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Mixing Time
M = (⌦, P )Markov chain:

• mixing time:  
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• both are faithful copies of the chain

• once collides, always makes identical moves

Coupling of Markov Chains

⌦

Pr[Xt+1 = y | Xt = x] = Pr[Yt+1 = y | Yt = x] = P (x, y)

Xt+1 = Yt+1Xt = Yt

is a Markov chain (Xt, Yt)

of state space

M = (⌦, P )a coupling of

⌦⇥ ⌦ such that:



is a coupling of (Xt, Yt) M = (⌦, P )
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Graph Coloring
proper q-coloring f : V ! [q]

G(V,E)

8uv 2 E, f(u) 6= f(v)

max degree ∆

decision:  Is G q-colorable?
• q<∆ :  NP-hard;
• q=∆ :  q-colorable unless G has (∆+1)-clique 

or G is an odd cycle;
• q≥∆+1 :  always q-colorable and the q-coloring 

can be found by a greedy algorithm;

(Brooks Theorem)

sampling:  sample a uniform random proper q-coloring

counting:  How many proper q-colorings for G?



proper q-coloring

G(V,E) of max degree ∆

sampling:  sample a uniform random proper q-coloring

q≥α∆+βwith

• randomly pick a vertex v∊V and a color c∊[q];
• change the color of v to c if it is proper;

at each step:

Markov Chain (Glauber dynamics):

aperiodic;
irreducible;
uniform stationary distribution;

q≥∆+2



proper q-coloring

G(V,E) of max degree ∆

sampling:  sample a uniform random proper q-coloring

with

• randomly pick a vertex v∊V and a color c∊[q];
• change the color of v to c if it is proper;

at each step:

Markov Chain (Glauber dynamics):

Conjecture
q≥∆+2              Glauber dynamics is rapid mixing

q≥α∆+β



• randomly pick a vertex v∊V and a color c∊[q];
• change the color of v to c if it is proper;

at each step:

Theorem ( Jerrum 1995)
q≥4∆+1           rapid mixing

coupling rule: (Xt, Yt) 2 ⌦⇥ ⌦

at each step, choose the same v∊V and c∊[q]

changed changed

unchanged changed

changed unchanged

unchanged unchanged

Xt+1 Yt+1

• good move:  distance decreases by 1
• bad move:  distance increases by 1
• neutral move:  distance unchanged

:  Hamming distancedt = d(Xt, Yt)



at each step, choose the same v∊V and c∊[q]

changed changed

unchanged changed

changed unchanged

unchanged unchanged

Xt+1 Yt+1 :  Hamming distance

• good move:  distance decreases by 1
• bad move:  distance increases by 1
• neutral move:  distance unchanged

dt = d(Xt, Yt)

# of good moves: � dt(q � 2�)

# of bad moves:
v is a disagreeing vertex, c is not in both neighborhoods

v is a neighbor of disagreeing vertex, c is one of the two colors
 2dt�



at each step, choose the same v∊V and c∊[q]

:  Hamming distance

• good move:  distance decreases by 1
• bad move:  distance increases by 1
• neutral move:  distance unchanged

dt = d(Xt, Yt)

# of good moves: � dt(q � 2�)

# of bad moves:  2dt�
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at each step, choose the same v∊V and c∊[q]

q � 4�+ 1 E[dt | d0]  n
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Mixing

• Why should a Markov chain be rapidly 
mixing?

• Why should a random walk on a regular 
graph be rapidly mixing?

kqP t � ⇡k1

initial distribution q
the decreasing rate of



Spectral Decomposition

P :
eigenvalues :

symmetric n×n matrix

the corresponding eigenvectors 
v1, v2, ..., vn are orthonormal

�1 � �2 � · · · � �n

Spectral Theorem

where ci = qT vi

=
nX

i=1

ci�ivi

q =
nX

i=1

civi8q 2 Rn

qP =
nX

i=1

civiP



Mixing of Symmetric Chain
M = ([n], P ) P is symmetric

eigenvalues :
orthonormal eigenbasis : v1, v2, ..., vn

1 = �1 � �2 � · · · � �n (Perron-Frobenius)

q 2 [0, 1]n is a distribution kqk1 = 1
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M = ([n], P ) P is symmetric

eigenvalues :
orthonormal eigenbasis : v1, v2, ..., vn

1 = �1 � �2 � · · · � �n
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q 2 [0, 1]n is a distribution where ci = qT vi
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M = ([n], P ) P is symmetric

eigenvalues :
orthonormal eigenbasis : v1, v2, ..., vn

1 = �1 � �2 � · · · � �n
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M = (⌦, P )
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Lazy Random Walk

• undirected d-regular graph G(V, E)

• lazy random walk:   flip a coin to decide  
whether to stay

P (u, v) =

8
><

>:

1
2 u = v
1
2d u ⇠ v

0 otherwise

adjacency matrix A

P = 1
2 (I +

1
dA) is symmetric

1 = ⌫1 � ⌫2 � · · · � ⌫n � 0

d = �1 � �2 � · · · � �n � �d

eigenvalues:

⌫i =
1
2 (1 +

1
d�i)



adjacency matrix A

P = 1
2 (I +

1
dA) is symmetric

1 = ⌫1 � ⌫2 � · · · � ⌫n � 0

d = �1 � �2 � · · · � �n � �d

eigenvalues:

⌫i =
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P is symmetric, with eigenvalues

Let
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Graph Spectrum
d-regular undirected graph G(V,E)
adjacency matrix A
eigenvalues: �1 � �2 � · · · � �n

⌧(✏) 
d(lnn+ ln 1

2✏ )

d� �2

Lazy random walk on d-regular graph with spectrum

�1 � �2 � · · · � �n has mixing rate

Theorem

graph spectrum



Graph Spectrum
d-regular undirected graph G(V,E)

�1 � �2 � · · · � �ngraph spectrum :

1. 8i, |�i|  d.

2. �1 = d.

3. Connected , �1 > �2.



d-regular undirected graph G(V,E)
�1 � �2 � · · · � �ngraph spectrum :

1. 8i, |�i|  d.

2. �1 = d.

3. Connected , �1 > �2.
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d-regular undirected graph G(V,E)
�1 � �2 � · · · � �ngraph spectrum :

1. 8i, |�i|  d.

2. �1 = d.

3. Connected , �1 > �2.

suppose vi has the max |vi|

�

j

Aij = d

)
vi = vj for

Aij > 0
i � j

G connected
all vi are equal

has multiplicity 1�1

Av = dv
X

j

Aijvj = dvi



d-regular undirected graph G(V,E)
�1 � �2 � · · · � �ngraph spectrum :

1. 8i, |�i|  d.

2. �1 = d.

3. Connected , �1 > �2.

⌧(✏) 
d(lnn+ ln 1

2✏ )

d� �2

Theorem

spectral gap : d� �2 = �1 � �2



“Expander graphs have found extensive applications in 
computer science, in designing algorithms, error 

correcting codes, extractors, pseudorandom generators, 
sorting networks and robust computer networks. They 

have also been used in proofs of many important results 
in computational complexity theory, such as 
SL=L and the PCP theorem. In cryptography too, 

expander graphs are used to construct hash functions.”

Expander graphs
Wikipedia:



G

Expansion

E(S, T ) = {uv � E | u � S, v � T}

⇥S = E(S, S̄)

G(V, E)undirected

S

edge boundary

expansion ratio

�(G) = min
S�V

|S|�n
2

|⇥S|
|S|



• sparse;

• “expanding” (well connected);

Expander Graph

Expander graphs (combinatorial definition): 
d-regular graphs with constant degree d 

and constant expansion ratio φ(G).

�(G) = min
S�V

|S|�n
2

|⇥S|
|S|



“A Magical Graph!”

• Existence ?

• random graph is an expander w.h.p.

• Computation ?

• co-NP-complete


