
Randomized Algorithms

南京大学

尹一通



Probability Space

�Sample space: Ω

Probability measure:

Pr : � � [0, 1]
�

e��

Pr(e) = 1s.t.

event A � �

Pr(A) =
�

e�A

Pr(e)probability



Probability Space
Kolmogorov (1933)

Sample space Ω:   set of all elementary events (samples)

Set of events Σ: each event is a subset of Ω

� is closed under �, �, \.

�, � � �.

Probability measure

Pr(�) = 1

A � B = � � Pr(A � B) = Pr(A) + Pr(B)

lim
n��

Pr(An) = 0

for A1 � · · · � An � · · · with
�

n An = �

impossible event, certain event
σ-algebra

(K1)
(K2)

(K3)
(K4)

(K5*)

Pr : � � [0, 1]



� is closed under �, �, \.

�, � � �.

Pr(�) = 1

A � B = � � Pr(A � B) = Pr(A) + Pr(B)

(K1)
(K2)
(K3)
(K4)

Pr(� \ A) = 1 � Pr(A)

If A � B, then Pr(A) � Pr(B).

Pr(A � B) = Pr(A) + Pr(B) � Pr(A � B)



The Union bound

Union  bound  (Boole’s inequality):

Pr

 
[

i

Ai

!

X

i

Pr(Ai)

Boole-Bonferroni:

Inclusion-Exclusion:

Pr

0

@
[

i2[n]

Ai

1

A =
nX

k=1

(�1)k�1
X

S2([n]
k )

Pr

 
\

i2S

Ai

!

2X̀

k=1

(�1)k�1
X

S2([n]
k )

Pr

 
\

i2S

Ai

!
 Pr

0

@
[

i2[n]

Ai

1

A 
2`+1X

k=1

(�1)k�1
X

S2([n]
k )

Pr

 
\

i2S

Ai

!

Works for arbitrary dependency!



Conditional Probability

�
E1

E2

Pr[E1 | E2]

Definition:
The conditional probability that event E1

occurs given that event E2 occurs is
Pr[E1 | E2] = Pr[E1⇥E2]

Pr[E2]
.

For independent E1, E2,

Pr[E1 | E2] =
Pr[E1 ⇤ E2]

Pr[E2]

=
Pr[E1] · Pr[E2]

Pr[E2]
= Pr[ E1]



Law of Total Probability

Law of total probability:

Pr[E ] =
n�

i=1

Pr[E ⇤ Ei] =
n�

i=1

Pr[E | Ei] · Pr[Ei].

For disjoint E1, E2, . . . , En that
n�

i

Ei = �,

Analyze the probability 
by cases!



Law of Successive Conditioning

For any E1, E2, . . . , En,

Pr

�
n⌅

i=1

Ei

⇥
=

n⇤

k=1

Pr

�
Ek |

⌅

i<k

Ei

⇥
.

Theorem

Proof:

recursion!

Pr

�
En

���
n�1�

i=1

Ei

� Pr

�
n�

i=1

Ei

�

Pr

�
n�1�

i=1

Ei

�=

(chain rule)



Random Variables

random variable X

X is the outcome

1
2
3
4
5
6

(�, �, Pr)

probability space:



Random Variables

random variable X
a function defined 

over the sample space

X : � � R

(�, �, Pr)

probability space: X indicates the evenness

0

1



X indicates the evenness

0

1

random variable X
a function defined 

over the sample space

X : � � R

event “X=x”
Pr[X = x]

= Pr ({s � � | X(s) = x})

Random Variables



Expectation

Definition:
The expectation of a discrete random variable X is

where the sum is over all values x in the range of X.

E[X] =
�

x

x · Pr[X = x]

Linearity of expectations:

E

�
n⇤

i=1

aiXi

⇥
=

n⇤

i=1

ai · E[Xi].

Works for arbitrary dependency!



“proof”

A monkey randomly types in 1 billion letters.
Expected number of “proof”s.

Xi indicates a “proof” started at position i
linearity + indicator ⇒ counter

Linearity of Expectations

E

�

�
109�4�

i=1

Xi

�

� =
109�4�

i=1

E[Xi] = (109 � 4) Pr(“proof”) =
109 � 4

265
� 84



Coin Flipping

flip a biased coin:

• distribution of one flipping

• # of flips until HEADs occurs

• # of HEADs in n flips

Bernoulli

geometric

binomial



Geometric distribution
(hitting time)

• Run i.i.d. Bernoulli trials until succeeded.

• X is the number of trials / coin flips.

X follows the geometric distribution 
with parameter p.

(Independently and Identically Distributed)

Pr[X = k] = (1 � p)k�1p

# of coin flips until a HEAD occurs.  



Geometric X:

X =
��

k=0

Yk

Yk =

�
1 the first k trials fail
0 otherwise

Pr[Yk = 1] = (1� p)k

brutal force:

indicators:

E[X] =
��

k=1

k Pr[X = k]

=
��

k=1

k(1 � p)k�1p

· · · · · ·

=
1

p

Geometric distribution

E[X] =
��

k=0

E[Yk]

=
��

k=0

(1 � p)k =
1

p

Pr[X = k] = (1 � p)k�1p

linearity of 
expectation

geometric



Balls and Bins
m balls

n bins

uniformly & independently

birthday problem, coupon collector problem, 
occupancy problem, ...



Random function

[m] [n]

uniformly random 
function

Pr[assignment] =
1

|[m]� [n]| =
1

nm

random function:

balls-into-bins:
Pr[assignment] =

1
n

· 1
n

· · · 1
n⇤ ⇥� ⌅

=
1

nm

m

1-1 birthday problem

on-to coupon collector

pre-images occupancy problem



Birthday Paradox

Paradox:
(i) a statement that leads to a contradiction;
(ii) a situation which defies intuition.

birthday paradox:

In a class of m>57 students, with >99% probability,
there are two students with the same birthday.

Assumption:  birthdays are uniformly & independently distributed.

m-balls-into-n-bins:
E : there is no bin with > 1 balls.

(ii) a situation which defies intuition.



m-balls-into-n-bins:
E : there is no bin with > 1 balls.

uniformly random f : [m]� [n],
E : f is one-one.

=
m�1⇤

k=0

�
1� k

n

⇥

=
|[m] 1-1�⇥ [n]|
|[m]⇥ [n]|

Pr[E ]

Birthday Paradox

=
n · (n � 1) · · · (n � m + 1)

nm



=
m�1⇤

k=0

�
1� k

n

⇥
Pr[E ]

Pr[E ]

m-balls-into-n-bins:
E : there is no bin with > 1 balls.

Birthday Paradox

=
m�1�

k=0

Pr[no collision for the (k + 1)th ball | no collision for the first k balls]

= Pr[no collision for all m balls]

chain rule

suppose balls are thrown one-by-one: 



Taylor's expansion: e�k/n ⇥ 1� k/n

⇥
m�1⌅

k=1

e�
k
n

= exp

�
�

m�1⇤

k=1

k

n

⇥

= e�m(m�1)/2n

� e�m2/2n

m�1⇤

k=1

�
1� k

n

⇥

=
m�1⇤

k=0

�
1� k

n

⇥
Pr[E ]

m-balls-into-n-bins:
E : there is no bin with > 1 balls.

Birthday Paradox



� e�m2/2n

m�1⇤

k=1

�
1� k

n

⇥

Pr[E ] � �

for m =
�

2n ln
1
�
,

m = ⇥(
�

n) for constant �

=
m�1⇤

k=0

�
1� k

n

⇥
Pr[E ]

m-balls-into-n-bins:
E : there is no bin with > 1 balls.

Birthday Paradox



Perfect Hashing

af cb de

h

Table T:
M

S = { a, b, c, d, e, f }

search(x): retrieve h;

check whether T [h(x)] = x;

[N ]� [M ]

UHA:  Uniform Hash Assumption

uniform
random Pr[perfect] > 1/2

birthday!
= O(n2)



Coupon Collector

number of boxes bought 
to collect all n coupons

each box comes with a 
uniformly random coupon

number of balls thrown 
to cover all n bins

coupons in cookie box

(cover time)



Coupon Collector

bins
i-1

Xi = 4

X =
n�

i=1

Xi

Xi is geometric!

pi = 1� i� 1
n

with

E[Xi] =
1
pi

=
n

n� i + 1

X :

Xi :

number of balls thrown to make
 all the n bins nonempty

number of balls thrown while there 
are exactly  (i-1) nonempty bins



X =
n�

i=1

Xi

E[Xi] =
1
pi

=
n

n� i + 1

linearity of expectationsE[X] =
n�

i=1

E[Xi]

=
n�

i=1

n

n� i + 1

= n
n�

i=1

1
i

= nH(n)
Harmonic number

Expected n lnn + O(n) balls!

Coupon Collector

X :

Xi :

number of balls thrown to make
 all the n bins nonempty

number of balls thrown while there 
are exactly  (i-1) nonempty bins



X :
number of balls 

thrown to make all the 
n bins nonempty

Theorem:

Pr[X � n ln n + cn] < e�c

For c > 0

�
1� 1

n

⇥n ln n+cn

=
�

1� 1
n

⇥n(ln n+c)

For one bin, it misses all balls with probabilityProof:

1
nec

=

e�(ln n+c)<

Coupon Collector



X :
number of balls 

thrown to make all the 
n bins nonempty

Theorem:

Pr[X � n ln n + cn] < e�c

For c > 0

For one bin, it misses all balls with probabilityProof:
1

nec
<

For all n bins,

Pr[⇤ a bin misses all balls] ⇥ n · Pr[one bin misses all balls]

< n · 1
nec

= e�c

union bound!

Coupon Collector



X :
number of balls 

thrown to make all the 
n bins nonempty

Theorem:

Pr[X � n ln n + cn] < e�c

For c > 0

Coupon Collector

lim
n!1

Pr[X � n lnn+ cn] = 1� e�e�c

a sharp threshold:

-4 -2 2 4

0.2

0.4

0.6

0.8

1.0



Stable Marriage
n men n women

• each man has a 
preference order of 
the n women;

• each woman has a 
preference order of 
the n men;

• solution: n couples

• Marriages are stable!



n men n women

pre
fer

prefer
unstable (blocking pair):

a man and a woman, who 
prefer each other to 

their current partners

stable: no blocking pairs

Stable Marriage

local optimum
fixed point
equilibrium
deadlock



Proposal Algorithm

n men n women

propose
proposepropose

Single man:

propose to the most 
preferable women who 
has not rejected him

Woman:

upon received a proposal: 
accept if she’s single or 

married to a less 
preferable man 

(divorce!)

(Gale-Shapley 1962)



Proposal Algorithm

• woman: once got married 
always married 

• man: will only get worse ...

• once all women are 
married, the algorithm 
terminates, and the 
marriages are stable

• total number of proposals:

(will only switch to better men!)

� n2

Single man:

propose to the most 
preferable women who 
has not rejected him

Woman:

upon received a proposal: 
accept if she’s single or 

married to a less 
preferable man 

(divorce!)

if “A” and “b” prefer each other than 
their current partners “a” and “B”, 
then “A” would have proposed to “b” 
before to “a”, and “b” should have 
accepted 

this proves the existence of stable 
matching by construction



Average-case

• every man/woman has a 
uniform random permutation 
as preference list

• total number of proposals?

men propose
women change

minds

Looks very 
complicated!



Principle of Deferred Decisions

Principle of  deferred decision
The decision of random choice in the random input 

is deferred to the running time of the algorithm.



Principle of Deferred Decisions

proposing in the 
order of a uniformly
 random permutation

at each time, proposing to
a uniformly random woman 
who has not rejected him

decisions of the inputs are deferred to 
the time when Alg accesses them



at each time, proposing to
a uniformly & independently 

random woman

≤
the man forgot who had 

rejected him (!)

uniform &
independent

Coupling

at each time, proposing to
a uniformly random woman 
who has not rejected him



uniform &
independent

• uniformly and independently 
proposing to n women

• Alg stops once all women got 
proposed.

• Coupon collector!

• Expected O(n ln n) proposals.

Average-case



(load balancing)

loads of bins
X1, X2, . . . , Xn

n bins

m balls

maximum load?

Occupancy Problem



loads of bins
X1, X2, . . . , Xn

n bins
m balls

n�

i=1

Xi = m
n⇤

i=1

E[Xi] = E

�
n⇤

i=1

Xi

⇥
= m

All E[Xi] are equal.

max
1�i�n

E[Xi] =?

Symmetry!

�

max
1�i�n

E[Xi] =
m

n

Occupancy Problem



Occupancy Problem

Theorem:
If m = n, the max load is O

�
ln n

ln ln n

⇥

with high probability.

max
1�i�n

E[Xi] =
m

n

Pr = 1�O( 1
nc ) or Pr = 1� o(1)w.h.p.:



n balls into n bins:

union bound

Stirling approximation

Pr[ bin-1 has � t balls ]

�
n

t

�
� Pr [� a set S of t balls s.t. all balls in S are in bin-1 ]

�
�

set S of t balls

Pr[all balls in S are in bin-1]

1

nt

� 1

nt

�
n

t

�
=

n(n � 1)(n � 2) · · · (n � t + 1)

t!nt
� 1

t!
�

�e

t

�t



n balls into n bins:

Pr[ bin-1 has � t balls ] �
�e

t

�t

Pr[ max load � t] = Pr[� bin-i has � t balls]

� n Pr[ bin-1 has � t balls ] union bound

� n
�e

t

�t

= n

�
e ln ln n

3 ln n

�3 ln n/ ln ln n

< n

�
ln ln n

ln n

�3 ln n/ ln ln n

= ne3(ln ln ln n�ln ln n) ln n/ ln ln n

� ne�2 ln n =
1

n

� ne�3 ln n+3(ln ln ln n)(ln n)/ ln ln n

t =
3 ln n

ln ln n
choose



Theorem:

If m = n, the max load is O
�

ln n
ln ln n

⇥

with high probability.

Occupancy Problem

m balls into n bins:



Theorem:

If m = n, the max load is O
�

ln n
ln ln n

⇥

with high probability.

When m = �(n log n), the max load is O(m
n )

with high probability

Occupancy Problem
m balls into n bins:



Balls-into-bins model
throw m balls into n bins 

uniformly and independently

uniform random function

f : [m]� [n]

• The threshold for
being 1-1 is
m = �(

⇥
n).

• The threshold for
being on-to is
m = n lnn + O(n).

• The maximum load is
�

O( ln n
ln ln n ) for m = �(n),

O(m
n ) for m = ⇥(n lnn).

1-1 birthday problem

on-to coupon collector

pre-images occupancy problem


