Randomized Algorithms

南京大学

尹一通

Mixing Time

 $\mbox{Markov chain: } \mathfrak{M} = (\Omega, P)$ stationary distribution: π

 $p_x^{(t)}$: distribution at time t when initial state is x

$$\Delta_x(t) = \|p_x^{(t)} - \pi\|_{TV} \qquad \Delta(t) = \max_{x \in \Omega} \Delta_x(t)$$
$$\tau_x(\epsilon) = \min\{t \mid \Delta_x(t) \le \epsilon\} \qquad \tau(\epsilon) = \max_{x \in \Omega} \tau_x(\epsilon)$$

• mixing time: $\tau_{\rm mix} = \tau(1/2{\rm e})$

rapid mixing: $\tau_{\text{mix}} = (\log |\Omega|)^{O(1)}$

$$\Delta(k \cdot au_{ ext{mix}}) \leq \mathrm{e}^{-k} \quad ext{and} \quad au(\epsilon) \leq au_{ ext{mix}} \cdot \left\lceil \ln \frac{1}{\epsilon}
ight
ceil$$

Coupling of Markov Chains

a coupling of $\mathfrak{M}=(\Omega,P)$ is a Markov chain (X_t,Y_t) of state space $\Omega\times\Omega$ such that:

both are faithful copies of the chain

$$\Pr[X_{t+1} = y \mid X_t = x] = \Pr[Y_{t+1} = y \mid Y_t = x] = P(x, y)$$

• once collides, always makes identical moves

$$X_t = Y_t \quad \Longrightarrow \quad X_{t+1} = Y_{t+1}$$

Markov Chain Coupling Lemma:

 (X_t, Y_t) is a coupling of $\mathfrak{M} = (\Omega, P)$

$$\Delta(t) \le \max_{x,y \in \Omega} \Pr[X_t \ne Y_t \mid X_0 = x, Y_0 = y]$$

$$\max_{x,y\in\Omega} \Pr[X_t \neq Y_t \mid X_0 = x, Y_0 = y] \le \epsilon \quad \qquad \tau(\epsilon) \le t$$

Graph Coloring

 $G(V,\!E)$ proper $q\text{-coloring}\quad f:V\to [q]$ $\forall uv\in E,\quad f(u)\neq f(v)$ max degree Δ

decision: Is Gq-colorable?

- $q < \Delta$: NP-hard;
- $q=\Delta$: q-colorable unless G has $(\Delta+1)$ -clique or G is an odd cycle; (Brooks Theorem)
- $q \ge \Delta + 1$: always q-colorable and the q-coloring can be found by a greedy algorithm;

sampling: sample a uniform random proper q-coloring counting: How many proper q-colorings for G?

G(V,E) of max degree Δ

proper q-coloring with $q \ge \alpha \Delta + \beta$

sampling: sample a uniform random proper q-coloring Markov Chain (Glauber dynamics):

at each step:

- randomly pick a vertex $v \in V$ and a color $c \in [q]$;
- change the color of v to c if it is proper;

 $q \ge \Delta + 2$ irreducible;

aperiodic;

uniform stationary distribution;

G(V,E) of max degree Δ

proper q-coloring with $q \ge \alpha \Delta + \beta$

sampling: sample a uniform random proper q-coloring Markov Chain (Glauber dynamics):

at each step:

- randomly pick a vertex $v \in V$ and a color $c \in [q]$;
- change the color of v to c if it is proper;

Conjecture

 $q \ge \Delta + 2$ Glauber dynamics is rapid mixing

at each step:

- randomly pick a vertex $v \in V$ and a color $c \in [q]$;
- change the color of v to c if it is proper;

Theorem (Jerrum 1995)
$$q \ge 4\Delta + 1 \implies \text{rapid mixing}$$

coupling rule:
$$(X_t, Y_t) \in \Omega \times \Omega$$

at each step, choose the same $v \in V$ and $c \in [q]$

X_{t+1}	Y_{t+1}
changed	changed
unchanged	changed
changed	unchanged
unchanged	unchanged

$$d_t = d(X_t, Y_t)$$
: Hamming distance

- good move: distance decreases by 1
- bad move: distance increases by 1
- neutral move: distance unchanged

at each step, choose the same $v \in V$ and $c \in [q]$

X_{t+1}	Y_{t+1}
changed	changed
unchanged	changed
changed	unchanged
unchanged	unchanged

$$d_t = d(X_t, Y_t)$$
: Hamming distance

- good move: distance decreases by 1
- bad move: distance increases by 1
- neutral move: distance unchanged

of good moves: $\geq d_t(q-2\Delta)$

v is a disagreeing vertex, c is not in both neighborhoods

of bad moves: $\leq 2d_t\Delta$

v is a neighbor of disagreeing vertex, c is one of the two colors

at each step, choose the same $v \in V$ and $c \in [q]$

$$d_t = d(X_t, Y_t)$$
: Hamming distance

- good move: distance decreases by 1
- bad move: distance increases by 1
- neutral move: distance unchanged

of good moves:
$$\geq d_t(q-2\Delta)$$

of bad moves: $< 2d_t \Delta$

$$\mathbf{E}[d_{t+1} \mid d_t] \le d_t - \frac{d_t(q - 2\Delta)}{qn} + \frac{2d_t\Delta}{qn} = d_t \left(1 - \frac{q - 4\Delta}{qn}\right)$$

$$\mathbf{E}[d_{t+1} \mid d_0] \le \left(1 - \frac{q - 4\Delta}{qn}\right) \mathbf{E}[d_t \mid d_0]$$

$$\leq d_0 \left(1 - \frac{q - 4\Delta}{qn}\right)^{(t+1)} \leq n \left(1 - \frac{1}{qn}\right)^{t+1}$$

when
$$q \ge 4\Delta + 1$$

at each step, choose the same $v \in V$ and $c \in [q]$

$$q \ge 4\Delta + 1 \quad \Longrightarrow \quad \mathbf{E}[d_t \mid d_0] \le n\left(1 - \frac{1}{qn}\right)^t$$

Markov Chain coupling lemma:

 $\tau(\epsilon) = qn(\ln n + \ln \frac{1}{\epsilon})$

$$\begin{split} \Delta(t) &\leq \max_{x,y \in \Omega} \Pr[X_t \neq Y_t \mid X_0 = x, Y_0 = y] \\ &\leq \max_{x,y \in \Omega} \Pr[d_t \geq 1 \mid X_0 = x, Y_0 = y] \\ &\leq \max_{x,y \in \Omega} \mathbf{E}[d_t \mid d(x,y)] \quad \text{(Markov inequality)} \\ &\leq n \left(1 - \frac{1}{qn}\right)^t = \epsilon \end{split}$$

 $\tau_{\text{mix}} = O(qn \log n)$

Mixing

- Why should a Markov chain be rapidly mixing?
- Why should a random walk on a regular graph be rapidly mixing?

initial distribution q the decreasing rate of $\|qP^t-\pi\|_1$

Spectral Decomposition

Spectral Theorem

 $P: symmetric n \times n matrix$

eigenvalues : $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$

the corresponding eigenvectors

 $v_1, v_2, ..., v_n$ are orthonormal

$$\forall q \in \mathbb{R}^n$$
 $q = \sum_{i=1}^n c_i v_i$ where $c_i = q^T v_i$

$$qP = \sum_{i=1}^{n} c_i v_i P = \sum_{i=1}^{n} c_i \lambda_i v_i$$

Mixing of Symmetric Chain

$$\mathfrak{M} = ([n], P)$$
 P is symmetric stationary $\pi = \left(\frac{1}{n}, \dots, \frac{1}{n}\right)$

eigenvalues : $1 = \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$ (Perron-Frobenius) orthonormal eigenbasis : $v_1, v_2, ..., v_n$

$$q \in [0,1]^{n} \text{ is a distribution } ||q||_{1} = 1$$

$$\lambda_{1} = 1$$

$$1P = 1$$

$$v_{1} = \frac{1}{||\mathbf{1}||_{2}} = \left(\frac{1}{\sqrt{n}}, \dots, \frac{1}{\sqrt{n}}\right)$$

$$c_{1}v_{1} = \left(\frac{1}{n}, \dots, \frac{1}{n}\right) = \pi$$

$$q = \sum_{i=1}^n c_i v_i = \pi + \sum_{i=2}^n c_i v_i$$
 where $c_i = q^T v_i$

$$qP^{t} = \pi P^{t} + \sum_{i=2}^{n} c_{i} v_{i} P^{t} = \pi + \sum_{i=2}^{n} c_{i} \lambda_{i}^{t} v_{i}$$

 $\mathfrak{M} = ([n], P)$ P is symmetric stationary $\pi = \left(\frac{1}{n}, \dots, \frac{1}{n}\right)$

eigenvalues : $1 = \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$ orthonormal eigenbasis : $v_1, v_2, ..., v_n$

 $q \in [0,1]^n$ is a distribution where $c_i = q^T v_i$

$$qP^{t} = \pi P^{t} + \sum_{i=2}^{n} c_{i} v_{i} P^{t} = \pi + \sum_{i=2}^{n} c_{i} \lambda_{i}^{t} v_{i}$$

 $\mathfrak{M} = ([n], P)$ P is symmetric stationary $\pi = (\frac{1}{n}, \dots, \frac{1}{n})$

eigenvalues : $1 = \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$ orthonormal eigenbasis: $v_1, v_2, ..., v_n$

 $q \in [0,1]^n$ is a distribution where $c_i = q^T v_i$

$$\|qP^t-\pi\|_1=\left\|\sum_{i=2}^nc_i\lambda_i^tv_i
ight\|_1\leq \sqrt{n}\left\|\sum_{i=2}^nc_i\lambda_i^tv_i
ight\|_2$$
 (Cauchy-Schwarz)

$$= \sqrt{n} \sqrt{\sum_{i=2}^{n} c_i^2 \lambda_i^{2t}} \leq \sqrt{n} \lambda_{\max}^t \sqrt{\sum_{i=2}^{n} c_i^2} \quad \frac{\text{define}}{\lambda_{\max}} \triangleq \max\{|\lambda_2|, |\lambda_n|\}$$

$$\leq \sqrt{n}\lambda_{\max}^t ||q||_2 \leq \sqrt{n}\lambda_{\max}^t$$

$$\Delta(t) \le \frac{\sqrt{n}}{2} \lambda_{\max}^t \le \frac{\sqrt{n}}{2} e^{-t(1-\lambda_{\max})} \quad \qquad \qquad \tau(\epsilon) \le \frac{\frac{1}{2} \ln n + \ln \frac{1}{2\epsilon}}{1-\lambda_{\max}}$$

 $\mathfrak{M} = (\Omega, P)$ stationary distribution: π

 $p_x^{(t)}$: distribution at time t when initial state is x

$$\Delta_x(t) = \|p_x^{(t)} - \pi\|_{TV} \qquad \Delta(t) = \max_{x \in \Omega} \Delta_x(t)$$

$$\tau_x(\epsilon) = \min\{t \mid \Delta_x(t) \le \epsilon\} \quad \tau(\epsilon) = \max_{x \in \Omega} \tau_x(\epsilon)$$

Theorem

P is symmetric, with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$

Let
$$\lambda_{\max} = \max\{|\lambda_2|, |\lambda_n|\}$$

$$\tau(\epsilon) \le \frac{\frac{1}{2} \ln n + \ln \frac{1}{2\epsilon}}{1 - \lambda_{\max}}$$

Lazy Random Walk

- undirected d-regular graph G(V, E)
- lazy random walk: flip a coin to decide whether to stay

$$P(u,v) = \begin{cases} \frac{1}{2} & u = v \\ \frac{1}{2d} & u \sim v \\ 0 & \text{otherwise} \end{cases}$$

adjacency matrix A $d = \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n \ge -d$

$$P=rac{1}{2}(I+rac{1}{d}A)$$
 is symmetric $u_i=rac{1}{2}(1+rac{1}{d}\lambda_i)$

eigenvalues: $1 = \nu_1 \ge \nu_2 \ge \cdots \ge \nu_n \ge 0$

adjacency matrix A $d = \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n \ge -d$

$$P=rac{1}{2}(I+rac{1}{d}A)$$
 is symmetric $u_i=rac{1}{2}(1+rac{1}{d}\lambda_i)$

eigenvalues:
$$1 = \nu_1 \ge \nu_2 \ge \cdots \ge \nu_n \ge 0$$

$$\nu_{\rm max} = \nu_2$$

Theorem

P is symmetric, with eigenvalues $\nu_1 \geq \nu_2 \geq \cdots \geq \nu_n$

Let
$$\nu_{\max} = \max\{|\nu_2|, |\nu_n|\}$$

$$\tau(\epsilon) \le \frac{\frac{1}{2} \ln n + \ln \frac{1}{2\epsilon}}{1 - \nu_{\text{max}}}$$

Graph Spectrum

d-regular undirected graph G(V,E) adjacency matrix A

Theorem

Lazy random walk on d-regular graph with spectrum

$$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$$
 has mixing rate

$$\tau(\epsilon) \le \frac{d(\ln n + \ln \frac{1}{2\epsilon})}{d - \lambda_2}$$

Graph Spectrum

d-regular undirected graph G(V,E)

graph spectrum : $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$

- 1. $\forall i, |\lambda_i| \leq d$. 2. $\lambda_1 = d$. 3. Connected $\Leftrightarrow \lambda_1 > \lambda_2$.

d-regular undirected graph G(V,E)

graph spectrum : $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$

- 1. $\forall i, |\lambda_i| \leq d.$ 2. $\lambda_1 = d.$ 3. Connected $\Leftrightarrow \lambda_1 > \lambda_2.$

suppose $Av = \lambda v$ v_i has the max $|v_i|$

$$\sum_{j} A_{ij} v_j = \lambda v_i$$

$$|\lambda||v_i| = \left|\sum_{j} A_{ij} v_j\right| \le \sum_{j} A_{ij} |v_j| \le |v_i| \sum_{j} A_{ij} \le d|v_i|$$

d-regular undirected graph G(V,E)

graph spectrum : $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$

1.
$$\forall i, |\lambda_i| \leq d$$
.

2.
$$\lambda_1 = d$$
.

1. $\forall i, |\lambda_i| \leq d.$ 2. $\lambda_1 = d.$ 3. Connected $\Leftrightarrow \lambda_1 > \lambda_2.$

suppose Av = dv v_i has the max $|v_i|$

$$\begin{cases} \sum_{j} A_{ij} v_j = dv_i \\ \sum_{j} A_{ij} = d \end{cases} \qquad \begin{cases} A_{ij} > 0 \\ v_i = v_j \text{ for } i \sim j \end{cases}$$

$$\begin{cases} \sum_{j} A_{ij} = d \end{cases} \qquad \text{all } v_i \text{ are equal}$$

$$\begin{cases} G \text{ connected} \end{cases} \qquad \lambda_1 \text{ has multiplicity } 1$$

d-regular undirected graph G(V,E)

graph spectrum : $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$

- 1. $\forall i, |\lambda_i| \leq d$. 2. $\lambda_1 = d$.
- 3. Connected $\Leftrightarrow \lambda_1 > \lambda_2$.

spectral gap:
$$d - \lambda_2 = \lambda_1 - \lambda_2$$

Theorem

$$\tau(\epsilon) \le \frac{d(\ln n + \ln \frac{1}{2\epsilon})}{d - \lambda_2}$$

Expander graphs

Wikipedia:

"Expander graphs have found extensive applications in **computer science**, in <u>designing algorithms</u>, <u>error correcting codes</u>, <u>extractors</u>, <u>pseudorandom generators</u>, <u>sorting networks</u> and <u>robust computer networks</u>. They have also been used in proofs of many important results in **computational complexity theory**, such as <u>SL=L</u> and the <u>PCP theorem</u>. In **cryptography** too, expander graphs are used to construct <u>hash functions</u>."

Expansion

undirected G(V, E)

$$E(S,T) = \{uv \in E \mid u \in S, v \in T\}$$

edge boundary

$$\partial S = E(S, \bar{S})$$

expansion ratio

$$\phi(G) = \min_{\substack{S \subset V \\ |S| \le \frac{n}{2}}} \frac{|\partial S|}{|S|}$$

Expander Graph

$$\phi(G) = \min_{\substack{S \subset V \\ |S| \le \frac{n}{2}}} \frac{|\partial S|}{|S|}$$

Expander graphs (combinatorial definition): d-regular graphs with constant degree d and constant expansion ratio $\phi(G)$.

- sparse;
- "expanding" (well connected);

"A Magical Graph!"

- Existence ?
 - random graph is an expander w.h.p.
- Computation ?
 - co-NP-complete