigma / \sqrt{n}} \xrightarrow{D} N(0,1) \quad \text{as } n \to \infty$$

Convergence Rate of CLT

(Berry-Esseen theorem)

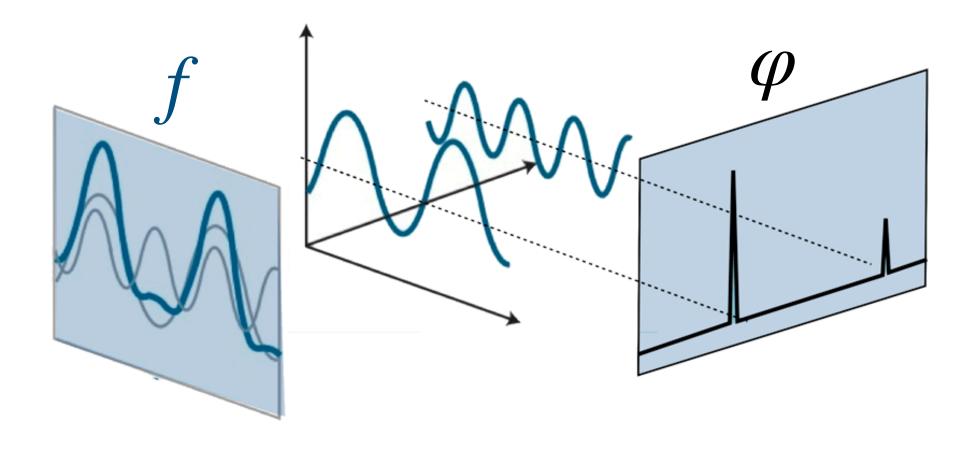
• Berry-Esseen theorem: Let X_1, X_2, \ldots be *i.i.d.* random variables with $\mathbb{E}[X_1] = \mu$, $\mathbf{Var}[X_1] = \sigma^2$, and $\rho = \mathbb{E}[|X_1 - \mu|^3]$. And let $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$.

There is an absolute constant C, such that for any z

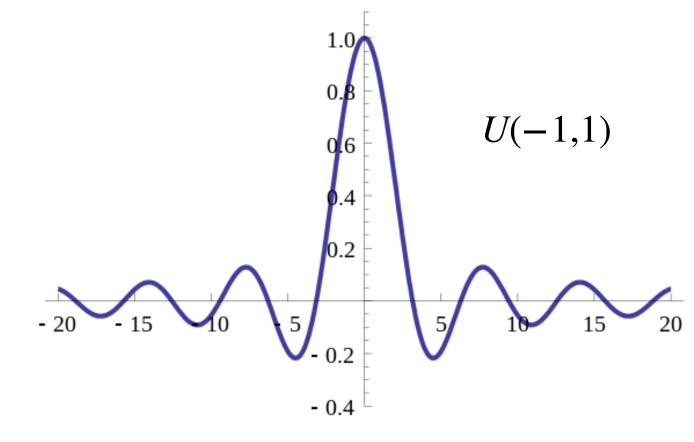
$$\left| \Pr\left(\frac{\overline{X}_n - \mu}{\sigma / \sqrt{n}} \le z \right) - \Phi(z) \right| \le \frac{C\rho}{\sigma^3 \sqrt{n}}$$

where Φ stands for the CDF for standard normal distribution N(0,1)

Characteristic Function



Characteristic Functions



- The moment generating function (MGF) of X is the function $M_X:\mathbb{R} o \mathbb{R}_{\geq 0}$

$$M_X(t) = \mathbb{E}[\mathrm{e}^{tX}]$$

• The <u>characteristic function</u> (特征函数) of X is the function $\varphi_X: \mathbb{R} \to \mathbb{C}$

$$\varphi_X(t) = \mathbb{E}[e^{itX}], \text{ where } i = \sqrt{-1}$$

- Fourier transform: $\varphi_X(t) = \int \mathrm{e}^{itx} \,\mathrm{d}F_X(x) = \mathbb{E}[\cos tX] + i\mathbb{E}[\sin tX]$
- Unlike MGF, ϕ_X always exists and is finite, because $|\mathbf{e}^{itx}|=1$

Boundedness of Characteristic Function

$$\varphi_X(t) = \mathbb{E}[e^{itX}]$$

- $|\varphi_X(t)| \le 1$ for all $t \in \mathbb{R}$
- If $\mathbb{E}[|X^k|] < \infty$, then

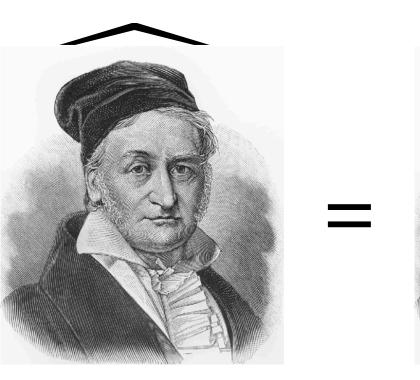
$$\varphi_X(t) = \sum_{j=0}^k \frac{\mathbb{E}[X^j]}{j!} (it)^j + o(t^k) \qquad (\varphi_X(t) = 1 + i\mu t + o(t))$$

$$(\varphi_X(t) = 1 + i\mu t - \frac{(\sigma^2 + \mu^2)}{2} t^2 + o(t^2))$$

Proof:
$$|\varphi_X(t)| \le \int |e^{itx}| dF_X(x) = \int dF_X(x) = 1$$
 (for Lebesgue-Stieltjes integral)

Taylor's expansion:
$$\varphi_X(t) = \mathbb{E}[\mathrm{e}^{itX}] = \mathbb{E}\left[\sum_{j=0}^k \frac{X^j}{j!}(it)^j + o(t^k)\right] = \sum_{j=0}^k \frac{\mathbb{E}[X^j]}{j!}(it)^j + o(t^k)$$

Normal Characteristic Function





• If $X \sim N(0,1)$, then

$$\varphi_X(t) = \mathbb{E}[e^{itX}] = e^{-t^2/2}$$

Proof (using complex integration):

$$\varphi_X(t) = \mathbb{E}[e^{itX}] = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{itx - x^2/2} dx = e^{-t^2/2} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(x - it)^2} dx = e^{-t^2/2}$$

because
$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(x-it)^2} dx = 1 \text{ via contour integration}$$

Normal Characteristic Function

• If $X \sim N(0,1)$, then



$$\varphi_X(t) = \mathbb{E}[e^{itX}] = e^{-t^2/2}$$

Proof (without using complex integration): $\varphi_X(t) = \mathbb{E}[e^{itX}] = \mathbb{E}[\cos tX] + i\mathbb{E}[\sin tX]$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \cos(tx) e^{-x^{2}/2} dx + \frac{i}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{\sin(tx) e^{-x^{2}/2}}{\cot(tx)} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \cos(tx) e^{-x^{2}/2} dx$$

$$\frac{\mathrm{d}\varphi_X(t)}{\mathrm{d}t} = \mathbb{E}\left[\frac{\mathrm{d}\mathrm{e}^{itX}}{\mathrm{d}t}\right] = \mathbb{E}[iX\mathrm{e}^{itX}] = i\mathbb{E}[X\cos tX] - \mathbb{E}[X\sin tX] = \frac{-1}{\sqrt{2\pi}}\int_{-\infty}^{\infty} x\sin(tx)\mathrm{e}^{-x^2/2}\,\mathrm{d}x$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \sin(tx) \, de^{-x^2/2} = \frac{1}{\sqrt{2\pi}} \sin(tx) e^{-x^2/2} \left| \int_{-\infty}^{\infty} -\frac{t}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \cos(tx) e^{-x^2/2} \, dx = -\frac{t}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \cos(tx) e^{-x^2/2} \, dx \right|$$

$$\Longrightarrow \frac{\mathrm{d}\varphi_X(t)}{\mathrm{d}t} = -t\varphi_X(t) \implies \varphi_X(t) = \mathrm{e}^{-t^2/2} \quad \text{(solving the ODE subject to } \varphi_X(0) = \mathbb{E}[\mathrm{e}^{i\cdot 0\cdot X}] = 1)$$

Linear Transformation

- If X and Y are independent, then $\varphi_{X+Y}(t) = \varphi_X(t) \varphi_Y(t)$
- If Y = aX + b for $a, b \in \mathbb{R}$, then $\varphi_Y(t) = \mathrm{e}^{itb}\varphi_X(at)$

Proof: For independent X and Y,

$$\varphi_{X+Y}(t) = \mathbb{E}[e^{it(X+Y)}] = \mathbb{E}[e^{itX}]\mathbb{E}[e^{itY}] = \varphi_X(t)\varphi_Y(t)$$

For
$$Y = aX + b$$
,

$$\varphi_Y(t) = \mathbb{E}[e^{it(aX+b)}] = e^{itb}\mathbb{E}[e^{itaX}] = e^{itb}\varphi_X(at)$$

Continuity Theorem

• If X is continuous with density function f_X and characteristic function ϕ_X , then (by Fourier inversion theorem)

$$\varphi_X(t) = \int_{-\infty}^{\infty} e^{itx} f_X(x) dx \quad \text{and} \quad f_X(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} \varphi_X(t) dt$$

Hence, the distribution of continuous X is uniquely identified by φ_X .

• For general random variables: (it's more complicated, but similarly)

$$F_X = F_Y$$
 iff $\varphi_X = \varphi_Y$

• Lévy's continuity theorem: Let $\{X_n\}$ and X be random variables.

$$X_n \overset{D}{\to} X$$
 iff $\varphi_{X_n} \to \varphi_X$ pointwise on \mathbb{R} as $n \to \infty$

Convolution of Normal Distribution

• If $X \sim N(\mu, \sigma^2)$ and $Y \sim N(\nu, \tau^2)$ are independent, then

•
$$X + Y \sim N(\mu + \nu, \sigma^2 + \tau^2)$$

Proof (by characteristic function): Let $Z \sim N(0,1)$.

$$X \sim N(\mu, \sigma^2) \implies X = \sigma Z + \mu \implies \varphi_X(t) = e^{it\mu} \varphi_Z(\sigma t) = e^{it\mu - \sigma^2 t^2/2}$$

By the same calculation: $Y \sim N(\nu, \tau^2) \implies \varphi_V(t) = \mathrm{e}^{it\nu - \tau^2 t^2/2}$

$$\varphi_{X+Y}(t) = \varphi_X(t)\varphi_Y(t) = e^{it\mu - \sigma^2 t^2/2} \cdot e^{it\nu - \tau^2 t^2/2} = e^{it(\mu + \nu) - (\sigma^2 + \tau^2)t^2/2}$$

which is the characteristic function of normal distribution $N(\mu + \nu, \sigma^2 + \tau^2)$.

Law of Large Numbers (LLN)

Let X_1, X_2, \ldots be *i.i.d.* random variables with finite mean $\mathbb{E}[X_1] = \mu$.

And let
$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$
 be the sample mean.

• Weak law (Khinchin's law) of large number:

$$\overline{X}_n \xrightarrow{P} \mu \text{ as } n \to \infty$$

• Strong law (Kolmogorov's law) of large number:

$$\overline{X}_n \stackrel{a.s.}{\longrightarrow} \mu \text{ as } n \longrightarrow \infty$$

Proof of the Weak Law of Large Numbers

- Let X_1, X_2, \ldots be *i.i.d.* with finite mean $\mathbb{E}[X_1] = \mu$. Let $\overline{X}_n = \frac{1}{n} \sum_{j=1}^n X_j$
- The characteristic function $\varphi_{X_i}(t) = \mathbb{E}[\mathrm{e}^{itX_j}] = 1 + i\mu t + o(t)$

$$\Longrightarrow \varphi_{\overline{X}_n}(t) = \varphi_{X_1 + \dots + X_n}(t/n) = \prod_{j=1}^n \varphi_{X_j}(t/n) = \left(1 + \frac{i\mu t}{n} + o\left(\frac{t}{n}\right)\right)^n$$

$$\to e^{it\mu} \quad \text{for all } t \in \mathbb{R} \quad \text{as } n \to \infty$$

- Meanwhile, $\varphi_X(t) = \mathbb{E}[\mathrm{e}^{itX}] = \mathrm{e}^{it\mu}$ for constant $X = \mu$
- $\Longrightarrow \overline{X}_n \overset{D}{\to} \mu$ by Lévy's continuity theorem $\Longrightarrow \overline{X}_n \overset{P}{\to} \mu$ for constant μ

Central Limit Theorem (CLT)

• Let X_1, X_2, \ldots be *i.i.d.* random variables with $\mathbb{E}[X_1] = \mu$ and $\mathbf{Var}[X_1] = \sigma^2$.

Let
$$Z_n = \frac{\overline{X}_n - \mu}{\sigma / \sqrt{n}}$$
 be the standardized sample mean, where $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$.

• Classical (Lindeberg-Lévy) central limit theorem:

$$Z_n \xrightarrow{D} N(0,1)$$
 as $n \to \infty$

Proof of the Central Limit Theorem

- Let X_1, X_2, \ldots be *i.i.d.* with finite $\mathbb{E}[X_1] = \mu$ and $\mathbf{Var}[X_1] = \sigma^2$. Let $\overline{X}_n = \frac{1}{n} \sum_{j=1}^n X_j$
- For standardized $Y_j = (X_j \mu)/\sigma \implies \varphi_{Y_j}(t) = \mathbb{E}[\mathrm{e}^{itY_j}] = 1 \frac{t^2}{2} + o(t^2)$
- . The standardized sample mean: $Z_n = \frac{\overline{X}_n \mu}{\sigma/\sqrt{n}} = \frac{Y_1 + \dots + Y_n}{\sqrt{n}}$

$$\implies \varphi_{Z_n}(t) = \varphi_{Y_1 + \dots + Y_n}\left(t/\sqrt{n}\right) = \prod_{j=1}^n \varphi_{Y_j}\left(t/\sqrt{n}\right) = \left(1 - \frac{t^2}{2n} + o\left(\frac{t^2}{n}\right)\right)^n$$

- $\to e^{-t^2/2}$ for all $t \in \mathbb{R}$ as $n \to \infty$ (characteristic function of N(0,1))
- $\Longrightarrow \overline{Z}_n \overset{D}{\to} Z \sim N(0,1)$ by Lévy's continuity theorem