Randomized Algorithms

南京大学

尹一通

Random Walk

Stochastic Process

$$\{X_t \mid t \in T\} \qquad X_t \in \Omega$$
 time t state space Ω state $x \in \Omega$

discrete time:

T is countable
$$T = \{0, 1, 2, ...\}$$

discrete space:

 Ω is finite or countably infinite

$$X_0, X_1, X_2, \dots$$

Markov Property

- dependency structure of X_0, X_1, X_2, \dots
- Markov property: (memoryless)

 X_{t+1} depends only on X_t

$$\forall t = 0, 1, 2, \dots, \forall x_0, x_1, \dots, x_{t-1}, x, y \in \Omega$$
$$\Pr[X_{t+1} = y \mid X_0 = x_0, \dots, X_{t-1} = x_{t-1}, X_t = x]$$
$$= \Pr[X_{t+1} = y \mid X_t = x]$$

Markov chain: discrete time discrete space stochastic process with Markov property.

Transition Matrix

Markov chain: X_0, X_1, X_2, \dots

$$\Pr[X_{t+1} = y \mid X_0 = x_0, \dots, X_{t-1} = x_{t-1}, X_t = x]$$

=
$$\Pr[X_{t+1} = y \mid X_t = x] = P_{xy}^{(t)} = P_{xy}$$

(time-homogenous)

$$\begin{array}{cccc}
P & y \in \Omega \\
\vdots & \vdots \\
x \in \Omega & P_{xy}
\end{array}$$

stochastic matrix P1 = 1

chain:
$$X_0$$
, X_1 , X_2 , ...

distribution:

$$\pi^{(0)}$$
 $\pi^{(1)}$ $\pi^{(2)}$ $\in [0, 1]^{\Omega}$ $\sum_{x \in \Omega} \pi_x = 1$
$$\pi_x^{(t)} = \Pr[X_t = x]$$

$$\pi^{(t+1)} = \pi^{(t)} P$$

$$\pi_y^{(t+1)} = \Pr[X_{t+1} = y]$$

$$= \sum_{x \in \Omega} \Pr[X_t = x] \Pr[X_{t+1} = y \mid X_t = x]$$

$$= \sum_{x \in \Omega} \pi_x^{(t)} P_{xy}$$

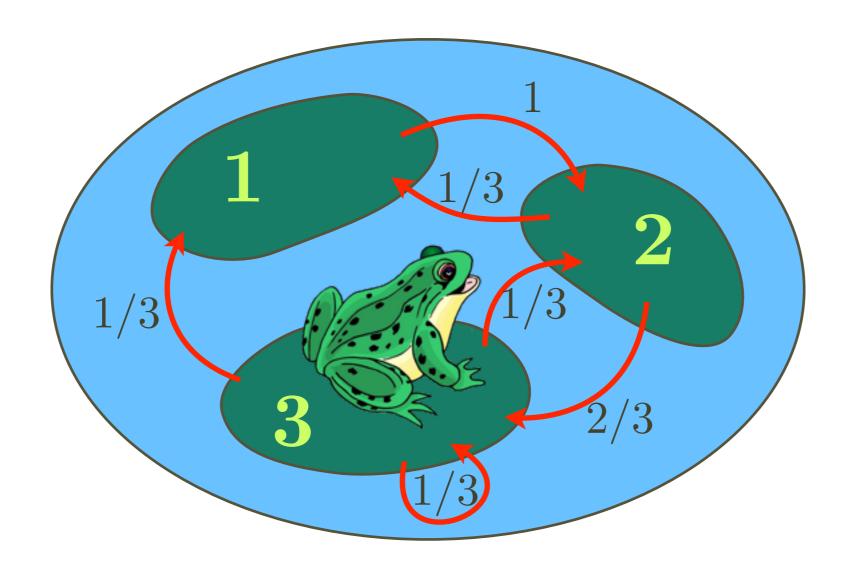
$$= (\pi^{(t)} P)_y$$

$$\pi^{(0)} \xrightarrow{P} \pi^{(1)} \xrightarrow{P} \cdots \pi^{(t)} \xrightarrow{P} \pi^{(t+1)} \xrightarrow{P} \cdots$$

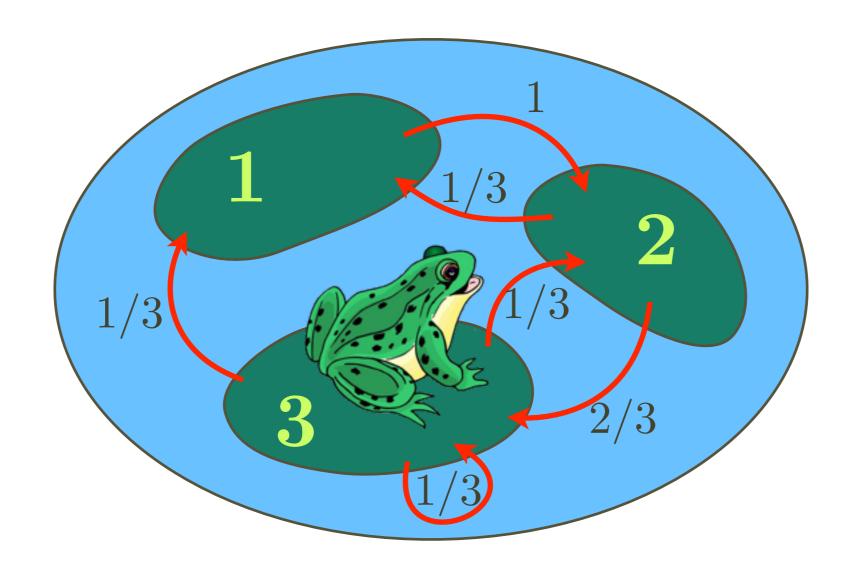
- initial distribution: $\pi^{(0)}$
- transition matrix: P

$$\pi^{(t)} = \pi^{(0)} P^t$$

Markov chain: $\mathfrak{M} = (\Omega, P)$



$$P = \begin{bmatrix} 0 & 1 & 0 \\ 1/3 & 0 & 2/3 \\ 1/3 & 1/3 & 1/3 \end{bmatrix}$$

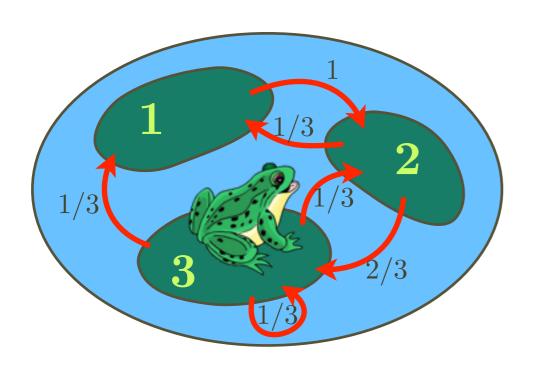


$$\pi^{(0)} = (\frac{1}{4}, \frac{1}{2}, \frac{1}{4}) \qquad P = \begin{bmatrix} 0 & 1 & 0 \\ 1/3 & 0 & 2/3 \\ 1/3 & 1/3 & 1/3 \end{bmatrix}$$

$$\pi^{(1)} = \frac{1}{4}(0,1,0) + \frac{1}{2}(\frac{1}{3},0,\frac{2}{3}) + \frac{1}{4}(\frac{1}{3},\frac{1}{3},\frac{1}{3})$$

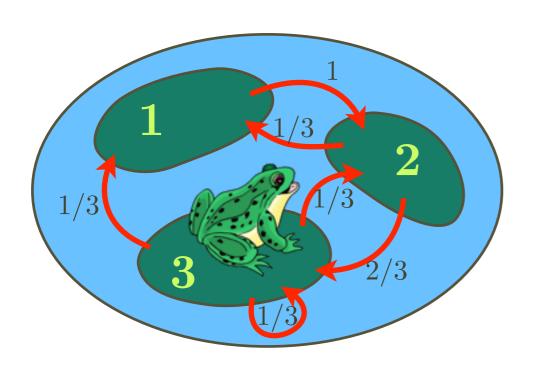
Random Walks

- fair ±1 random walk: flipping a fair coin, the state is the difference between heads and tails;
- random walk on a graph;
- card shuffling: random walk in a state space of permutations;
- random walk on q-coloring of a graph;



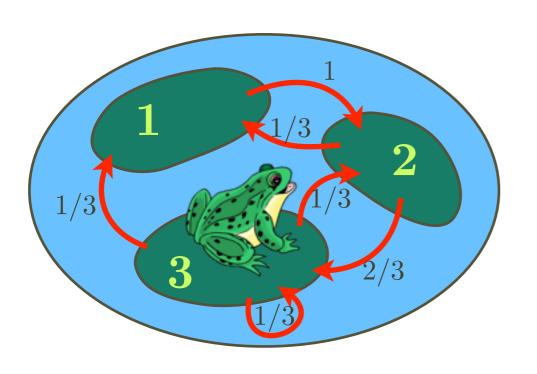
$$P = \begin{bmatrix} 0 & 1 & 0 \\ 1/3 & 0 & 2/3 \\ 1/3 & 1/3 & 1/3 \end{bmatrix}$$

$$P^2 \approx egin{bmatrix} 0.3333 & 0 & 0.6667 \\ 0.3333 & 0.5556 & 0.2222 \\ 0.2778 & 0.6111 & 0.3333 \end{bmatrix}$$



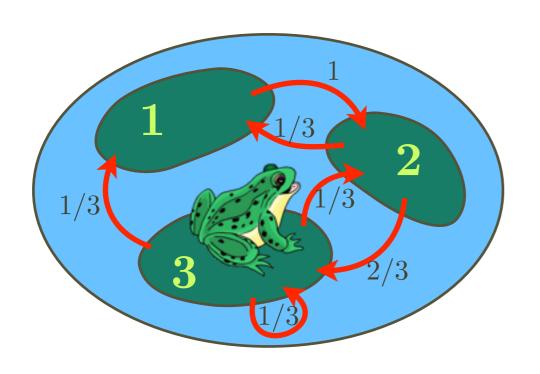
$$P = \begin{bmatrix} 0 & 1 & 0 \\ 1/3 & 0 & 2/3 \\ 1/3 & 1/3 & 1/3 \end{bmatrix}$$

$$P^5 \approx egin{bmatrix} 0.2469 & 0.4074 & 0.3457 \\ 0.2510 & 0.3621 & 0.3868 \\ 0.2510 & 0.3663 & 0.3827 \end{bmatrix}$$



$$P = \begin{bmatrix} 0 & 1 & 0 \\ 1/3 & 0 & 2/3 \\ 1/3 & 1/3 & 1/3 \end{bmatrix}$$

$$P^{10} \approx egin{bmatrix} 0.2500 & 0.3747 & 0.3752 \\ 0.2500 & 0.3751 & 0.3749 \\ 0.2500 & 0.3751 & 0.3749 \end{bmatrix}$$



$$P = \begin{bmatrix} 0 & 1 & 0 \\ 1/3 & 0 & 2/3 \\ 1/3 & 1/3 & 1/3 \end{bmatrix}$$

$$P^{20} \approx egin{bmatrix} 0.2500 & 0.3750 & 0.3750 \\ 0.2500 & 0.3750 & 0.3750 \\ 0.2500 & 0.3750 & 0.3750 \end{bmatrix}$$

 \forall distribution π , $\pi P^{20} \approx (\frac{1}{4}, \frac{3}{8}, \frac{3}{8})$

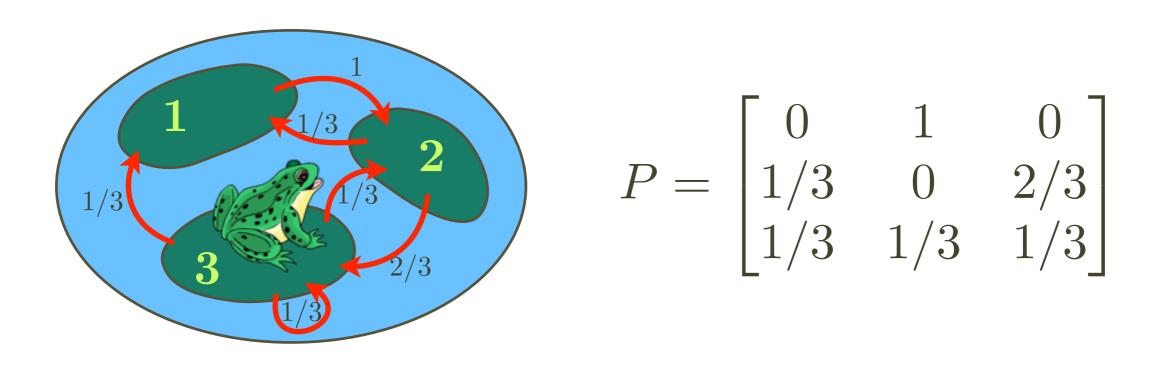
Stationary Distribution

Markov chain $\mathfrak{M} = (\Omega, P)$

• stationary distribution π :

$$\pi P = \pi$$
 (fixed point)

- Perron-Frobenius Theorem:
 - stochastic matrix P: P1 = 1
 - 1 is also a left eigenvalue of P (eigenvalue of P^T)
 - the left eigenvector $\pi P = \pi$ is nonnegative
- stationary distribution always exists



$$P^{20} \approx egin{bmatrix} 0.2500 & 0.3750 & 0.3750 \\ 0.2500 & 0.3750 & 0.3750 \\ 0.2500 & 0.3750 & 0.3750 \end{bmatrix}$$

ergodic: convergent to stationary distribution

reductible =
$$\begin{bmatrix} 1/2 & 1/2 & 0 & 0 \\ 1/3 & 2/3 & 0 & 0 \\ 0 & 0 & 3/4 & 1/4 \\ 0 & 0 & 1/4 & 3/4 \end{bmatrix}$$

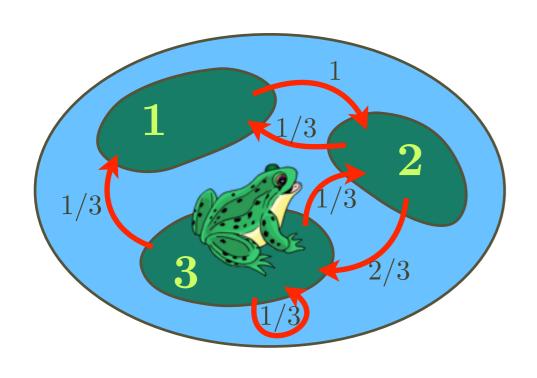
$$P^{20} \approx \begin{bmatrix} 0.4 & 0.6 & 0 & 0 \\ 0.4 & 0.6 & 0 & 0 \\ 0 & 0 & 0.5 & 0.5 \\ 0 & 0 & 0.5 & 0.5 \end{bmatrix}$$

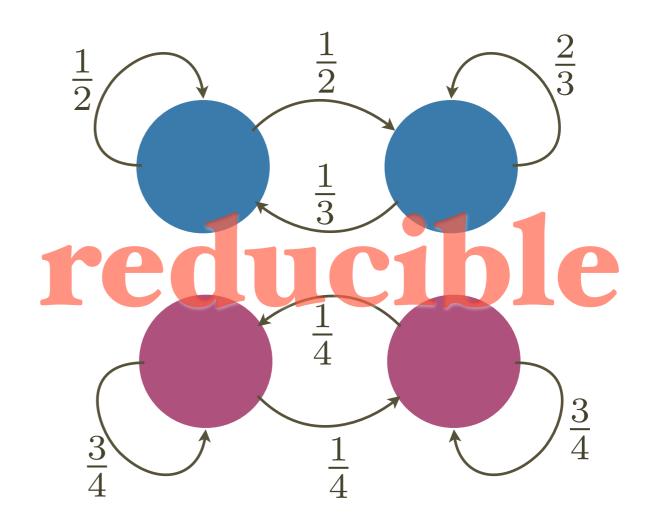
$$P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

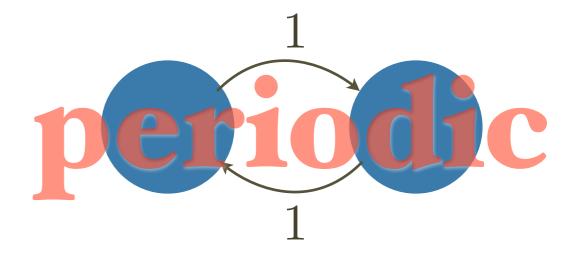
$$P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$P^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$P^{2k} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad P^{2k+1} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$







If a finite Markov chain $\mathfrak{M}=(\Omega,P)$ is irreducible and aperiodic, then \forall initial distribution $\pi^{(0)}$

(ergodic) $\lim_{t \to \infty} \pi^{(0)} P^t = \pi$

where π is a unique stationary distribution satisfying

$$\pi P = \pi$$

Irreducibility

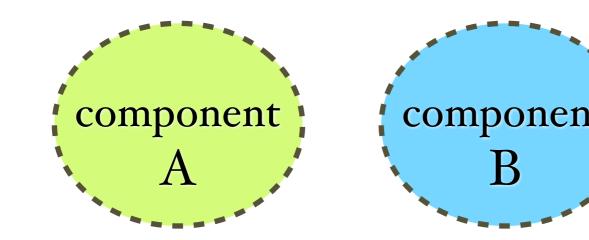
• y is accessible from x:

$$\exists t, \ P^t(x,y) > 0$$

- x communicates with y:
 - x is accessible from y
 - y is accessible from x
- MC is irreducible: all pairs of states communicate

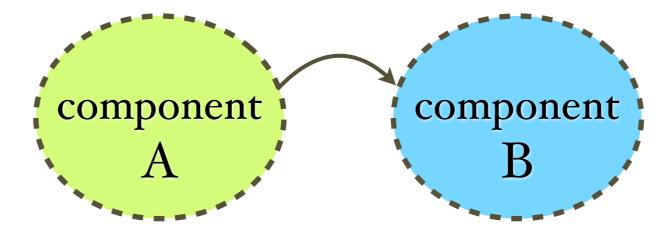


Reducible Chains



$$P = \begin{bmatrix} P_A & 0 \\ 0 & P_B \end{bmatrix}$$

stationary distributions: $\pi = \lambda \pi_A + (1 - \lambda)\pi_B$



stationary distribution: $\pi = (\mathbf{0}, \pi_B)$

Aperiodicity

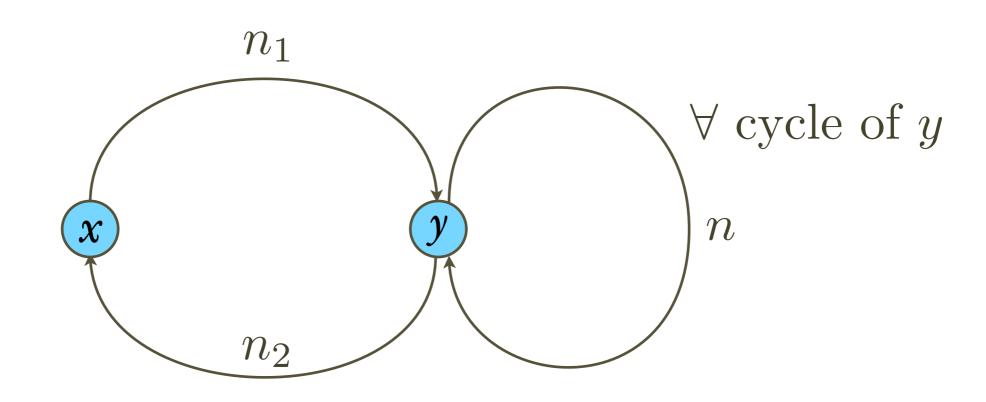
period of state x:

$$d_x = \gcd\{t \mid P^t(x, x) > 0\}$$

- aperiodic chain: all states have period 1
- period: the gcd of lengths of cycles

$$d_x = 3$$

Lemma (period is a class property) x and y communicate $\Rightarrow d_x = d_y$



$$\frac{d_x \mid (n_1 + n_2)}{d_x \mid (n_1 + n_2 + n)} \quad \} \Rightarrow d_x \mid n \quad \Rightarrow d_x \leq d_y$$

If a finite Markov chain $\mathfrak{M}=(\Omega,P)$ is irreducible and aperiodic, then \forall initial distribution $\pi^{(0)}$

$$\lim_{t \to \infty} \pi^{(0)} P^t = \pi$$

where π is a unique stationary distribution satisfying

$$\pi P = \pi$$

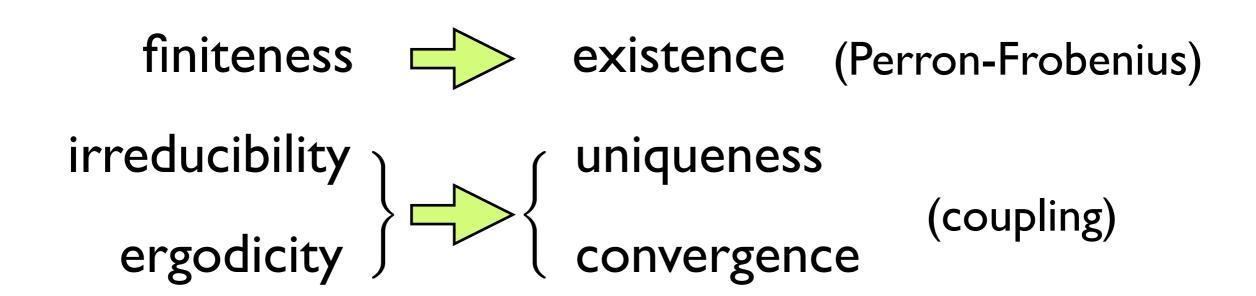
finiteness existence | Perron-Frobenius | rreducibility | uniqueness | convergence |

If a finite Markov chain $\mathfrak{M}=(\Omega,P)$ is irreducible and aperiodic, then \forall initial distribution $\pi^{(0)}$

$$\lim_{t \to \infty} \pi^{(0)} P^t = \pi$$

where π is a unique stationary distribution satisfying

$$\pi P = \pi$$

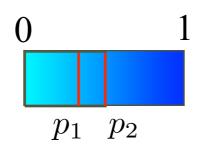


Theorem

If $0 \le p_1 \le p_2 \le 1$, then

 $\Pr[G(n, p_1) \text{ is connected }] \leq \Pr[G(n, p_2) \text{ is connected }].$

x_{uv} uniform over [0,1].



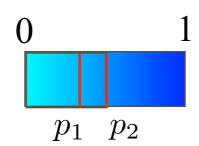
$$uv \in G(n, p_1) \Leftrightarrow x_{uv} \le p_1 \implies x_{uv} \le p_2 \Leftrightarrow uv \in G(n, p_2)$$

 $G(n, p_1)$ is connected \Rightarrow $G(n, p_2)$ is connected

Coupling

"Compare two unrelated variables by forcing them to be related in some way."

 x_{uv} uniform over [0,1].



$$uv \in G(n, p_1) \Leftrightarrow x_{uv} \le p_1 \implies x_{uv} \le p_2 \Leftrightarrow uv \in G(n, p_2)$$

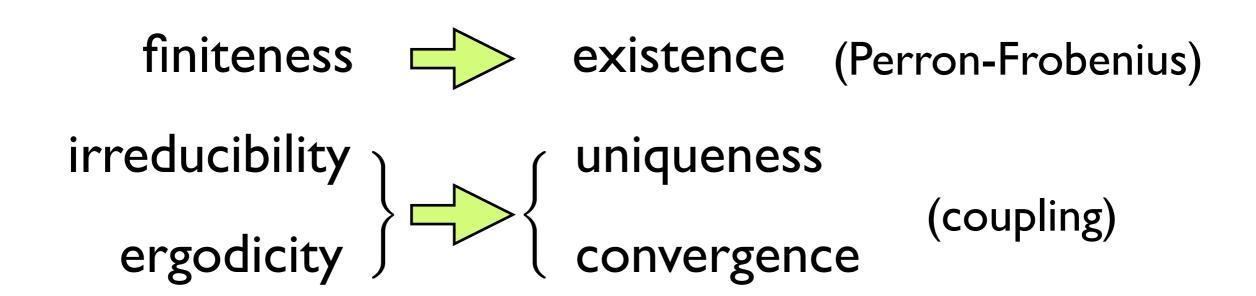
 $G(n, p_1)$ is connected \Rightarrow $G(n, p_2)$ is connected

If a finite Markov chain $\mathfrak{M}=(\Omega,P)$ is irreducible and aperiodic, then \forall initial distribution $\pi^{(0)}$

$$\lim_{t \to \infty} \pi^{(0)} P^t = \pi$$

where π is a unique stationary distribution satisfying

$$\pi P = \pi$$



Coupling of Markov Chains

Markov chain $\mathfrak{M} = (\Omega, P)$

initial
$$\pi^{(0)}: X_0, X_1, X_2, \dots$$

stationary
$$\pi: X'_0, X'_1, X'_2, \dots$$

faithful running of MC

Goal:
$$\lim_{t\to\infty} \Pr[X''_t = X'_t] = 1$$

Coupling of Markov Chains

Markov chain $\mathfrak{M} = (\Omega, P)$

initial
$$\pi^{(0)}: X_0, X_1, X_2, \dots$$

stationary
$$\pi: X'_0, X'_1, X'_2, \dots$$

faithful running of MC

Goal: conditioning on
$$X_0 = x, X_0' = y$$

 $\exists n, \Pr[X_n = X_n' = y] > 0$

Markov chain $\mathfrak{M} = (\Omega, P)$

initial
$$\pi^{(0)}: X_0 \longrightarrow X_1 \longrightarrow \cdots \longrightarrow X_n$$

$$\downarrow \downarrow \qquad \downarrow \downarrow \qquad \qquad \parallel \qquad \qquad \parallel$$
stationary $\pi: X_0' \longrightarrow X_1' \longrightarrow \cdots \longrightarrow X_n' \longrightarrow X_{n+1}' \longrightarrow \cdots \longrightarrow \pi$

conditioning on $X_0 = x, X'_0 = y$

irreducible:
$$\exists n_1, P^{n_1}(x,y) > 0$$

aperiodic:
$$\exists n_2, \begin{cases} P^{n_2}(y,y) > 0 \\ P^{n_1+n_2}(y,y) > 0 \end{cases}$$

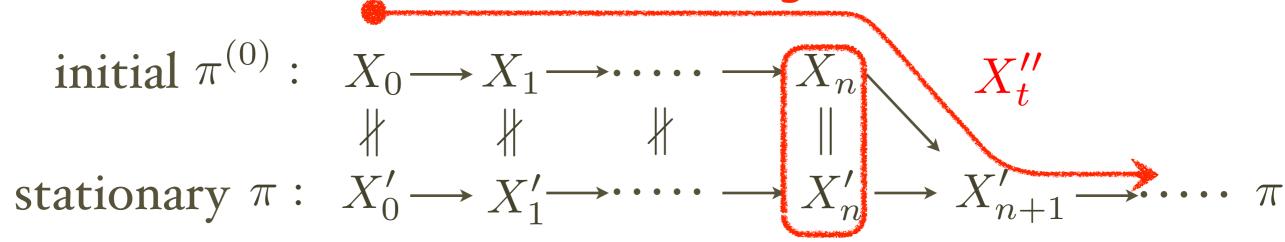
$$n = n_1 + n_2$$

$$\Pr[X_n = X'_n = y] \ge \Pr[X_n = y] \Pr[X'_n = y]$$

$$\ge P^{n_1}(x, y) P^{n_2}(y, y) P^n(y, y) > 0$$

Markov chain $\mathfrak{M} = (\Omega, P)$

faithful running of MC



conditioning on
$$X_0 = x, X'_0 = y$$

$$\exists n, \quad \Pr[X_n = X'_n] \ge \epsilon > 0$$

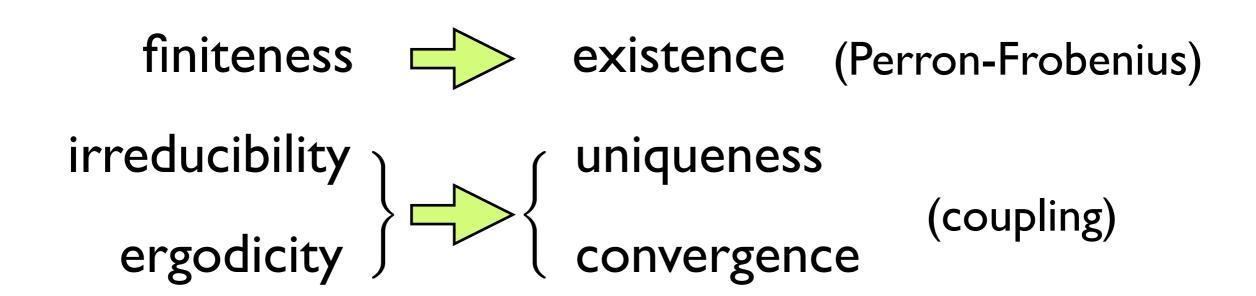
$$\lim_{t \to \infty} \Pr[X_t'' = X_t'] = 1$$

If a finite Markov chain $\mathfrak{M}=(\Omega,P)$ is irreducible and aperiodic, then \forall initial distribution $\pi^{(0)}$

$$\lim_{t \to \infty} \pi^{(0)} P^t = \pi$$

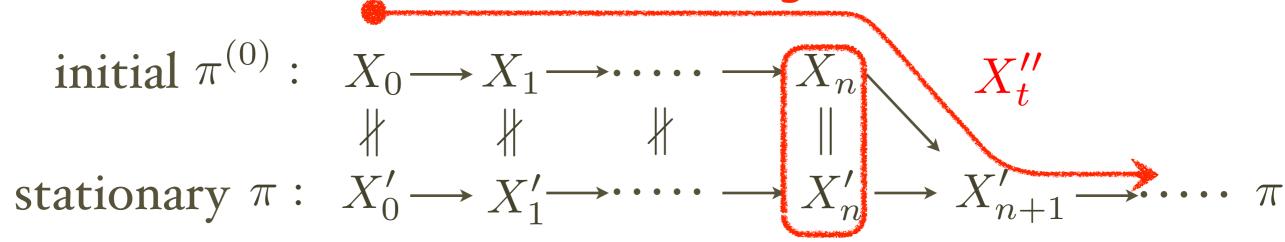
where π is a unique stationary distribution satisfying

$$\pi P = \pi$$



Markov chain $\mathfrak{M} = (\Omega, P)$

faithful running of MC



conditioning on
$$X_0 = x, X'_0 = y$$

$$\exists n, \quad \Pr[X_n = X'_n] \ge \epsilon > 0$$

$$\lim_{t \to \infty} \Pr[X_t'' = X_t'] = 1$$

If a finite Markov chain $\mathfrak{M}=(\Omega,P)$ is irreducible and aperiodic, then \forall initial distribution $\pi^{(0)}$

(ergodic)
$$\lim_{t \to \infty} \pi^{(0)} P^t = \pi$$

where π is a unique stationary distribution satisfying

$$\pi P = \pi$$

If a Markov chain $\mathfrak{M}=(\Omega,P)$ is irreducible and ergodic, then \forall initial distribution $\pi^{(0)}$

$$\lim_{t \to \infty} \pi^{(0)} P^t = \pi$$

where π is a unique stationary distribution satisfying

$$\pi P = \pi$$

finite: ergodic = aperiodic

infinite: ergodic = aperiodic + non-null persistent