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Random Variable




“Variables” that are Random
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Random Variable

» Roll a'#, let X be the outcome of the roll, let Y € {0,1} indicate its oddness.

samples in Q| values of X | values of Y
] 1 1
[] 2 0
] 3 1
3] 4 0
5 1
6 0




Random Variable

« Let X be the sum of two independent '.& rolls.
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Random Variable (4 4t % <)

» Given (€2, 2., Pr), a random variable is a function X : 2 — |

. satisfyingthat Vx € R, {w € Q | X(w) < x} € X (i.e. X is 2-measurable)

e X < x(where x € R) denotes the event {w € Q | X(w) < x}

e X > x (where x € R) denotes the event {w € Q | X(w) > x}
e X € 5 (where S C R is countable N,U of intervals (v, x]) denotes the event {w € Q | X(w) € S}

» For discrete random variable X : 2 — /Z, this includes all subsets S C /
Pr(X € §)




Distribution of Random Variable

e Let X be the sum of two independent ‘..
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Distribution (£-#)

 The cumulative distribution function (CDF) (& #24-7p % %%) or just distribution
function (4% & #%) of a random variable X is the F'y : R — [0,1] given by

Fy(x) = Pr(X < x)

« All probabilities regarding X can be deduced from Fy. (Prob. space is no longer needed.)

« Two random variables X and Y are identically distributed if F'y, = F

« Monotone: Vx,y € R, if x < ythen Fy(x) < Fy(y)

. Bounded: lim Fy(x) =0and lim Fy(x) =1

X——O0 X— OO




Discrete Random Variable

* Arandom variable X : €2 — R is called discrete if X(£2) is countable.

* For a discrete random variable X, its probability mass function (omf)

« The CDF F/y satisfies

Fy(y) = pr(x)

x<y

(B2 %A #) py: R — [0,1]is given by

Px(x) = Pr(X = x)
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Continuous Random Variable

A random variable X : €2 — R is called continuous, if its CDF can be
expressed as

Y
Fy(y) =Pr(X <y) = J Jx(x) dx

for some integrable probability density function (pdf) (# % % B % %) f.

* Never mind what type of integral for now. (Riemann integral? Lebesque integral?)

e There are random variables that are neither discrete nor continuous.



Independence

Two discrete random variables X and Y are independent if
X = x and Y = y are independent events for all x and y.

Discrete random variables X, ..., X, are (mutually) independent if

X =Xy, ..., X, = x, are mutually independent events for all x;, ..., x,

p(Xl,m’Xn)(xl, LX) =Pr(X;=x;Nn---NX =x )= pXI(xl)---an(xn)

The pairwise (and k-wise) independence are defined in the same way.

« Example: The construction of 2" — 1 pairwise independent random bits
out of n mutually independent random bits by XOR.

For general random variables, the events X. = x; are replaced by X; < x..



Random Vector (4 4L %)

» Given (€2, 2, Pr), arandom vectoris an X = (X;, ..., X,) where each X is a
random variable defined on the probability space (€2, 2., Pr).

 The joint CDF (B¢ & & oA &%) Fy : R" — [0,1] is given by

\=4

* For discrete random vector, the joint mass function (3x 41 =% %) is given by

Px(Xy,...,x)=Pr(X;=x,Nn---NX, =x)

: S : . . . y X1 | X | X3 Xg | PUN ¢
 The marginal distribution of X: in (X, ..., X)) is given by R R
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Discrete Random Variable
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Probability Mass Function (#t % i 2% &)

» Consider integer-valued discrete random variable X : Q — Z

» Its probability mass function (omf) py : Z — [0,1] is given by

px(k) = Pr(X = k)

 As histogram: py gives the “histogram™ of the probability distribution

. As vector: py can be seen as a vector py € [0,1]" such that ||py(x)||; = 1,
where R = X(€2) is the range of values of X

Its function Y = f(X) is also a discrete random variable, where py(y) = Z Px(x)
x:f(x)=y



Discrete Random Variables

» Basic discrete probabillity distributions:
» discrete uniform distribution (< 3 4% 7)

e Bernoulli trial (coin flip)

® binomial distribution (# of successes in n trials)

® geometric distribution (# of trials to get a success)
* negative binomial distribution

* hypergeometric distribution

® Poisson distribution (idealized binomial distribution)

* Probabillity distributions of discrete objects:
 multinomial distribution (balls into bins)
* Erdés—-Rényi model (random graph)
* Galton-Watson process (random tree)



Bernoulli Trial (18 %4 X 35)
(A coin flip) p 1-p

A Bernoulli trial is an experiment with two possible outcomes.

» A Bernoulli random variable X takes values in {0,1}, its pmf is

p if k =1
px(k) = Pr(X = k) = {

l—p ifk=0
where p € [0,1] is a parameter.

 Indicator: For event A, the indicator X of A is a random variable defined by

X=1IA) = { L ifA occ.:urs, a Bernoulli R.V. with parameter Pr(A)
0 otherwise



Binomial Distribution (=51 o) —%
(Number of HEADs in n coin flips)

N ——— —
n

* X: number of successes in n i.i.d. (independent and identically distributed)
Bernoulli trials with parameter p

A binomial random variable X takes values in {0,1,...,n}, and

n

Px(k) = Pr(X = k) = (k

)pk(l —py" K k=0,1,...,n

« We say that X follows the binomial distribution with parameters n and p

denoted X ~ Bin(n, p) or B(n, p)



Geometric Distribution (JL{T £-7)
(Number of coin flips to get a HEADS)

« X: number of i.i.d. Bernoulli trials needed to get one success

» A geometric random variable X takes valuesin {1,2,...}, and
pxk) =PrX=k) =1 -p*'p, k=12,..

« We say that X follows the geometric distribution with parameter p € [0,1]

denoted X ~ Geo(p) or Geometric(p)



Geometric Distribution (JL{T £-7)
(Number of coin flips to get a HEADS)

» Geometric random variable X ~ Geo(p) is memoryless: fork > 1,n > 0

Pr(X=k+n|X>n)=Pr(X=k)

PriX=k+n) (1-py+*'p
Pr(X > n) Z;in (1 —p)kp
(1-p)*'p

IR

 (Geometric distribution is the only discrete memoryless distribution
(with the range of values {1,2,...}).

Proof: PriX=k+n|X>n) =




Two Ways of Constructing Random Variables

e As a function of random variables Y = f(X, X,, ..., X))
» Binomial Y: function fis sum, and (X, ..., X)) are i.i.d. Bernoulli trials
e independent Y, ~ Bin(n;,p), ¥, ~ Bin(n,,p) = Y, + Y, ~ Bin(n; + n,, p)

« As a stopping time 1 of a sequence X, X,, ..., Xt

A random variable 1'is a stopping time with respect to X, X, ... if for all
t > 1 the occurrence of T = ¢ is determined by the values of X, X,, ..., X,

« Geometric I time for the first success in i.i.d. Bernoulli trials X, X,, ...



Sum of Independent Random Variables

 |f discrete random variables X and Y are independent, then:

Px+y (Z) — PI'(X + 1= Z) — Z PI'(X = XN ¥ = < X) pro(k;rZLCilllify)

2 Px(z = y)Py(y)

X
(independence) = pr(x)py(z — X) —
X y

* This defines a convolution (% #2) between mass functions:

Px+y — Px * Dy



Sum of Independent Random Variables

 |f discrete random variables X and Y are independent, then:

Px+y(2) = pr(X)Py(Z —X) = pr(z — V)Py(y)
X y

» For i.i.d. Bernoullirandom variables X, ..., X € {0,1}:

pX1_|_..._|_Xn(k) =P le+---+Xn_1(k o 1) T (1 _p) ' le+...+Xn_1(k)

I e S N S S & e A N n—k_(n)k ik
_(k_l)p(l p) +< . )p(l p) = L p (1 =p)



Negative Binomial Distribution (% = 47)

(“multiple successes” generalization of geometric distribution)

» X: number of failures in a sequence of i.i.d. Bernoulli trials before r successes

A negative binomial random variable X takes values in {0,1,2,...}, and

k+r—1 _
px(k) = Pr(X = k) = ( +;; >(1 - p)p" = (—1)"( kr)(l - p)p’
fork =0,1,2,...

« We say that X follows the negative binomial distribution with parameters r, p

 X=X-D+X, -1+ -+ (X, — 1) fori.id. X; ~ Geo(p)



Hypergeometric Distribution (#2 JL{T % #)

(“without replacement” variant of binomial distribution)

» X: number of successes in n draws, without replacement (%.7% =), from a finite population
of NV objects, including exactly M ones, drawings of whom are counted as successes

Draw 1 balls
wikthoukb
repta&emev\&

# of @s ?

N balls

A ¥




Hypergeometric Distribution (#2 JL4{T £-#)

(“without replacement” variant of binomial distribution)

» X: number of successes in n draws, without replacement (%.7% =), from a finite population
of NV objects, including exactly M ones, drawings of whom are counted as successes

» A hypergeometric random variable X takes values in {0,1,...,n}, and

(k)—Pr(X—k)—(M>(N_M)/(N) k=01....n
P\ = 7\ k n—=k nj) T

« We say that X follows the hypergeometric distribution with parameters N, M, n,
where N > 0,0 <M < N,and 0 < n < N are integers.




Multinomial Distribution (% 5 X %)

(“multi-dimensional” generalization of binomial distribution)

* Trials with multiple outcomes: There are n i.i.d. trials, each having m possible outcomes,
where the probability of the ith outcome is p.. Let X. be the # of ith outcomes.

 Balls-into-bins model: Throw n balls into m bins. Each ball is thrown independently such
that the 1th bin receives the ball with probability p.. Let X, be the # of balls in the ith bin.

:
throw a2 X 1 independently
Probability Pq

# of balls in each bin



Multinomial Distribution (% 5 X %)

(“multi-dimensional” generalization of binomial distribution)

Suppose that n balls are thrown into m bins, where each ball is thrown independently
such that the ith bin receives the ball with probability p;, where p; + --- + p,, = 1 is given.

(Xi, X5, ..., X, ): the ith bin receives exactly X. balls

(X, ..., X, ) takes values (k, ..., k,) € {0,1,...,n}" that k; + --- + k, = n, and

n!
Pix,,..x, ) (Kis o os Kpy) = Pr( i=1 (X; = ki)) —

k Ve !k, !

ki k,  k,
P, 11722‘ ““Pm

We say that (X, X,, ..., X, ) follows the multinomial distribution with parameters m, n,
andp = (py,...,p,,) € 10,1]" suchthat p, + - +p, = 1.

X; ~ Bin(n, p;) for each individual 1 < i < m. (The marginal distribution of X: is Bin(n, p,))




Binomial Distribution (=31 4 #) k
(Number of HEADs in 7 coin flips) ©0000O®

n

« X: number of successes in n i.i.d. Bernoulli trials with parameter p

A binomial random variable X takes values in {0,1,...,n}, and

n

px(k) = Pr(X = k) = ( L

)pk(l —-p), k=0,1,...,n

» Typical in real life: large unknown population size n — oo with known np = A

k
AN/ N mm—1 on—k+1 X AN/ NN A
. k — n — 1—— — eeo o ° 1—— 1__ %—e
PBin(nim !0 (k) <n> ( n) n . k!< n) ( n) k!

A “universal” distribution for all sufficiently large 7, knowing the mean A = np?




Poisson Distribution (;4 % #)

(Idealized binomial distribution when n —» o)

» A Poisson random variable X takes valuesin {0,1,2,...}, and

) i
POISSDON, ﬁff/r[(ﬂ'
e ——

;tk
pX(k) — PI‘(X — k) — e_;tg, | — 0,1,2,“.
! ) )
. Itis a well-defined probability distribution over {0,1,2,... }: Z e‘ﬂg = 1
—() )

» We say that X follows the Poisson distribution with parameter 4 > 0

denoted X ~ Pois(A)



Sum of Poisson Variables

» Independent X ~ Bin(n,p), Y ~ Bin(n,,p) = X + Y ~ Bin(n; + n,, p)

By the heuristics Bin(n, p) =~ Pois(np), it seems that the following should hold:

» independent X ~ Pois(4,), Y ~ Pois(4,) = X + Y ~ Pois(4, + 4,)

k k
i=0 =0

i —/11/% —/12/12_ B 6—(/11+/12) i <k>/1i/1k—i B 6—(/11+/12)(/11 _|_/12)k
| _ v )12 v
! (k—=1)! k! — \1 k!




Poisson Approximation

« (Xi,...,X, ) follows the multinomial distribution with parameters m, n, p, + --- +p,, = 1

» 1 balls are thrown into m bins independently according to the distribution (py, ..., p,)
o after all n balls are thrown, the 1th bin receives Xl- balls

» (Y,...,Y, ) eachY, ~ Pois(4) independently, where 4, = np.

m
Proposition: (X, ..., X, ) is identically distributed as (Y, ..., Y, ) given that Z Y, =n

=1
Proof: Observe that Y, + :-- + Y, ~ Pois(n). Foranyk;,...,k, > Othat k; + --- + k, = n:

m  —np; A —Nn,Nn
Pr[(Yl,...,Ym):(kla'“?km) ‘ Y1_|_ ...+Ym:n]=(He p(npl) )/(6 n )

n!

1ok, |




Balls into Bins
(Random mapping)

 Throw n balls into m bins uniformly at random (u.a.r.).

» Uniform random f: [n] — [m].

» The numbers of balls received in each bins (X, ..., X, ) follow the
multinomial distribution with parameters m, n and (1/m, ...,1/m).

* Birthday problem: the property of being injective (1-1)
* Coupon collector problem: the property of being surjective (onto)

» Occupancy (load balancing) problem: the maximum load max; X;



) @)
Random Graph e B o\ s
(Erd6s-Rényi random graph model) = /&= E e @ @
ol &‘1 ®o ¢ o

* G ~ G(n,p): There are n vertices. For each pair u, v of vertices, an i.i.d. Bernoulli trial
with parameter p is conducted, and an edge {u, v} is added if the trial succeeds.

e G(n,1/2) gives the uniformly distributed random graph on n vertices.

The number of edges in G ~ G(n, p) follows the binomial distribution Bin ((”),p)

(Therefore, G(n, p) is sometimes also called the binomial random graph)

« Random variables defined by G ~ G(n, p): chromatic number y(G), independence

number a(G), clique number w(G), diameter diam(G), connectivity, max-degree A(G),
number of triangles, number of hamiltonian cycles, ...



Random Tree

(Galton-Watson branching process)

Fjﬁ vn K 5 m kmA) zfmmw:

» A sequence of random variables X, X, X, ... recursively defined by
X

n

2

Xo=1land X . g

J

J=1
where {dfj(”) | n,7 > 0} arei.i.d. non-negative integer-valued random variables
(e.g. Poisson random variables)

« Random family tree: the jth family member in the nth generation has cfj(”) offsprings

. Xn: number of family members in the nth generation



Expectation

)= 233




Expectation (£ 5 21 Z)

* The expectation (or mean) of a discrete random variable X is defined to be

[X]= ) xpy()

X

where py denotes the pmf of X and the sum is taken over all x that py(x) > 0

« [E|X | may be oo (we assume absolute convergence for E[X]| < o00)

« Example I: py(2") =2 fork = 1,2,.. (fhe St. Petersburg paradox)

Example II: X € Z\{0} and py(k) = — where a = D k7
Cl



Perspectives of Expectation

 Computation of expectation:
o straightforward computation (by definition)
* linearity of expectation (by linearity)
* |law of total expectation (by case)

 Upper/lower bounds of expectation:
* Jensen’s inequality (by convexity)
* monotonicity (by coupling)

* Implications of expectation:
e averaging principle (the probabilistic method)
 tail inequalities (the moment method)



Expectation of Indicator

 For Bernoulli random variable X € {0,1} with parameter p

[ X][=0-(I1-p)+1-p=p

 For the indicator random variable X = I(A) of event A, where X = 1 if A occurs
and X = 0 if otherwise (l.e. Vo € Q, X(w) =1 ifw € A and X(w) =0 if ® & A)

[ X]=0-Pr(A°)+1-Pr(A) = Pr(A)




Poisson Distribution (74 %)
» Expectation of Poisson random variable X ~ Pois(A)

—}t;tk
“1X] = Zkek,

k>0
B Z e_/l/lk
o] (k—1)!
6_/1/1k+1 6_/1/1k
=2 =t
k>0 . k>0 .

= A



Change of Variables
(Law Of The Unconscious Statistician, LOTUS)

» Forf: R — R, for discrete X and X = (X, ..., X)):

» E[fCO] = 2 f0)px(x)
. E[f(X), ... X)) =)

Proof: Let Y = f(X,,...,X,). Then

X, XDl = ) yPrY =y =)y ), Pr(Xp,....X) = (x,..0 %)
y y o G X)E (D)

, e X)) Pr((Xy, ..., X)) = (X, ..., X))

. )f(xl, s X )Px (X5 s X))

(xl,..., -

]
M
=
o



Linearity of Expectation

e Fora,b € |

e E[aX+ b] =a

and random variables X and Y:

e EIX+ Y] =E[X]+

Proof: [E[aX +

b| = Z (ax +

[X+Y] = Z (x + y) Pr((X, Y) = (x.))

[ X+ b

- Y]

DYpx(x) =a ) xpy(X) +b ) py(x) = a

X

[ X+ b

= Z 2 Pr((X,Y) = (x,y)) + Z Z Pr((X.Y) = (x,))
= ZxPr(X—x)+ ZyPr(Y y) = —[X] + E[Y]




Linearity of Expectation

e Fora,b € R and random variables X and Y:
e ElaX + b =alk[X]+ b
« EIX+Y]|=E[X]|+[E[Y]

e For linear (affine) function f on random variables X, ..., X,
~LAXGs s XD = ALK L - BLXGD
» It holds for arbitrarily dependent X, ..., X

n




 For binomial random variable X ~ Bin(n, p)

- n
“[X] = k( ) ‘(1 —-py™*
g,) L P P

Binomial Distribution (=51 9~#%) —%

N ——— —
n

 Observation: X ~ Bin(n, p) can be expressedas X = X + .- + X,
where X, ..., X, are i.i.d. Bernoulli random variables with parameter p

* Linearity of expectation:
—|1X] =

[X) ]+ -+

(X, | =np




Geometric Distribution (JU/ \7;,?)

» For geometric random variable X ~ Geo(p)

[X]= ) k(1-py'p

k>1

 Observation: X ~ Geo(p) can be calculated by X = Zk>1
where I, € {0,1} indicates whether all of the first (k — 1) trials fail

* Linearity of expectation:

E[X]= ) ElL] = ), (1-p) ' ==

k>1 k>1 P




Negative Binomial Distribution (% = 47)

e For negative binomial random variable X with parameters r, p

k+r—1
-[X]=Zk( +,I; )(l—p)kp’”

k>1

 Observation: X can be expressedas X = (X; — 1)+ --- + (X. — 1),
where X, ..., X, are i.i.d. geometric random variables with parameter p

* Linearity of expectation:
[ X =E[X|]+ -+ E[X]—r=r(1—-p)/p




Hypergeometric Distribution (#2 JL{T % #)

* For hypergeometric random variable X with parameters N, M, n

Then X = X + --- + X,;, where X; € {0,1} indicates whether the ith red ball is dra;

* Linearity of expectation:

-[X] =

(X)) A+ e+

= [XM]

“[X] = ggk(ﬂf) (]Z:Zl‘j)/(

. Observation: each red ball (success) is drawn with probability (

)

2)(G)

_n
_N_

nM

N

Droaw 71 balls
withoukb
repmﬂememﬁ

N

M red balls
N balls

_Z




Pattern Matching

¢ 5 =(5,...,5,) € Q": uniform random string of n letters from alphabet Q with |Q| = g

 For pattern 7 € Qk, let X be the number of appearances of 7 in s as substring
n—k+1

Let /; € {0,1} indicate that 7 = (s}, Sy 15 > S;p4_1)- Then X = ) [,
=1

* Linearity of expectation:
n—k+1

“[X]1= ), Ell=@m—k+Dg™*

=1

 Expected time (position) for the first appearance? It may depend on the pattern 7.
Optional Stopping Theorem (OST)



Coupon Collector

 Each cookie box comes with a uniform random coupon.

 Number of cookie boxes opened to collect all n types of coupons

 Balls-into-bins model: throw balls one-by-one u.a.r. to occupy all n bins

« X :total number of balls thrown to make all n bins nonempty

» X.: number of balls thrown while there are exactly (i — 1) nonempty bins

. . . 1 — 1 -
X is geometric with parameter p, = 1 — - and X = ZX.

* Linearity of expectation:
n n n

[ X ] = Z [ X ] = Z n—lz+1 = nzl =nHn) ~nlnn

, . . ! .
i=1 i=1 i=1 (Harmonic number)




Double Counting

» For nonnegative random variable X that takes values in {0,1,2,...}

C[X] = 2 Pr[X > k]
k=0

* Proof | (Double Counting):

C[X] = ZxPr[X—x] = ZZPr[X—x] = ZZPr[X—x] = ZPr[X>k]

x>0 x>0 k=0 k>0 x>k k>0

» Proof Il (Linearity of Expectation): Let /, € {0,1} indicate whether X > k.

Then X = Zlk. By linearity, E[X] = Z -[1,] = z Pr|X > k]
k>0 k>0 k>0




Open Addressing with Uniform Hashing
aYaYay

« Hash table: n keys from a universe U are mapped to m slots by hash function
h:U— |[m]

* Open addressing (7t zx4k): hash collision is resolved by a probing strategy
— when searching for a key x € U, the ith probed slot is given by A(x, 1)
» Linear probing: i(x,1) = h(x) +1 (mod m)
» Quadratic probing: h(x, 1) = h(x) + ¢i + (:21'2 (mod m)
» Double hashing: h(x,1) = h;(x) +1 - h,(x) (mod m)

» Uniform hashing: /(x, i) = 7(i) where 7 is a uniform random permutation of [m]



Open Addressing with Uniform Hashing

* In a hash table with load factor a = n/m, assuming uniform hashing, the
expected number of probes in an unsuccessful search is at most 1/(1 — ).

* Proof: Let X be the number of probes in an unsuccessful search.

[X]= ) Pr(X>k) =1+ ) Pr(X> k)
k= k=1

o0

=1+ Z Pr ( nle Ai) (where A is the event that the ith probed slot is occupied)
k=1

M8

1 +

k
H Pr ( Nigi ]) (by chain rule)

1 i=1

e n—i+1
H:”l—ll+1 +ZH%:1+Zak:Z“k:1—a

1 i=1 k=1 i=1 k=1 k=0

=~
1

1 +

]
Mg

=~
1



Principle of Inclusion-Exclusion

» Let I(A) € {0,1} be the indicator random variable of event A. It’s easy to verify:
* [(A)=1—-1A)
“* I(ANnB)=1I1A) - I(B)

» ForeventsA,A,,...,A

(o)

n ¢) (O Morgars (%)
(UAi) ] = 1)— (ﬂAC) =1 —HI(A") = 1 —H(l —1(A))
=1
D N I ) <—”'S‘1’(ﬂ“”)
}

SCi1,....n} €S @+SC{1,...,n ieS




Principle of Inclusion-Exclusion

e Let /(A) € {0,]1} be the indicator random variable of event A.

» Forevents A, A,,...,A

n"

I(OAZ) — Z (—1)'5“1I(ﬂAi)
=1 O+SC{1,....n} €S

* By linearity of expectation:

O+SC{l,..., €S



Boole-Bonferroni Inequality

» Forevents A, A,, ..., A,:

(UA) —I—H(I—I(A))—Z( 1)k=1 Z (QA)

Observation: X, £ (Zij{](Ai)) = > []z(4) D (ﬂA)
<{1 ..... n> ieS SE(”";C" > ieS

and X, as a binomial coefficient is unimodal in k

For unimodal sequence X Z(—l)k‘lxkg Z(—l)k—lxkg 2 (=D 1x,
k<2t k=1 k<2t+1

o Jake expectation. By linearity of expectation = Bonferroni inequality



Limitation of Linearity

e Infinite sum: X, X,, ...

b

This Is possible:

o0

-3

=1

=1

o0

- [ X:] if the absolute convergence 2 [ | X;|] < oo holds

=1

< oo and Z | X:] < co but b [ZXZ
i=1 i=1

H
M5

=1

Counterexample: the martingale betting strategy in a fair gambling game

« A random number of random variables: X, X,, ..

N
: [ZX,-] = E[N]E[X,] ?
=1

= [Xi]

., Xy for random N



Conditional Expectation (5421 %)

* The conditional expectation of a discrete random variable X given that event
A occurs, is defined by

“[X|Al= ) xPr(X =x|A)

where the sum is taken over all x that Pr( X =x | A) > 0

* Jo be well-defined, assume:
« Pr(A) > 0
e the sum ZxxPr(X = x | A) converges absolutely



Conditional Distribution (& #4-7)

- The probability mass function py,, : Z — [0,1] of a discrete random
variable X given that event A occurs, is given by

Px| AxX) =Pr(X=x]A)

e (X | A) can now be seen as a well-defined discrete random variable, whose
distribution is described by the pmf py, 4

[ X | A] = Z xPr(X = x | A) is just the expectation of (X | A)

X

» [E[X | A] satisfies the properties of expectation, e.g. linearity of expectation




Law of Total Expectation

» Let X be a discrete random variable with finite £[ X |. Let events B, B,, ..., B,
be a partition of €2 such that Pr(B;) > 0 for all i.

n

“[X]= ) E[X|B]Pr(B)

=1

- The law of total probability is now a special case with X = I(A)

Proof: E[X]= ) xPr(X=x)= ) x ) Pr(X=x|B)Pr(B) (law of fotal prob.)
X X =1

n

— i Pr(B;) ZxPr(X =x | B) = Z -[X | B;| Pr(B;)
=1 X

=1




Analysis of QuickSort

A comparison-based sorting algorithm

e Wworst-case complexity: O(nz)

* average-case complexity:

QSOI‘t(A): an array A of n distinct entries

If n > 1 then do:
choose a pivot x = A[1];
partition A into L with all entries < x,
and R with all entries > x;

QSort(L) and QSort(R);

t(n) = O(nlnn) verified by induction

» Let#(n) = E[X |, where X is the number of comparisons used in QSort(A)
on a uniform random permutation A of n distinct numbers.

« Law of total expectation: Let B; be the event that A[ 1] is the ith smallest in A.

n

(n) = E[X,] = )

=1

n

|
“[X, | BIPr(B) = — ;

27!—1
= 1+X_ +X, l=n—1+=) 1)
"l 1=0

(0)=1¢1)=0



QSOI‘t(A): an array A of n distinct entries

AnaIySiS Of Qu i CkSOﬂ If ncioiszeanpcil\cl)c:)t x=All];

partition A into L with all entries < x,

 Uniform random input: and R with all entries > x;

» A is a uniform random permutation of a; < --- < a, QSort(L) and QSort(R);

. Let X;; € {0,1} indicate whether g; and a. are compared within QSort(A).

« Observation |: each pair of a;,d;are compared at most once.

—> total number of comparisons is X = ZKJ i7

« Observation ll: if a,, a; are still in the same array, then so are all g, for i < k <.

a;, a; are compared iff one of them is chosen as pivot when they are in the same array.
2
J—1+1

— E[X};] = Pr(q;, a; are compared) = Pr({a;, a;} | {4, 0,11, ..., a;}) =

* Linearity of expectation 1
n n—i 2 n
[X]= ) E[X,] = Z — = = < Z =2nH(n) = 2nlnn + O(n)

1<J i<] =1 k =1 k=1

_|_

|
&



X3 | py(y) ¢

|

32

Conditional Expectation (5#FH# %) » ¢z

V3 35 0 0

32

16| 8 | 4
Px(X) 2 33 33 32

» For random variables X, Y, the conditional expectation:

=[X ] Y]

is a random variable f(Y) whose value is f(y) = E[X | Y =y]when Y =y

 Naturally generalized to [E[X | Y, Z] for random variables X, Y, Z

« Examples:

« E[X | Y]: average height of the country of a random person on earth

32

« E[X | Y, Z]: average height of the gender of the country of a random person

8
32

15
32

32

32
32



Conditional Expectation (F4# %) » @

X3 | py(y) ¢

|

32

Y3 35

32

16
Px{x) - 32

» For random variables X, Y, the conditional expectation:

=[X ] Y]

is a random variable f(Y) whose value is f(y) = E[X | Y = y] when Y

» Law of Total Expectation: E[[E[X | Y]] = E[X]

Proof:

S|

—[X | Y]]

Z “[X | Y=y]Pr(Y =y) (by definition)
Y
=X (law of total expectation)

32

8
32

15
32

32

32
32



Random Family Tree

n

X(), X19X29 ... Is defined by XO — ]l and X = Z é(n)

J
where ].(”) € 7/ are i.i.d. random variables with mean value u = [ (]

e Xo=1 and [E[X] = -[51(0)] = U

k
° _[Xn ‘ Xn—l — k] — - é:j(n_l) Xp—1 = — k//t — _[Xn ‘ Xn—l] — Xn—l/’t
j=1
* L Xn — b _[Xn Xn—l — _[Xn—ll/t] — _[Xn—l] "H :/’tn
1 .
— fO<u<l
—> | ZXn — _[Xn]zzlun — 1 —p #

n>0 n>0 n>0 00 if u > 1



Jensen’s Inequality

 For general (non-linear) function f(X) of random variable X
we don’t have E| f(X)] = f(E[X])

 But if the convexity of f is known, then the Jensen’s inequality applies:
e fisconvex < f(Ax+ (1 — )y) < Uf(x) + (1 = Hf(y)
— E[AX)] =2 AE[X])
» fisconcave < f(ix+ (1 — A)y) > f(x) + (1 = DY)
= E[A(X)] < AELX]) SR




Monotonicity of Expectation

 For random variables X and Y, for ¢ € R:
(Y stochastically dominates X)
e If X < Ya.s. (almost surely, i.e. Pr(X < Y) = 1), then
e f X <c(X 2>c)a.s.,then E|X]| < c (E|X] = ¢)

» E[IX[] > |E[X]]| >0
Proof: E[X] = ZxPr(X=x) = ) x ZPr((X Y) = (x,y))

X

—[X] <

- Y]

— Z Y Pr((X.Y) = (x. y)) = ) ) xPr((X,Y) = (x,))

X y>X y XXy

< 2 2 YPHX.Y) = (xy) < ZyPr(Y y) = E[Y]

y XXy



Averaging Principle

e Pr(X > E[X]) >0 <= ifPr(X <c) =1 then

e Pr(X <E[X]) >0 <& ifPr(X > c) =1 then

* By the Probabilistic Method:
Jdw € (2 such that X(w) >
Jdw € € such that X(w) <




Maximum Cut

 For an undirected graph G(V, E):
e Findan S C V with largest cut 6S = {{u,v} € E|lu e SAv & S)

* NP-hard problem (very unlikely to have efficient algorithms)

The average cut generated by pairwise independent bits is > | E|/2.
Proposition: There always exists a large enough cut of size |0S| > | E|/2.

airwise
Proof: Let Y, € {0,1},forv € V, be fnu:tually independent uniform random bits.

Each v € Vijoins Siff Y, = 1. Then it holds that |6S| = Z{uv}eE I(Y,#7).

By linearity of expectation: E[ |5S|] = Z{uv}eE Pr(Y #Y)=|E|/2.

Due to the probabilistic method: There exists such S C V with |6S| > | E|/2.



Maximum Cut

 For an undirected graph G(V, E):
e Findan S C V with largest cut 6S = {{u,v} € E|lu e SAv & S)

* NP-hard problem (very unlikely to have efficient algorithms)

Parity Search:
forallb € {0,1}1o20+D].
initialize S, = &;
fori =1,2,...,n:
if @ b; = 1 then v; joins Sp;
j:|i/2 | mod2=1
return the S, with the largest cut 05;

Guarantees to return an S C V with |0S| > | E|/2.




