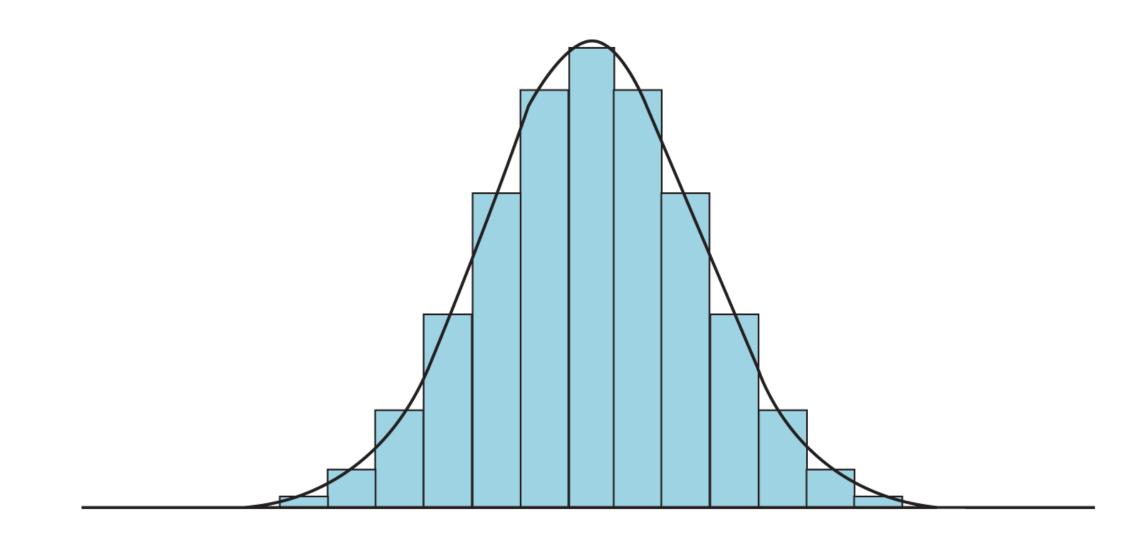
Probability Theory & Mathematical Statistics

Random Variable

Random Variable



"Variables" that are Random

- · 令X和Y分别为两次掷证的结果:
 - · 考虑X²和XY—它们是相同的随机量吗?
 - $2X\pi X + Y$ 呢? 或者任意凸组合 $\lambda X + (1 \lambda)Y$ 之间呢?
- 设圖正面朝上概率为p: 令X表示连续抛圖直至正面朝上为止的抛圖次数;令Y表示连抛n次圖,其中正面朝上的次数;
- $\diamondsuit X$ 表示从一个装有 $M \land \diamondsuit N M \land \diamondsuit$ 的 \square 中(有/无放回地)取出 $n \land$ 球中 \diamondsuit 的个数;
- n个顶点,任意两点间独立以概率p连一条边,产生随机图G,令 $X=\chi(G)$ 为最小染色数;
- 令X为[0,1]中均匀分布的随机实数;令Y为[0,∞)上满足 $Pr(Y \ge y) = e^{-y}$ 的随机实数。

Random Variable

• Roll a \mathfrak{P} , let X be the outcome of the roll, let $Y \in \{0,1\}$ indicate its oddness.

samples in Ω	values of X	values of Y			
•	1	1			
•	2	0			
•	3	1			
	4	0			
	5	1			
	6	0			

Random Variable

• Let X be the sum of two independent $\widehat{\boldsymbol{w}}$ rolls.

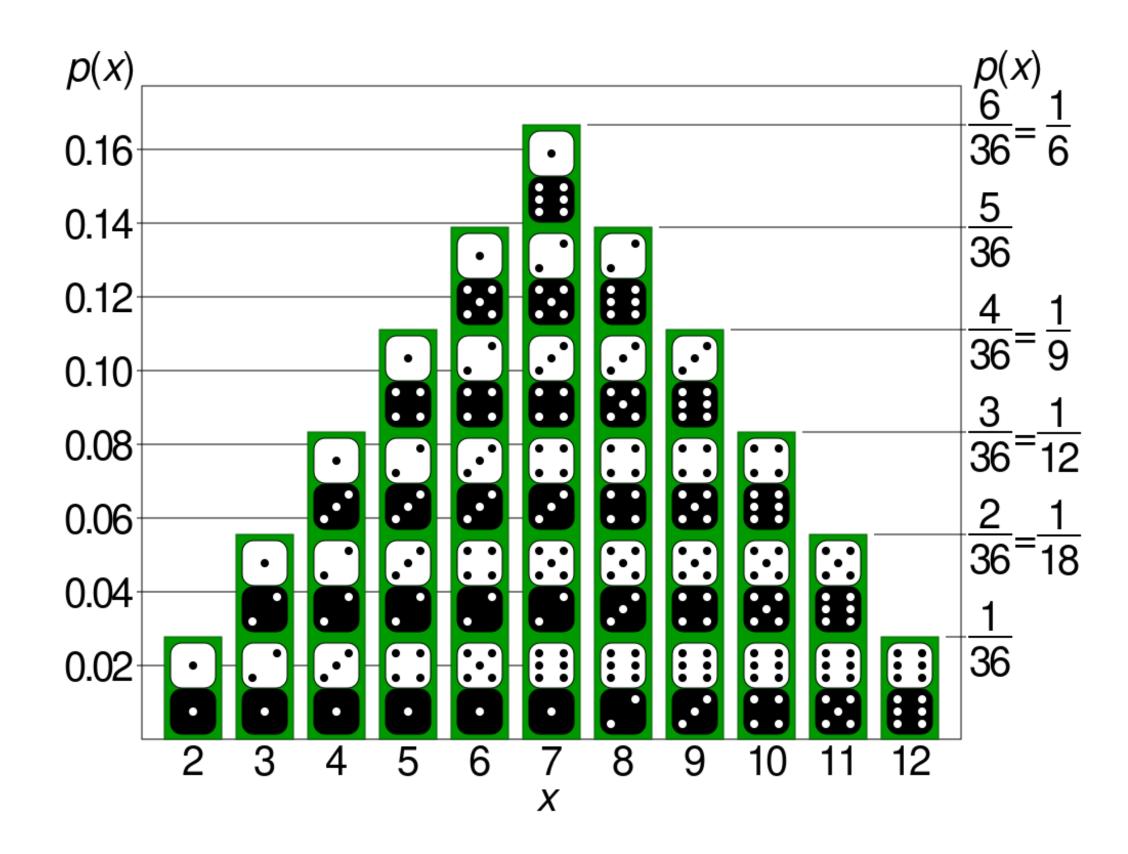
• •	2	• •	3	• ••	4	•	5	•	6	• • •	7
•••	3	•••	4	•••	5	• • •	6		7		8
	4	•••	5	•••	6	•••	7		8	•••	9
	5		6		7		8		9		10
	6		7		8		9		10		11
	7		8		9		10		11		12

Random Variable (随机变量)

- Given (Ω, Σ, \Pr) , a <u>random variable</u> is a function $X:\Omega \to \mathbb{R}$
 - satisfying that $\forall x \in \mathbb{R}$, $\{\omega \in \Omega \mid X(\omega) \le x\} \in \Sigma$ (i.e. X is Σ -measurable)
- $X \le x$ (where $x \in \mathbb{R}$) denotes the event $\{\omega \in \Omega \mid X(\omega) \le x\}$
- X > x (where $x \in \mathbb{R}$) denotes the event $\{\omega \in \Omega \mid X(\omega) > x\}$
- $X \in S$ (where $S \subseteq \mathbb{R}$ is countable \cap, \cup of intervals (y, x]) denotes the event $\{\omega \in \Omega \mid X(\omega) \in S\}$
- For <u>discrete random variable</u> $X: \Omega \to \mathbb{Z}$, this includes all subsets $S \subseteq \mathbb{Z}$ $\Pr(X \in S)$

Distribution of Random Variable

• Let X be the sum of two independent $\widehat{\boldsymbol{w}}$ rolls.



Distribution (分布)

• The <u>cumulative distribution function</u> (<u>CDF</u>) (累积分布函数) or just <u>distribution</u> function (分布函数) of a random variable X is the F_X : $\mathbb{R} \to [0,1]$ given by

$$F_X(x) = \Pr(X \le x)$$

- All probabilities regarding X can be deduced from F_X . (Prob. space is no longer needed.)
- Two random variables X and Y are identically distributed if $F_X = F_Y$
- Monotone: $\forall x, y \in \mathbb{R}$, if $x \le y$ then $F_X(x) \le F_X(y)$
- Bounded: $\lim_{x \to -\infty} F_X(x) = 0$ and $\lim_{x \to \infty} F_X(x) = 1$

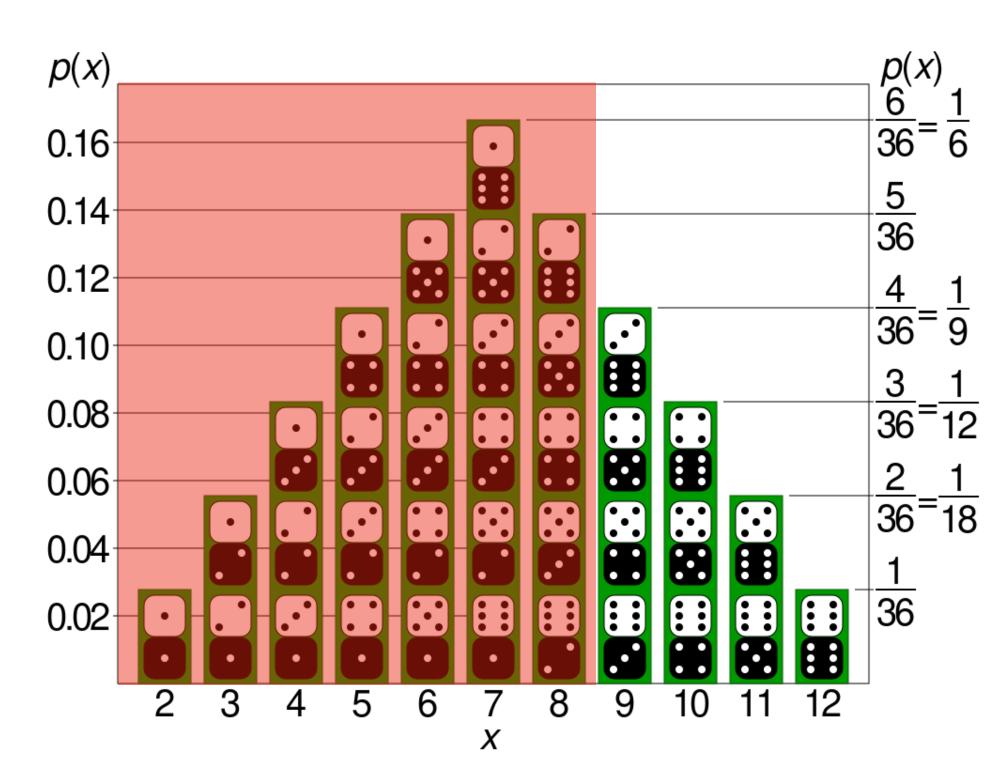
Discrete Random Variable

- A random variable $X:\Omega\to\mathbb{R}$ is called <u>discrete</u> if $X(\Omega)$ is countable.
- For a discrete random variable X, its <u>probability mass function</u> (pmf) (概率质量函数) $p_X: \mathbb{R} \to [0,1]$ is given by

$$p_X(x) = \Pr(X = x)$$

• The CDF F_X satisfies

$$F_X(y) = \sum_{x \le y} p_X(x)$$



Continuous Random Variable

• A random variable $X:\Omega\to\mathbb{R}$ is called <u>continuous</u>, if its CDF can be expressed as

$$F_X(y) = \Pr(X \le y) = \int_{-\infty}^{y} f_X(x) dx$$

for some integrable probability density function (pdf) (概率密度函数) f_X .

- Never mind what type of integral for now. (Riemann integral? Lebesgue integral?)
- There are random variables that are neither discrete nor continuous.

Independence

- Two discrete random variables X and Y are independent if X=x and Y=y are independent events for all x and y.
- Discrete random variables X_1,\ldots,X_n are (mutually) independent if $X_1=x_1,\ldots,X_n=x_n$ are mutually independent events for all x_1,\ldots,x_n $p_{(X_1,\ldots,X_n)}(x_1,\ldots,x_n)=\Pr(X_1=x_1\cap\cdots\cap X_n=x_n)=p_{X_1}(x_1)\cdots p_{X_n}(x_n)$
- The pairwise (and k-wise) independence are defined in the same way.
 - Example: The construction of $2^n 1$ pairwise independent random bits out of n mutually independent random bits by XOR.
- For general random variables, the events $X_i = x_i$ are replaced by $X_i \le x_i$.

Random Vector (随机向量)

- Given (Ω, Σ, \Pr) , a <u>random vector</u> is an $X = (X_1, ..., X_n)$ where each X_i is a random variable defined on the probability space (Ω, Σ, \Pr) .
- The joint CDF (联合累积分布函数) $F_X: \mathbb{R}^n \to [0,1]$ is given by

$$F_X(x_1, ..., x_n) = \Pr(X_1 \le x_1 \cap \cdots \cap X_n \le x_n)$$

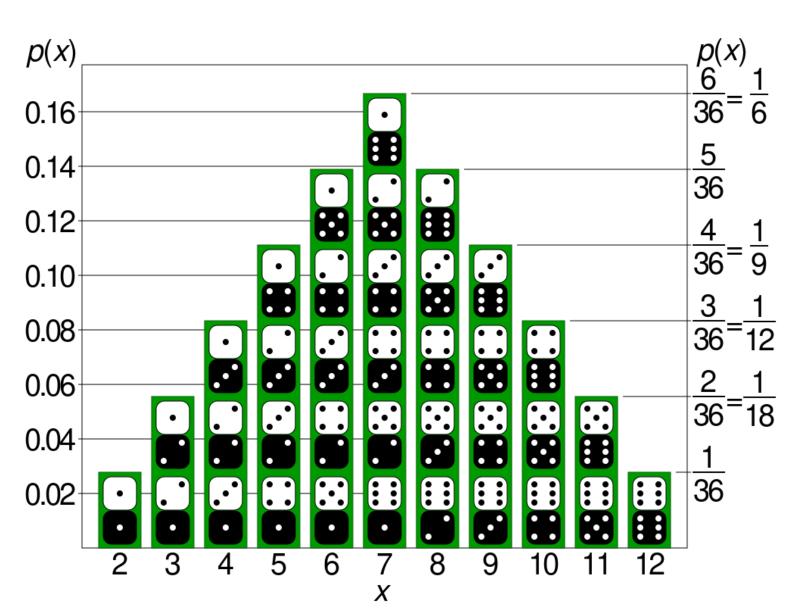
• For discrete random vector, the joint mass function (联合质量函数) is given by

$$p_X(x_1, ..., x_n) = \Pr(X_1 = x_1 \cap \cdots \cap X_n = x_n)$$

• The marginal distribution of X_i in $(X_1, ..., X_n)$ is given by

$$p_{X_i}(x_i) = \sum_{\substack{x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n}} p_{(X_1, \dots, X_n)}(x_1, \dots, x_n)$$

Discrete Random Variable



Probability Mass Function (概率质量函数)

- Consider integer-valued discrete random variable $X:\Omega o \mathbb{Z}$
- Its probability mass function (pmf) $p_X: \mathbb{Z} \to [0,1]$ is given by

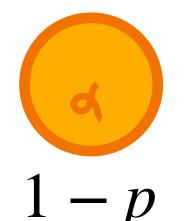
$$p_X(k) = \Pr(X = k)$$

- ullet As histogram: p_X gives the "histogram" of the probability distribution
- As vector: p_X can be seen as a vector $p_X \in [0,1]^R$ such that $\|p_X(x)\|_1 = 1$, where $R = X(\Omega)$ is the range of values of X
- Its function Y = f(X) is also a discrete random variable, where $p_Y(y) = \sum_{x: f(x) = y} p_X(x)$

Discrete Random Variables

- Basic discrete probability distributions:
 - discrete uniform distribution (古典概型)
 - Bernoulli trial (coin flip)
 - binomial distribution (# of successes in n trials)
 - geometric distribution (# of trials to get a success)
 - negative binomial distribution
 - hypergeometric distribution
 - Poisson distribution (idealized binomial distribution)
 - •
- Probability distributions of discrete objects:
 - multinomial distribution (balls into bins)
 - Erdős–Rényi model (random graph)
 - Galton-Watson process (random tree)
 - •

Bernoulli Trial (伯努利试验) (A coin flip)



- A Bernoulli trial is an experiment with two possible outcomes.
- A Bernoulli random variable X takes values in $\{0,1\}$, its pmf is

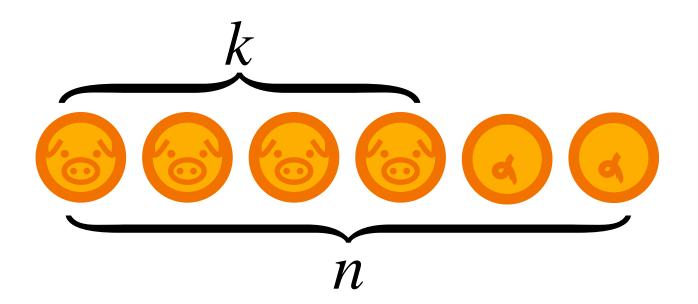
$$p_X(k) = \Pr(X = k) = \begin{cases} p & \text{if } k = 1\\ 1 - p & \text{if } k = 0 \end{cases}$$

where $p \in [0,1]$ is a parameter.

• Indicator: For event A, the indicator X of A is a random variable defined by

$$X = I(A) = \begin{cases} 1 & \text{if } A \text{ occurs} \\ 0 & \text{otherwise} \end{cases}$$
 a Bernoulli R.V. with parameter $\Pr(A)$

Binomial Distribution (二项分布) (Number of HEADs in *n* coin flips)



- X: number of successes in n $\underline{i.i.d.}$ (independent and identically distributed) Bernoulli trials with parameter p
- A binomial random variable X takes values in $\{0,1,\ldots,n\}$, and

$$p_X(k) = \Pr(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}, \qquad k = 0, 1, ..., n$$

• We say that X follows the <u>binomial distribution</u> with parameters n and p

denoted $X \sim \text{Bin}(n, p)$ or B(n, p)

Geometric Distribution (几何分布) (Number of coin flips to get a HEADs)

- X: number of i.i.d. Bernoulli trials needed to get one success
- A geometric random variable X takes values in $\{1,2,\ldots\}$, and

$$p_X(k) = \Pr(X = k) = (1 - p)^{k-1}p, \quad k = 1, 2, \dots$$

• We say that X follows the geometric distribution with parameter $p \in [0,1]$

denoted $X \sim \text{Geo}(p)$ or Geometric(p)

Geometric Distribution (几何分布) (Number of coin flips to get a HEADs)

• Geometric random variable $X \sim \text{Geo}(p)$ is $\underline{\text{memoryless}}$: for $k \ge 1$, $n \ge 0$

$$Pr(X = k + n \mid X > n) = Pr(X = k)$$

Proof:
$$\Pr(X = k + n \mid X > n) = \frac{\Pr(X = k + n)}{\Pr(X > n)} = \frac{(1 - p)^{n + k - 1} p}{\sum_{k=n}^{\infty} (1 - p)^k p}$$
$$= \frac{(1 - p)^{k-1} p}{\sum_{k=0}^{\infty} (1 - p)^k p} = (1 - p)^{k-1} p$$

• Geometric distribution is the *only* discrete memoryless distribution (with the range of values $\{1,2,\dots\}$).

Two Ways of Constructing Random Variables

- As a <u>function of random variables</u> $Y = f(X_1, X_2, ..., X_n)$
 - Binomial Y: function f is sum, and (X_1, \ldots, X_n) are i.i.d. Bernoulli trials
 - independent $Y_1 \sim \text{Bin}(n_1, p)$, $Y_2 \sim \text{Bin}(n_2, p) \Longrightarrow Y_1 + Y_2 \sim \text{Bin}(n_1 + n_2, p)$
- As a stopping time T of a sequence X_1, X_2, \ldots, X_T
 - A random variable T is a stopping time with respect to X_1, X_2, \ldots if for all $t \ge 1$ the occurrence of T = t is determined by the values of X_1, X_2, \ldots, X_t
 - Geometric T: time for the first success in i.i.d. Bernoulli trials X_1, X_2, \ldots

Sum of Independent Random Variables

• If discrete random variables X and Y are independent, then:

$$p_{X+Y}(z) = \Pr(X+Y=z) = \sum_{x} \Pr(X=x \cap Y=z-x) \qquad \text{(total probability)}$$
 (independence)
$$= \sum_{x} p_X(x) p_Y(z-x) = \sum_{y} p_X(z-y) p_Y(y)$$

This defines a convolution (卷积) between mass functions:

$$p_{X+Y} = p_X * p_Y$$

Sum of Independent Random Variables

• If discrete random variables X and Y are independent, then:

$$p_{X+Y}(z) = \sum_{x} p_X(x) p_Y(z-x) = \sum_{y} p_X(z-y) p_Y(y)$$

• For *i.i.d.* Bernoulli random variables $X_1, ..., X_n \in \{0,1\}$:

$$p_{X_1 + \dots + X_n}(k) = p \cdot p_{X_1 + \dots + X_{n-1}}(k-1) + (1-p) \cdot p_{X_1 + \dots + X_{n-1}}(k)$$

$$= \binom{n-1}{k-1} p^k (1-p)^{n-k} + \binom{n-1}{k} p^k (1-p)^{n-k} = \binom{n}{k} p^k (1-p)^{n-k}$$

Negative Binomial Distribution (负二项分布) ("multiple successes" generalization of geometric distribution)

- X: number of failures in a sequence of i.i.d. Bernoulli trials before r successes
- A <u>negative binomial random variable</u> X takes values in $\{0,1,2,\ldots\}$, and

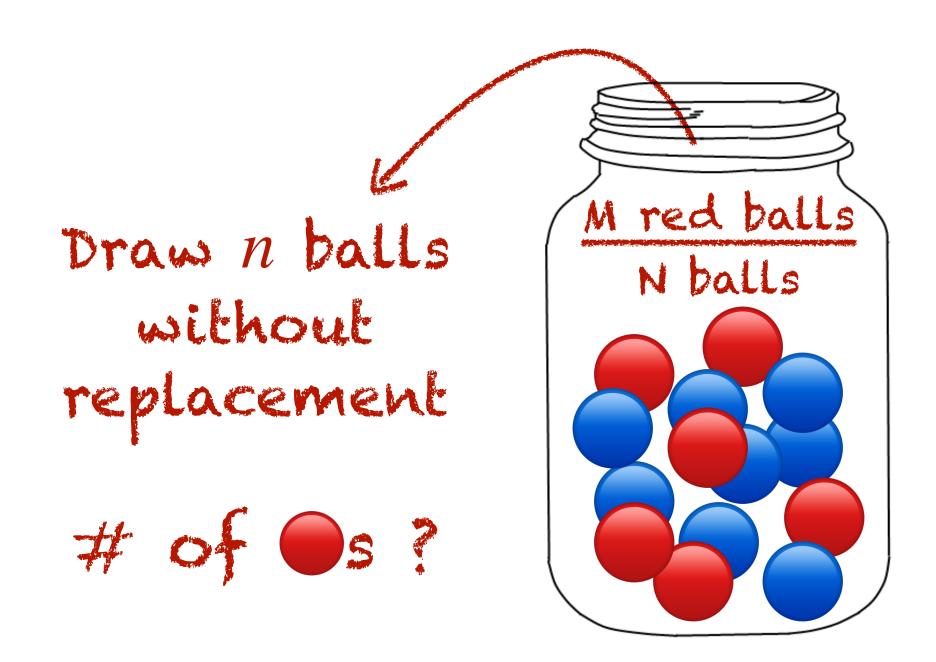
$$p_X(k) = \Pr(X = k) = \binom{k+r-1}{k} (1-p)^k p^r = (-1)^k \binom{-r}{k} (1-p)^k p^r$$
for $k = 0, 1, 2, \dots$

• We say that X follows the <u>negative binomial distribution</u> with parameters r, p

•
$$X = (X_1 - 1) + (X_2 - 1) + \dots + (X_r - 1)$$
 for i.i.d. $X_i \sim \text{Geo}(p)$

Hypergeometric Distribution (超几何分布) ("without replacement" variant of binomial distribution)

• X: number of successes in n draws, without replacement (无效回), from a finite population of N objects, including exactly M ones, drawings of whom are counted as successes



Hypergeometric Distribution (超几何分布) ("without replacement" variant of binomial distribution)

- X: number of successes in n draws, without replacement (无效回), from a finite population of N objects, including exactly M ones, drawings of whom are counted as successes
- A hypergeometric random variable X takes values in $\{0,1,\ldots,n\}$, and

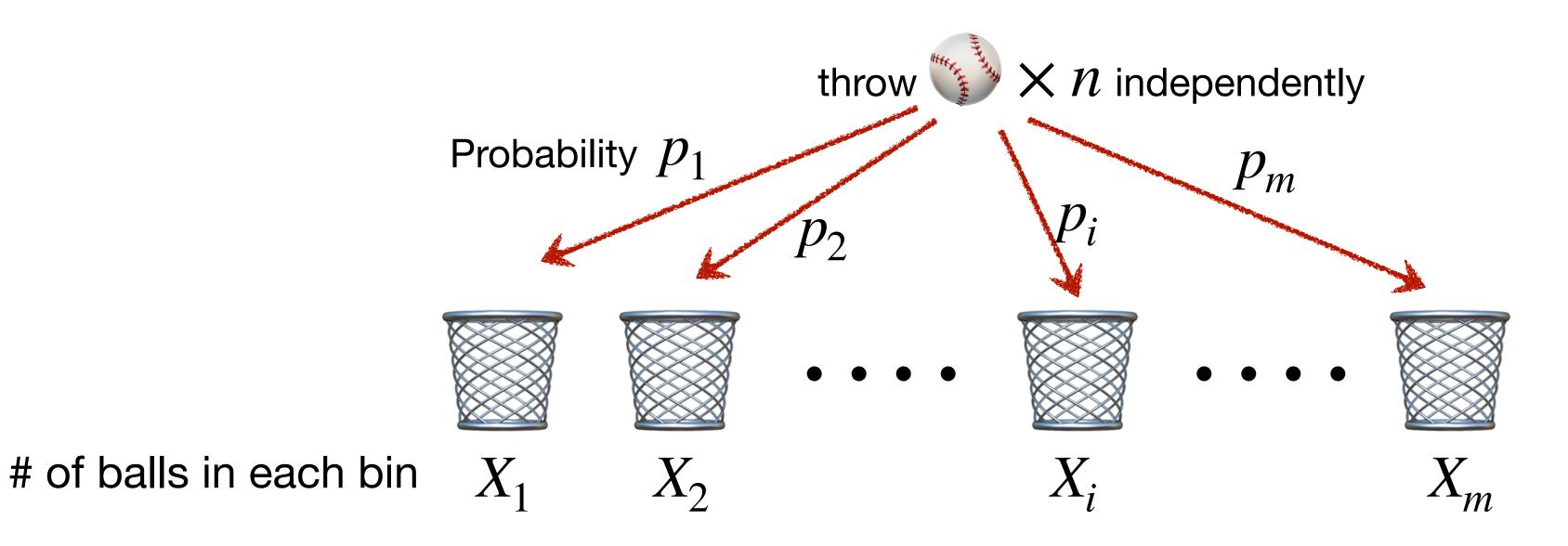
$$p_X(k) = \Pr(X = k) = \binom{M}{k} \binom{N - M}{n - k} / \binom{N}{n}, \qquad k = 0, 1, ..., n$$

• We say that X follows the <u>hypergeometric distribution</u> with parameters N, M, n, where $N \ge 0$, $0 \le M \le N$, and $0 \le n \le N$ are integers.

Multinomial Distribution (多项式分布)

("multi-dimensional" generalization of binomial distribution)

- Trials with multiple outcomes: There are n i.i.d. trials, each having m possible outcomes, where the probability of the ith outcome is p_i . Let X_i be the # of ith outcomes.
- Balls-into-bins model: Throw n balls into m bins. Each ball is thrown independently such that the ith bin receives the ball with probability p_i . Let X_i be the # of balls in the ith bin.

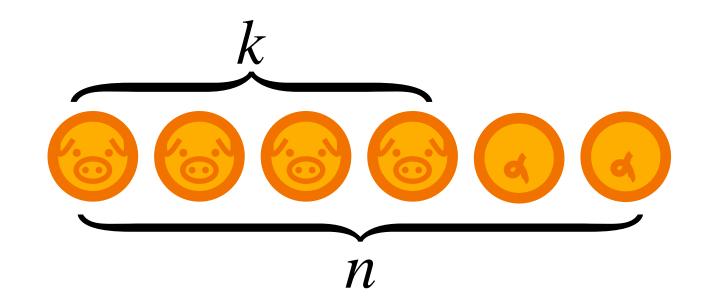


Multinomial Distribution (多项式分布)

("multi-dimensional" generalization of binomial distribution)

- Suppose that n balls are thrown into m bins, where each ball is thrown independently such that the ith bin receives the ball with probability p_i , where $p_1 + \cdots + p_m = 1$ is given.
- $(X_1, X_2, ..., X_m)$: the *i*th bin receives exactly X_i balls
- (X_1, \ldots, X_m) takes values $(k_1, \ldots, k_m) \in \{0, 1, \ldots, n\}^m$ that $k_1 + \cdots + k_m = n$, and $p_{(X_1, \ldots, X_m)}(k_1, \ldots, k_m) = \Pr\left(\bigcap_{i=1}^m (X_i = k_i)\right) = \frac{n!}{k_1! k_2! \cdots k_m!} p_1^{k_1} p_2^{k_2} \cdots p_m^{k_m}$
- We say that $(X_1, X_2, ..., X_m)$ follows the <u>multinomial distribution</u> with parameters m, n, and $p = (p_1, ..., p_m) \in [0,1]^m$ such that $p_1 + \cdots + p_m = 1$.
- $X_i \sim \text{Bin}(n, p_i)$ for each individual $1 \le i \le m$. (The marginal distribution of X_i is $\text{Bin}(n, p_i)$)

Binomial Distribution (二项分布) (Number of HEADs in *n* coin flips)



- X: number of successes in n i.i.d. Bernoulli trials with parameter p
- A binomial random variable X takes values in $\{0,1,\ldots,n\}$, and

$$p_X(k) = \Pr(X = k) = \binom{n}{k} p^k (1 - p)^k, \qquad k = 0, 1, ..., n$$

• Typical in real life: large unknown population size $n \to \infty$ with known $np = \lambda$

$$p_{\mathsf{Bin}(n,\lambda/n)}(k) = \binom{n}{k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k} = \frac{n}{n} \frac{n-1}{n} \cdots \frac{n-k+1}{n} \cdot \frac{\lambda^k}{k!} \left(1 - \frac{\lambda}{n}\right)^n \left(1 - \frac{\lambda}{n}\right)^{-k} \approx \frac{\lambda^k}{k!} e^{-\lambda}$$

A "universal" distribution for all sufficiently large n, knowing the mean $\lambda = np$?

Poisson Distribution (泊松分布) (Idealized binomial distribution when $n \to \infty$)

• A Poisson random variable X takes values in $\{0,1,2,\ldots\}$, and

$$p_X(k) = \Pr(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k = 0, 1, 2, \dots$$

- It is a well-defined probability distribution over $\{0,1,2,\dots\}$: $\sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^k}{k!} = 1$
- We say that X follows the <u>Poisson distribution</u> with parameter $\lambda>0$

denoted $X \sim \text{Pois}(\lambda)$

Sum of Poisson Variables

- Independent $X \sim \text{Bin}(n_1, p)$, $Y \sim \text{Bin}(n_2, p) \Longrightarrow X + Y \sim \text{Bin}(n_1 + n_2, p)$
- By the heuristics $Bin(n,p) \approx Pois(np)$, it seems that the following should hold:
 - independent $X \sim \operatorname{Pois}(\lambda_1)$, $Y \sim \operatorname{Pois}(\lambda_2) \Longrightarrow X + Y \sim \operatorname{Pois}(\lambda_1 + \lambda_2)$

• **Proof**:
$$p_{X+Y}(k) = \Pr(X + Y = k) = \sum_{i=0}^{k} \Pr(X = i \cap Y = k - i) = \sum_{i=0}^{k} p_X(i) p_Y(k - i)$$

$$= \sum_{i=0}^{k} \frac{e^{-\lambda_1} \lambda_1^i}{i!} \frac{e^{-\lambda_2} \lambda_2^{k-i}}{(k-i)!} = \frac{e^{-(\lambda_1 + \lambda_2)}}{k!} \sum_{i=0}^{k} {k \choose i} \lambda_1^i \lambda_2^{k-i} = \frac{e^{-(\lambda_1 + \lambda_2)} (\lambda_1 + \lambda_2)^k}{k!}$$

Poisson Approximation

- $(X_1, ..., X_m)$ follows the multinomial distribution with parameters $m, n, p_1 + \cdots + p_m = 1$
 - n balls are thrown into m bins independently according to the distribution (p_1, \ldots, p_m)
 - after all n balls are thrown, the ith bin receives X_i balls
- $(Y_1, ..., Y_m)$: each $Y_i \sim \text{Pois}(\lambda_i)$ independently, where $\lambda_i = np_i$

Proposition: $(X_1, ..., X_m)$ is identically distributed as $(Y_1, ..., Y_m)$ given that $\sum_{i=1}^{n} Y_i = n$

Proof: Observe that $Y_1 + \cdots + Y_m \sim \text{Pois}(n)$. For any $k_1, \ldots, k_m \geq 0$ that $k_1 + \cdots + k_m = n$:

$$\Pr[(Y_1, ..., Y_m) = (k_1, ..., k_m) \mid Y_1 + \dots + Y_m = n] = \left(\prod_{i=1}^m \frac{e^{-np_i(np_i)^{k_i}}}{k_i!}\right) / \left(\frac{e^{-nn}}{n!}\right)$$

$$= \frac{n!}{k_1! \cdots k_m!} p_1^{k_1} \cdots p_m^{k_m} = \Pr[(X_1, ..., X_m) = (k_1, ..., k_m)]$$

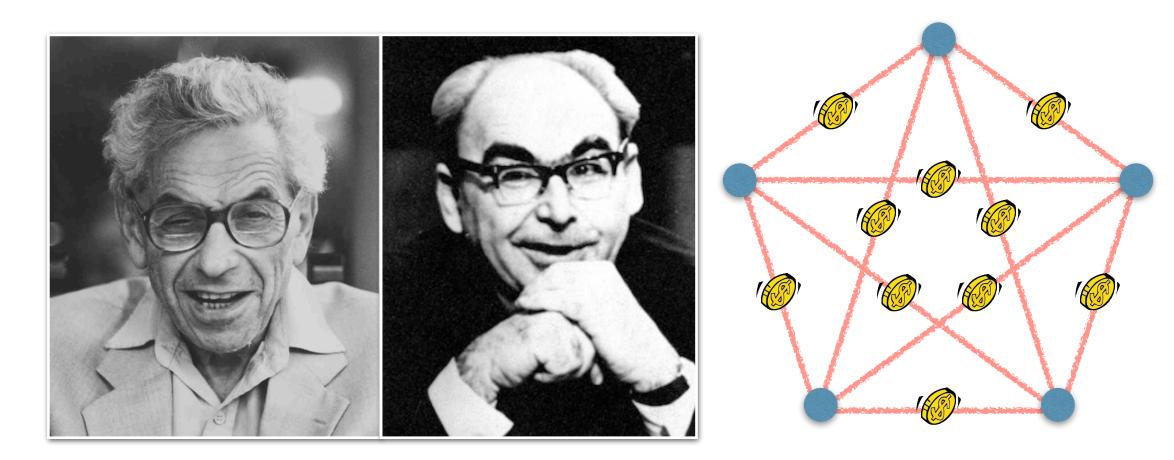
Balls into Bins

(Random mapping)

- Throw n balls into m bins uniformly at random (u.a.r.).
- Uniform random $f:[n] \to [m]$.
- The numbers of balls received in each bins $(X_1, ..., X_m)$ follow the multinomial distribution with parameters m, n and (1/m, ..., 1/m).
 - Birthday problem: the property of being injective (1-1)
 - Coupon collector problem: the property of being surjective (onto)
 - Occupancy (load balancing) problem: the maximum load $\max_i X_i$

Random Graph

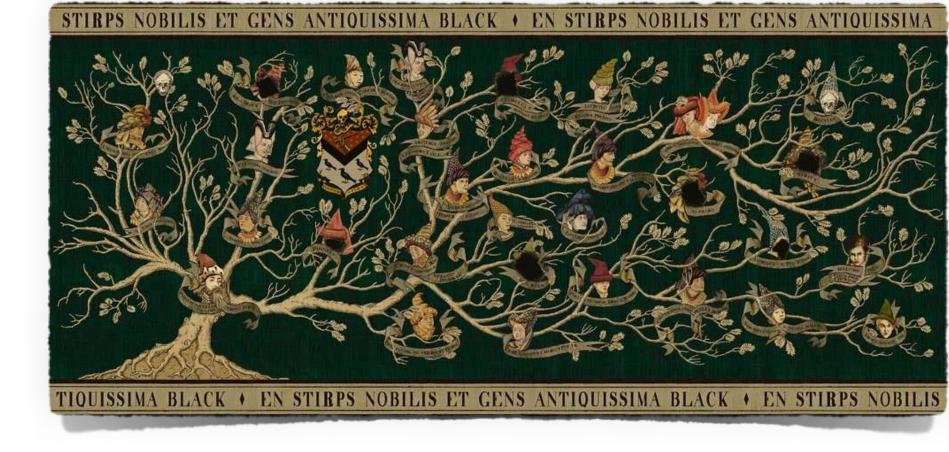
(Erdős-Rényi random graph model)



- $G \sim G(n, p)$: There are n vertices. For each pair u, v of vertices, an i.i.d. Bernoulli trial with parameter p is conducted, and an edge $\{u, v\}$ is added if the trial succeeds.
- G(n,1/2) gives the uniformly distributed random graph on n vertices.
- The number of edges in $G \sim G(n,p)$ follows the binomial distribution $Bin\left(\binom{n}{2},p\right)$. (Therefore, G(n,p) is sometimes also called the *binomial random graph*)
- Random variables defined by $G \sim G(n,p)$: chromatic number $\chi(G)$, independence number $\alpha(G)$, clique number $\omega(G)$, diameter diam(G), connectivity, max-degree $\Delta(G)$, number of triangles, number of hamiltonian cycles, ...

Random Tree

(Galton-Watson branching process)



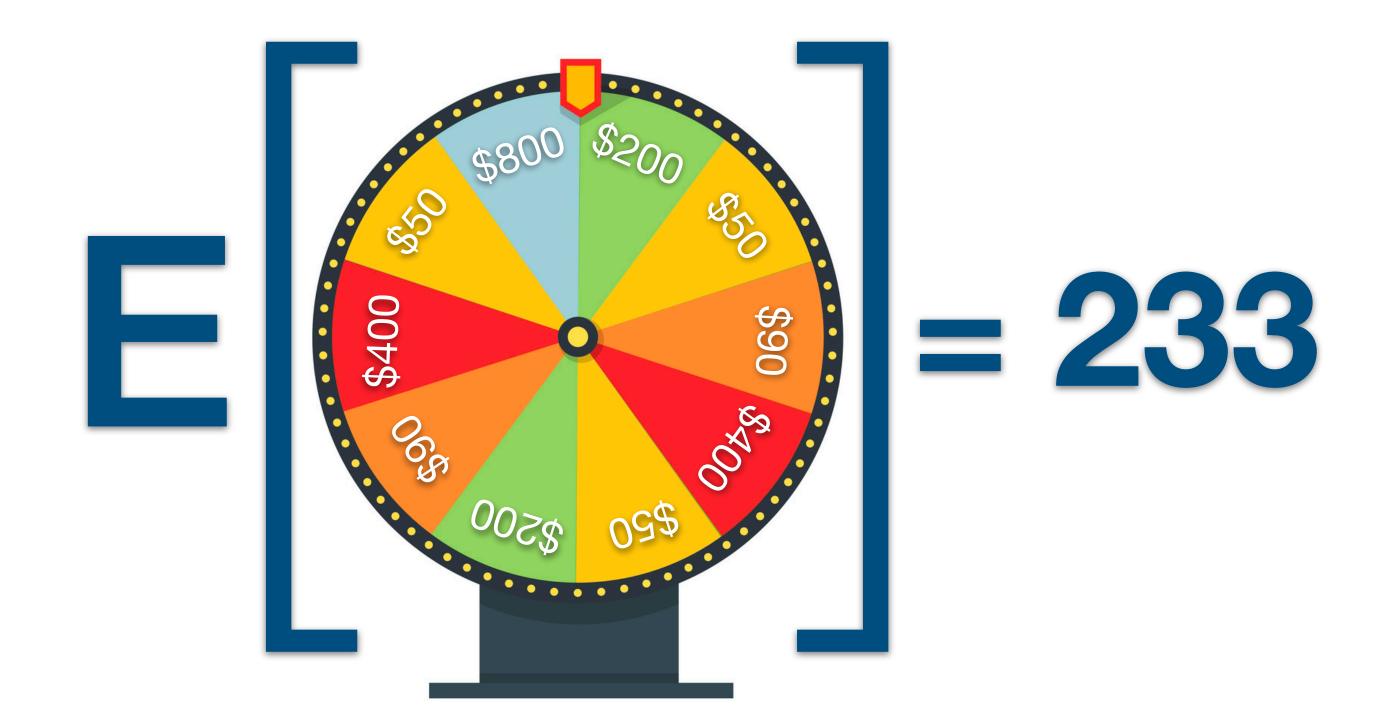
• A sequence of random variables X_0, X_1, X_2, \ldots recursively defined by

$$X_0 = 1 \text{ and } X_{n+1} = \sum_{j=1}^{X_n} \xi_j^{(n)}$$

where $\{\xi_j^{(n)} \mid n, j \ge 0\}$ are *i.i.d.* non-negative integer-valued random variables (e.g. Poisson random variables)

- Random family tree: the jth family member in the nth generation has $\xi_j^{(n)}$ offsprings
- X_n : number of family members in the nth generation

Expectation



Expectation (数学期望)

• The expectation (or mean) of a discrete random variable X is defined to be

$$\mathbb{E}[X] = \sum_{x} x p_X(x)$$

where p_X denotes the *pmf* of X and the sum is taken over all x that $p_X(x) > 0$

- $\mathbb{E}[X]$ may be ∞ (we assume absolute convergence for $\mathbb{E}[X] < \infty$)
 - Example I: $p_X(2^k) = 2^{-k}$ for k = 1, 2, ... (the St. Petersburg paradox)
 - Example II: $X \in \mathbb{Z} \setminus \{0\}$ and $p_X(k) = \frac{1}{ak^2}$ where $a = \sum_{k \neq 0} k^{-2} = \frac{\pi^2}{3}$

Perspectives of Expectation

- Computation of expectation:
 - straightforward computation (by definition)
 - linearity of expectation (by linearity)
 - law of total expectation (by case)
- Upper/lower bounds of expectation:
 - Jensen's inequality (by convexity)
 - monotonicity (by coupling)
- Implications of expectation:
 - averaging principle (the probabilistic method)
 - tail inequalities (the moment method)

Expectation of Indicator

• For Bernoulli random variable $X \in \{0,1\}$ with parameter p

$$\mathbb{E}[X] = 0 \cdot (1 - p) + 1 \cdot p = p$$

• For the indicator random variable X = I(A) of event A, where X = 1 if A occurs and X = 0 if otherwise (i.e. $\forall \omega \in \Omega, X(\omega) = 1$ if $\omega \in A$ and $X(\omega) = 0$ if $\omega \notin A$)

$$\mathbb{E}[X] = 0 \cdot \Pr(A^c) + 1 \cdot \Pr(A) = \Pr(A)$$

Poisson Distribution (泊松分布)

• Expectation of Poisson random variable $X \sim \text{Pois}(\lambda)$

$$\mathbb{E}[X] = \sum_{k \ge 0} k \frac{e^{-\lambda} \lambda^k}{k!}$$

$$= \sum_{k \ge 1} \frac{e^{-\lambda} \lambda^k}{(k-1)!}$$

$$= \sum_{k \ge 0} \frac{e^{-\lambda} \lambda^{k+1}}{k!} = \lambda \sum_{k \ge 0} \frac{e^{-\lambda} \lambda^k}{k!}$$

$$= \lambda$$

Change of Variables

(Law Of The Unconscious Statistician, LOTUS)

- For $f: \mathbb{R} \to \mathbb{R}$, for discrete X and $X = (X_1, ..., X_n)$:
 - $\mathbb{E}[f(X)] = \sum_{x} f(x) p_X(x)$
 - $\mathbb{E}[f(X_1, ..., X_n)] = \sum_{(x_1, ..., x_n)} f(x_1, ..., x_n) p_X(x_1, ..., x_n)$

Proof: Let $Y = f(X_1, ..., X_n)$. Then

$$\mathbb{E}[f(X_1, ..., X_n)] = \sum_{y} y \Pr(Y = y) = \sum_{y} y \sum_{(x_1, ..., x_n) \in f^{-1}(y)} \Pr((X_1, ..., X_1) = (x_1, ..., x_n))$$

$$= \sum_{(x_1, ..., x_n)} f(x_1, ..., x_n) \Pr((X_1, ..., X_1) = (x_1, ..., x_n))$$

$$= \sum_{(x_1, ..., x_n)} f(x_1, ..., x_n) p_X(x_1, ..., x_n)$$

Linearity of Expectation

- For $a, b \in \mathbb{R}$ and random variables X and Y:
 - $\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$
 - $\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$

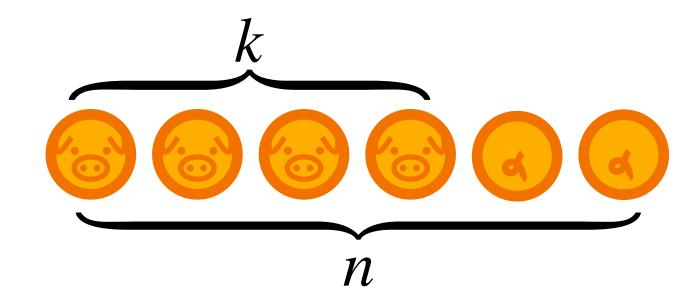
Proof:
$$\mathbb{E}[aX + b] = \sum_{x} (ax + b)p_X(x) = a\sum_{x} xp_X(x) + b\sum_{x} p_X(x) = a\mathbb{E}[X] + b$$

 $\mathbb{E}[X + Y] = \sum_{x,y} (x + y)\Pr((X, Y) = (x, y))$
 $= \sum_{x} x \sum_{y} \Pr((X, Y) = (x, y)) + \sum_{y} y \sum_{x} \Pr((X, Y) = (x, y))$
 $= \sum_{x} x \Pr(X = x) + \sum_{y} y \Pr(Y = y) = \mathbb{E}[X] + \mathbb{E}[Y]$

Linearity of Expectation

- For $a, b \in \mathbb{R}$ and random variables X and Y:
 - $\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$
 - $\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y]$
- For linear (affine) function f on random variables X_1, \ldots, X_n $\mathbb{E}[f(X_1, \ldots, X_n)] = f(\mathbb{E}[X_1], \ldots, \mathbb{E}[X_n])$
- It holds for arbitrarily dependent X_1, \ldots, X_n

Binomial Distribution (二项分布)



• For binomial random variable $X \sim \text{Bin}(n, p)$

$$\mathbb{E}[X] = \sum_{k=0}^{n} k \binom{n}{k} p^k (1-p)^{n-k}$$

- Observation: $X \sim \text{Bin}(n, p)$ can be expressed as $X = X_1 + \cdots + X_n$, where X_1, \ldots, X_n are i.i.d. Bernoulli random variables with parameter p
- Linearity of expectation:

$$\mathbb{E}[X] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_n] = np$$

Geometric Distribution (几何分布)

• For geometric random variable $X \sim \text{Geo}(p)$

$$\mathbb{E}[X] = \sum_{k \ge 1} k(1-p)^{k-1}p$$

- Observation: $X \sim \text{Geo}(p)$ can be calculated by $X = \sum_{k \geq 1} I_k$, where $I_k \in \{0,1\}$ indicates whether all of the first (k-1) trials fail
- Linearity of expectation:

$$\mathbb{E}[X] = \sum_{k \ge 1} \mathbb{E}[I_k] = \sum_{k \ge 1} (1 - p)^{k - 1} = \frac{1}{p}$$

Negative Binomial Distribution (负二项分布)

• For negative binomial random variable X with parameters r, p

$$\mathbb{E}[X] = \sum_{k>1} k \binom{k+r-1}{k} (1-p)^k p^r$$

- Observation: X can be expressed as $X = (X_1 1) + \cdots + (X_r 1)$, where X_1, \ldots, X_r are i.i.d. geometric random variables with parameter p
- Linearity of expectation:

$$\mathbb{E}[X] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_r] - r = r(1 - p)/p$$

Hypergeometric Distribution (超几何分布)

• For hypergeometric random variable X with parameters N, M, n

$$\mathbb{E}[X] = \sum_{k=0}^{n} k \binom{M}{k} \binom{N-M}{n-k} / \binom{N}{n}$$

- **Observation**: each red ball (success) is drawn with probability $\binom{N-1}{n-1} / \binom{N}{n} = \frac{n}{N}$.
 - Then $X = X_1 + \cdots + X_M$, where $X_i \in \{0,1\}$ indicates whether the ith red ball is drawn.
- Linearity of expectation:

$$\mathbb{E}[X] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_M] = \frac{nM}{N}$$

Draw n balls without replacement

Pattern Matching

- $s = (s_1, ..., s_n) \in Q^n$: uniform random string of n letters from alphabet Q with |Q| = q
- For pattern $\pi \in Q^k$, let X be the number of appearances of π in s as substring

• Let
$$I_i \in \{0,1\}$$
 indicate that $\pi = (s_i, s_{i+1}, ..., s_{i+k-1})$. Then $X = \sum_{i=1}^n I_i$

Linearity of expectation:

$$\mathbb{E}[X] = \sum_{i=1}^{n-k+1} \mathbb{E}[I_i] = (n-k+1)q^{-k}$$

• Expected time (position) for the first appearance? It may depend on the pattern $\pi.$

Optional Stopping Theorem (OST)

Coupon Collector

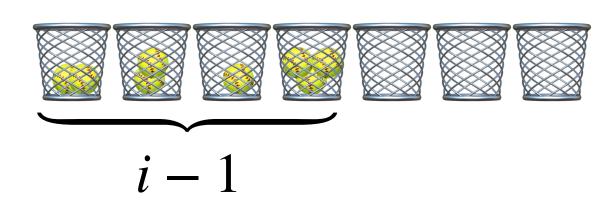
- Each cookie box comes with a uniform random coupon.
 - Number of cookie boxes opened to collect all n types of coupons



- Balls-into-bins model: throw balls one-by-one u.a.r. to occupy all n bins
 - X: total number of balls thrown to make all n bins nonempty
 - X_i : number of balls thrown while there are exactly (i-1) nonempty bins
- X_i is geometric with parameter $p_i = 1 \frac{i-1}{n}$ and $X = \sum_{i=1}^n X_i$

Linearity of expectation:

$$\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X_i] = \sum_{i=1}^{n} \frac{n}{n-i+1} = n \sum_{i=1}^{n} \frac{1}{i} = nH(n) \approx n \ln n$$
(Harmonic number)



Double Counting

• For nonnegative random variable X that takes values in $\{0,1,2,\dots\}$

$$\mathbb{E}[X] = \sum_{k=0}^{\infty} \Pr[X > k]$$

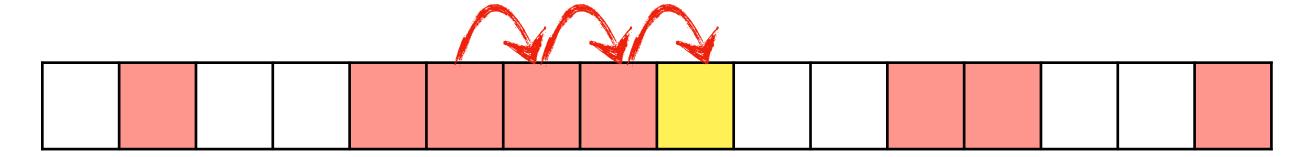
Proof I (Double Counting):

$$\mathbb{E}[X] = \sum_{x \ge 0} x \Pr[X = x] = \sum_{x \ge 0} \sum_{k=0}^{x-1} \Pr[X = x] = \sum_{k \ge 0} \sum_{x > k} \Pr[X = x] = \sum_{k \ge 0} \Pr[X > k]$$

• Proof II (Linearity of Expectation): Let $I_k \in \{0,1\}$ indicate whether X > k.

Then
$$X = \sum_{k \ge 0} I_k$$
. By linearity, $\mathbb{E}[X] = \sum_{k \ge 0} \mathbb{E}[I_k] = \sum_{k \ge 0} \Pr[X > k]$

Open Addressing with Uniform Hashing



- Hash table: n keys from a universe U are mapped to m slots by hash function $h:U\to [m]$
- Open addressing (升放寻址): hash collision is resolved by a probing strategy
 - when searching for a key $x \in U$, the *i*th probed slot is given by h(x, i)
 - Linear probing: $h(x, i) = h(x) + i \pmod{m}$
 - Quadratic probing: $h(x, i) = h(x) + c_1 i + c_2 i^2 \pmod{m}$
 - Double hashing: $h(x, i) = h_1(x) + i \cdot h_2(x) \pmod{m}$
 - Uniform hashing: $h(x, i) = \pi(i)$ where π is a uniform random permutation of [m]

Open Addressing with Uniform Hashing

- In a hash table with load factor $\alpha = n/m$, assuming uniform hashing, the expected number of probes in an unsuccessful search is at most $1/(1-\alpha)$.
- ullet Proof: Let X be the number of probes in an unsuccessful search.

$$\mathbb{E}[X] = \sum_{k=0}^{\infty} \Pr(X > k) = 1 + \sum_{k=1}^{\infty} \Pr(X > k)$$

$$= 1 + \sum_{k=1}^{\infty} \Pr\left(\bigcap_{i=1}^{k} A_i\right) \text{ (where } A_i \text{ is the event that the } i \text{th probed slot is occupied)}$$

$$= 1 + \sum_{k=1}^{\infty} \prod_{i=1}^{k} \Pr\left(A_i \mid \bigcap_{j < i} A_j\right) \text{ (by chain rule)}$$

$$= 1 + \sum_{k=1}^{\infty} \prod_{i=1}^{k} \frac{n-i+1}{m-i+1} \le 1 + \sum_{k=1}^{\infty} \prod_{i=1}^{k} \frac{n}{m} = 1 + \sum_{k=1}^{\infty} \alpha^k = \sum_{k=0}^{\infty} \alpha^k = \frac{1}{1-\alpha}$$

Principle of Inclusion-Exclusion

- Let $I(A) \in \{0,1\}$ be the indicator random variable of event A. It's easy to verify:
 - $\star I(A^c) = 1 I(A)$
 - $\bullet I(A \cap B) = I(A) \cdot I(B)$
- For events A_1, A_2, \ldots, A_n :

$$I\left(\bigcup_{i=1}^{n} A_i\right) \stackrel{(\bigstar)}{=} 1 - I\left(\left(\bigcup_{i=1}^{n} A_i\right)^{c}\right) \stackrel{\text{(De Morgan's law)}}{=} 1 - I\left(\bigcap_{i=1}^{n} A_i^{c}\right) \stackrel{(\bigstar)}{=} 1 - \prod_{i=1}^{n} I(A_i^{c}) \stackrel{(\bigstar)}{=} 1 - \prod_{i=1}^{n} (1 - I(A_i))$$

$$\frac{\text{(binomial theorem)}}{\text{(binomial theorem)}} = 1 - \sum_{S \subseteq \{1, \dots, n\}} (-1)^{|S|} \prod_{i \in S} I(A_i) \stackrel{(\clubsuit)}{=} \sum_{\varnothing \neq S \subseteq \{1, \dots, n\}} (-1)^{|S|-1} I\left(\bigcap_{i \in S} A_i\right)$$

Principle of Inclusion-Exclusion

- Let $I(A) \in \{0,1\}$ be the indicator random variable of event A.
- For events A_1, A_2, \ldots, A_n :

$$I\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{\varnothing \neq S \subseteq \{1,\dots,n\}} (-1)^{|S|-1} I\left(\bigcap_{i \in S} A_i\right)$$

By linearity of expectation:

$$\Pr\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{\varnothing \neq S \subseteq \{1, \dots, n\}} (-1)^{|S|-1} \Pr\left(\bigcap_{i \in S} A_i\right)$$

Boole-Bonferroni Inequality

• For events A_1, A_2, \ldots, A_n :

$$I\left(\bigcup_{i=1}^{n} A_{i}\right) = 1 - \prod_{i=1}^{n} (1 - I(A_{i})) = \sum_{k=1}^{n} (-1)^{k-1} \sum_{S \in \binom{\{1, \dots, n\}}{k}} I\left(\bigcap_{i \in S} A_{i}\right)$$

- Observation: $X_k \triangleq \binom{\sum_{i=1}^n I(A_i)}{k} = \sum_{S \in \binom{\{1,\ldots,n\}}{k}} \prod_{i \in S} I\left(A_i\right) = \sum_{S \in \binom{\{1,\ldots,n\}}{k}} I\left(\bigcap_{i \in S} A_i\right)$ and X_k as a binomial coefficient is unimodal in k
- For unimodal sequence X_k : $\sum_{k \le 2t} (-1)^{k-1} X_k \le \sum_{k=1}^n (-1)^{k-1} X_k \le \sum_{k \le 2t+1}^n (-1)^{k-1} X_k$
- Take expectation. By linearity of expectation \Longrightarrow Bonferroni inequality

Limitation of Linearity

• Infinite sum: X_1, X_2, \dots

$$\mathbb{E}\left[\sum_{i=1}^{\infty}X_{i}\right] = \sum_{i=1}^{\infty}\mathbb{E}[X_{i}] \text{ if the absolute convergence } \sum_{i=1}^{\infty}\mathbb{E}[|X_{i}|] < \infty \text{ holds}$$
 This is possible:
$$\mathbb{E}\left[\sum_{i=1}^{\infty}X_{i}\right] < \infty \text{ and } \sum_{i=1}^{\infty}\mathbb{E}[X_{i}] < \infty \text{ but } \mathbb{E}\left[\sum_{i=1}^{\infty}X_{i}\right] \neq \sum_{i=1}^{\infty}\mathbb{E}[X_{i}]$$

This is possible:
$$\mathbb{E}\left[\sum_{i=1}^{\infty}X_i\right]<\infty$$
 and $\sum_{i=1}^{\infty}\mathbb{E}[X_i]<\infty$ but $\mathbb{E}\left[\sum_{i=1}^{\infty}X_i\right]\neq\sum_{i=1}^{\infty}\mathbb{E}[X_i]$

Counterexample: the martingale betting strategy in a fair gambling game

• A random number of random variables: X_1, X_2, \ldots, X_N for random N

$$\mathbb{E}\left[\sum_{i=1}^{N} X_i\right] = \mathbb{E}[N]\mathbb{E}[X_1]?$$

Conditional Expectation (条件期望)

• The $\underline{\text{conditional expectation}}$ of a discrete random variable X given that event A occurs, is defined by

$$\mathbb{E}[X \mid A] = \sum_{x} x \Pr(X = x \mid A)$$

where the sum is taken over all x that $Pr(X = x \mid A) > 0$

- To be well-defined, assume:
 - Pr(A) > 0
 - the sum $\sum_{x} x \Pr(X = x \mid A)$ converges absolutely

Conditional Distribution (条件分布)

• The probability mass function $p_{X|A}: \mathbb{Z} \to [0,1]$ of a discrete random variable X given that event A occurs, is given by

$$p_{X|A}(x) = \Pr(X = x \mid A)$$

• $(X\mid A)$ can now be seen as a well-defined discrete random variable, whose distribution is described by the *pmf* $p_{X\mid A}$

•
$$\mathbb{E}[X \mid A] = \sum_{x} x \Pr(X = x \mid A)$$
 is just the expectation of $(X \mid A)$

• $\mathbb{E}[X \mid A]$ satisfies the properties of expectation, e.g. linearity of expectation

Law of Total Expectation

• Let X be a discrete random variable with finite $\mathbb{E}[X]$. Let events B_1, B_2, \ldots, B_n be a partition of Ω such that $\Pr(B_i) > 0$ for all i.

$$\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X \mid B_i] \Pr(B_i)$$

• The law of total probability is now a special case with X = I(A)

Proof:
$$\mathbb{E}[X] = \sum_{x} x \Pr(X = x) = \sum_{x} x \sum_{i=1}^{n} \Pr(X = x \mid B_i) \Pr(B_i)$$
 (law of total prob.)
$$= \sum_{x} \Pr(B_i) \sum_{x} x \Pr(X = x \mid B_i) = \sum_{x} \mathbb{E}[X \mid B_i] \Pr(B_i)$$

Analysis of QuickSort

- A comparison-based sorting algorithm
 - worst-case complexity: $O(n^2)$
 - average-case complexity: ? $t(n) = O(n \ln n)$ verified by induction
- Let $t(n) = \mathbb{E}[X_n]$, where X_n is the number of comparisons used in QSort(A) on a uniform random permutation A of n distinct numbers.
- Law of total expectation: Let B_i be the event that A[1] is the ith smallest in A.

$$t(n) = \mathbb{E}[X_n] = \sum_{i=1}^n \mathbb{E}[X_n \mid B_i] \Pr(B_i) = \frac{1}{n} \sum_{i=1}^n \mathbb{E}[n-1+X_{i-1}+X_{n-i}] = n-1 + \frac{2}{n} \sum_{i=0}^{n-1} t(i)$$
$$t(0) = t(1) = 0$$

 $\begin{aligned} \mathbf{QSort}(A) \colon & \text{ an array } A \text{ of } n \text{ distinct entries} \\ & \text{If } n > 1 \text{ then do:} \\ & \text{ choose a pivot } x = A[1]; \\ & \text{ partition } A \text{ into } L \text{ with all entries } < x, \\ & \text{ and } R \text{ with all entries } > x; \\ & \text{ QSort}(L) \text{ and QSort}(R); \end{aligned}$

Analysis of QuickSort

- Uniform random input:
 - A is a uniform random permutation of $a_1 < \cdots < a_n$
- $\begin{aligned} \textbf{QSort}(A) \textbf{:} & \text{ an array } A \text{ of } n \text{ distinct entries} \\ \textbf{If } n > 1 \text{ then do:} \\ & \text{choose a pivot } x = A[1]; \\ & \text{partition } A \text{ into } L \text{ with all entries} < x, \\ & \text{and } R \text{ with all entries} > x; \\ & \text{QSort}(L) \text{ and QSort}(R); \end{aligned}$
- Let $X_{ij} \in \{0,1\}$ indicate whether $\underline{a_i}$ and $\underline{a_j}$ are compared within QSort(A).
 - Observation I: each pair of a_i , a_j are compared at most once.

$$\Longrightarrow$$
 total number of comparisons is $X = \sum_{i < j} X_{ij}$

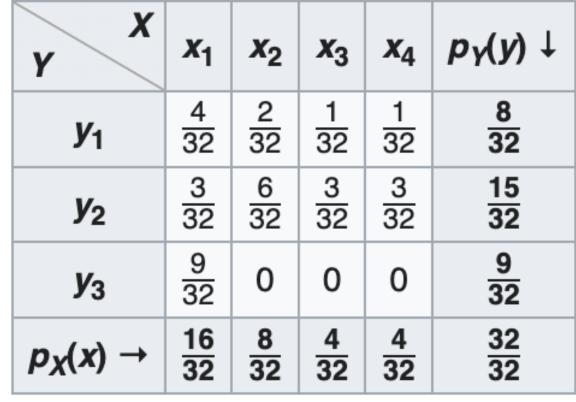
• **Observation II**: if a_i , a_j are still in the same array, then so are all a_k for i < k < j. a_i , a_j are compared iff one of them is chosen as pivot when they are in the same array.

$$\Longrightarrow \mathbb{E}[X_{ij}] = \Pr(a_i, a_j \text{ are compared}) = \Pr(\{a_i, a_j\} \mid \{a_i, a_{i+1}, ..., a_j\}) = \frac{2}{j-i+1}$$

• Linearity of expectation:

$$\mathbb{E}[X] = \sum_{i < j} \mathbb{E}[X_{ij}] = \sum_{i < j} \frac{2}{j - i + 1} = \sum_{i = 1}^{n} \sum_{k = 2}^{n - i + 1} \frac{2}{k} \le 2 \sum_{i = 1}^{n} \sum_{k = 1}^{n} \frac{1}{k} = 2nH(n) = \frac{2n \ln n + O(n)}{n}$$

Conditional Expectation (条件期望)



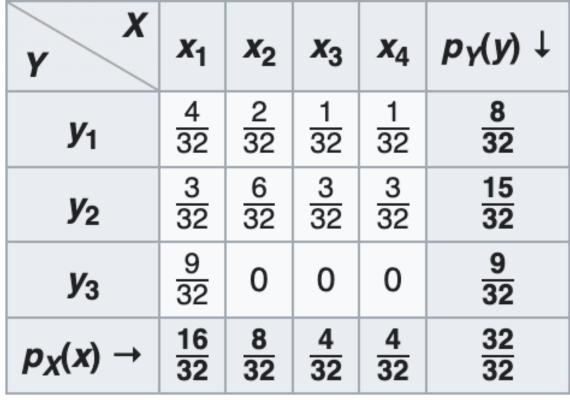
• For random variables X, Y, the conditional expectation:

$$\mathbb{E}[X \mid Y]$$

is a random variable f(Y) whose value is $f(y) = \mathbb{E}[X \mid Y = y]$ when Y = y

- Naturally generalized to $\mathbb{E}[X \mid Y, Z]$ for random variables X, Y, Z
- Examples:
 - $\mathbb{E}[X \mid Y]$: average height of the country of a random person on earth
 - $\mathbb{E}[X \mid Y, Z]$: average height of the gender of the country of a random person

Conditional Expectation (条件期望)



• For random variables X, Y, the conditional expectation:

$$\mathbb{E}[X \mid Y]$$

is a random variable f(Y) whose value is $f(y) = \mathbb{E}[X \mid Y = y]$ when Y = y

• Law of Total Expectation: $\mathbb{E}[\mathbb{E}[X \mid Y]] = \mathbb{E}[X]$

• Proof:
$$\mathbb{E}[\mathbb{E}[X \mid Y]] = \sum_{y} \mathbb{E}[X \mid Y = y] \Pr(Y = y)$$
 (by definition)
$$= \mathbb{E}[X]$$
 (law of total expectation)

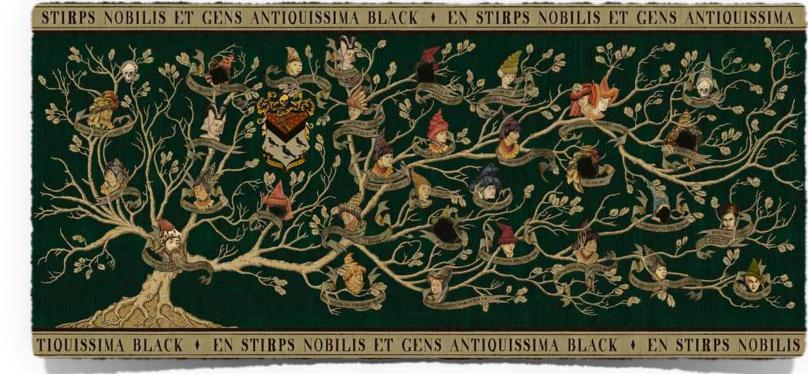
Random Family Tree

- $X_0, X_1, X_2, \dots \text{ is defined by } X_0 = 1 \text{ and } X_{n+1} = \sum_{j=1}^{\Lambda_n} \xi_j^{(n)}$ where $\xi_j^{(n)} \in \mathbb{Z}_{\geq 0}$ are *i.i.d.* random variables with mean value $\mu = \mathbb{E}[\xi_i^{(n)}]$
- $X_0=1$ and $\mathbb{E}[X_1]=\mathbb{E}[\xi_1^{(0)}]=\mu$

$$\mathbb{E}[X_n \mid X_{n-1} = k] = \mathbb{E}\left[\sum_{j=1}^k \xi_j^{(n-1)} \mid X_{n-1} = k\right] = k\mu \implies \mathbb{E}[X_n \mid X_{n-1}] = X_{n-1}\mu$$

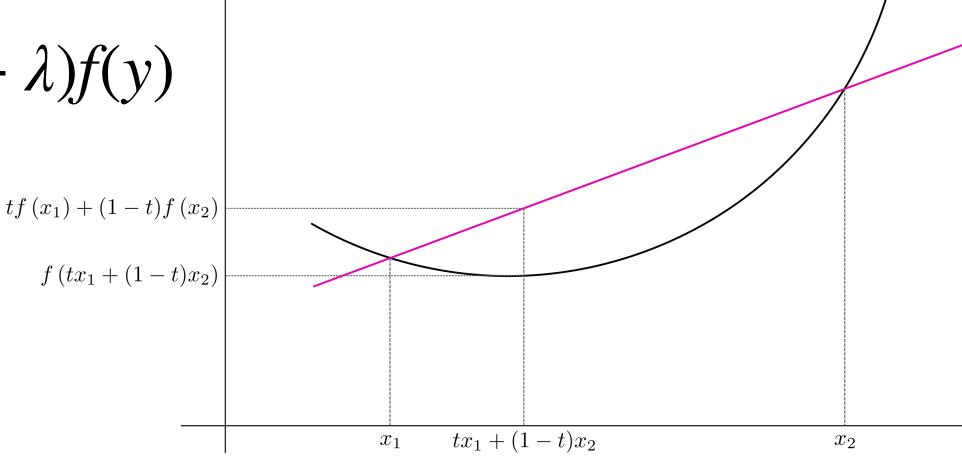
• $\mathbb{E}[X_n] = \mathbb{E}[\mathbb{E}[X_n \mid X_{n-1}]] = \mathbb{E}[X_{n-1}\mu] = \mathbb{E}[X_{n-1}] \cdot \mu = \mu^n$

$$\implies \mathbb{E}\left[\sum_{n\geq 0} X_n\right] = \sum_{n\geq 0} \mathbb{E}[X_n] = \sum_{n\geq 0} \mu^n = \begin{cases} \frac{1}{1-\mu} & \text{if } 0 < \mu < 1\\ \infty & \text{if } \mu \geq 1 \end{cases}$$



Jensen's Inequality

- For general (non-linear) function f(X) of random variable X we don't have $\mathbb{E}[f(X)] = f(\mathbb{E}[X])$
- But if the convexity of f is known, then the Jensen's inequality applies:
 - f is convex $\iff f(\lambda x + (1 \lambda)y) \le \lambda f(x) + (1 \lambda)f(y)$ $\implies \mathbb{E}[f(X)] \ge f(\mathbb{E}[X])$
 - f is concave $\iff f(\lambda x + (1 \lambda)y) \ge \lambda f(x) + (1 \lambda)f(y)$ $\implies \mathbb{E}[f(X)] \le f(\mathbb{E}[X])$



Monotonicity of Expectation

- For random variables X and Y, for $c \in \mathbb{R}$: (Y stochastically dominates X)
 - If $X \leq Y$ a.s. (almost surely, i.e. $\Pr(X \leq Y) = 1$), then $\mathbb{E}[X] \leq \mathbb{E}[Y]$
 - If $X \le c$ ($X \ge c$) a.s., then $\mathbb{E}[X] \le c$ ($\mathbb{E}[X] \ge c$)
 - $\mathbb{E}[|X|] \ge |\mathbb{E}[X]| \ge 0$

Proof:
$$\mathbb{E}[X] = \sum_{x} x \Pr(X = x) = \sum_{x} x \sum_{y} \Pr((X, Y) = (x, y))$$

 $= \sum_{x} x \sum_{y \ge x} \Pr((X, Y) = (x, y)) = \sum_{y} \sum_{x \le y} x \Pr((X, Y) = (x, y))$
 $\leq \sum_{y} \sum_{x \le y} y \Pr((X, Y) = (x, y)) \leq \sum_{y} y \Pr(Y = y) = \mathbb{E}[Y]$

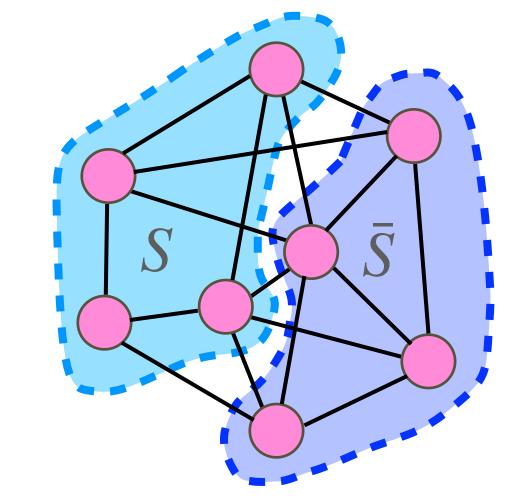
Averaging Principle

- $\Pr(X \ge \mathbb{E}[X]) > 0 \iff \inf \Pr(X < c) = 1 \text{ then } \mathbb{E}[X] < c$
- $Pr(X \le \mathbb{E}[X]) > 0 \iff if Pr(X > c) = 1 \text{ then } \mathbb{E}[X] > c$
- By the Probabilistic Method:

$$\exists \omega \in \Omega \text{ such that } X(\omega) \geq \mathbb{E}[X]$$

$$\exists \omega \in \Omega \text{ such that } X(\omega) \leq \mathbb{E}[X]$$

Maximum Cut



- For an undirected graph G(V, E):
 - Find an $S \subseteq V$ with largest $\underline{\operatorname{cut}} \, \delta S \triangleq \{\{u,v\} \in E \mid u \in S \land v \notin S\}$
- NP-hard problem (very unlikely to have efficient algorithms)

The average cut generated by pairwise independent bits is $\geq |E|/2$.

Proposition: There always exists a large enough cut of size $|\delta S| \ge |E|/2$.

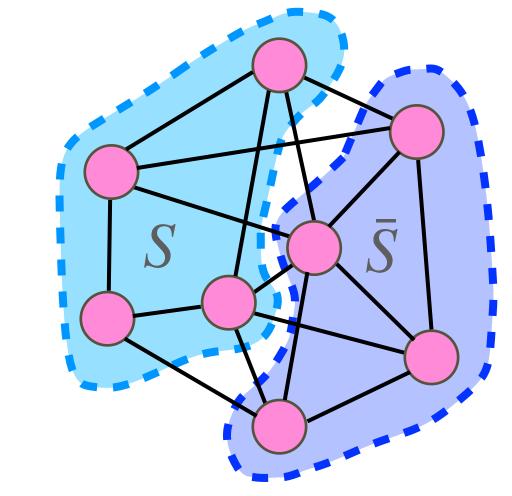
Proof: Let $Y_v \in \{0,1\}$, for $v \in V$, be mutually independent uniform random bits.

Each $v \in V$ joins S iff $Y_v = 1$. Then it holds that $|\delta S| = \sum_{\{u,v\} \in E} I(Y_u \neq Y_v)$.

By linearity of expectation: $\mathbb{E}[|\delta S|] = \sum_{\{u,v\}\in E} \Pr(Y_u \neq Y_v) = |E|/2$.

Due to the probabilistic method: There exists such $S \subseteq V$ with $|\delta S| \ge |E|/2$.

Maximum Cut



- For an undirected graph G(V, E):
 - Find an $S \subseteq V$ with largest $\underline{\operatorname{cut}} \, \delta S \triangleq \{\{u,v\} \in E \mid u \in S \land v \notin S\}$
- NP-hard problem (very unlikely to have efficient algorithms)

Guarantees to return an $S \subseteq V$ with $|\delta S| \ge |E|/2$.