Randomized Algorithms

南京大学

尹一通

Random Walk

- stationary:
 - convergence;
 - stationary distribution;
- hitting time: time to reach a vertex;
- cover time: time to reach all vertices;
- mixing time: time to converge.

Mixing Time

Markov chain: $\mathfrak{M} = (\Omega, P)$

mixing time: time to be close to the stationary distribution

Total Variation Distance

• two probability measures p, q over Ω :

$$p, q \in [0, 1]^{\Omega} \qquad \sum_{x \in \Omega} p(x) = 1 \qquad \sum_{x \in \Omega} q(x) = 1$$

• total variation distance between p and q:

$$||p - q||_{TV} = \frac{1}{2}||p - q||_1 = \frac{1}{2}\sum_{x \in \Omega}|p(x) - q(x)|$$

equivalent definition:

$$||p - q||_{TV} = \max_{A \subseteq \Omega} |p(A) - q(A)|$$

$$||p - q||_{TV} = \max_{A \subseteq \Omega} |p(A) - q(A)|$$

$$||p - q||_{TV} = \max_{A \subseteq \Omega} |p(A) - q(A)|$$

$$||p - q||_{TV} = \max_{A \subseteq \Omega} |p(A) - q(A)|$$

Mixing Time

 $\label{eq:markov} \text{Markov chain: } \mathfrak{M} = (\Omega, P)$ stationary distribution: π

 $p_x^{(t)}$: distribution at time t when initial state is x

$$\Delta_x(t) = \|p_x^{(t)} - \pi\|_{TV} \qquad \Delta(t) = \max_{x \in \Omega} \Delta_x(t)$$
$$\tau_x(\epsilon) = \min\{t \mid \Delta_x(t) \le \epsilon\} \qquad \tau(\epsilon) = \max_{x \in \Omega} \tau_x(\epsilon)$$

• mixing time: $\tau_{\rm mix} = \tau(1/2{\rm e})$

rapid mixing: $\tau_{\text{mix}} = (\log |\Omega|)^{O(1)}$

$$\Delta(k \cdot au_{ ext{mix}}) \leq \mathrm{e}^{-k} \quad ext{and} \quad au(\epsilon) \leq au_{ ext{mix}} \cdot \left\lceil \ln \frac{1}{\epsilon}
ight
ceil$$

Coupling

p,q: distributions over Ω

a distribution μ over $\Omega \times \Omega$ is a coupling of p,q

if
$$p(x) = \sum_{y \in \Omega} \mu(x,y)$$
 $q(x) = \sum_{y \in \Omega} \mu(y,x)$

Coupling Lemma

Coupling Lemma

- 1. (X,Y) is a coupling of $p,q \rightarrow \Pr[X \neq Y] \ge ||p-q||_{TV}$
- 2. \exists a coupling (*X*,*Y*) of *p*,*q* s.t. $\Pr[X \neq Y] = \|p q\|_{TV}$

Coupling of Markov Chains

a coupling of $\mathfrak{M}=(\Omega,P)$ is a Markov chain (X_t,Y_t) of state space $\Omega\times\Omega$ such that:

both are faithful copies of the chain

$$\Pr[X_{t+1} = y \mid X_t = x] = \Pr[Y_{t+1} = y \mid Y_t = x] = P(x, y)$$

• once collides, always makes identical moves

$$X_t = Y_t \quad \Longrightarrow \quad X_{t+1} = Y_{t+1}$$

Markov Chain Coupling Lemma

Markov chain: $\mathfrak{M} = (\Omega, P)$

stationary distribution: π

 $p_x^{(t)}$: distribution at time t when initial state is x

$$\Delta_x(t) = \|p_x^{(t)} - \pi\|_{TV} \qquad \Delta(t) = \max_{x \in \Omega} \Delta_x(t)$$

Markov Chain Coupling Lemma:

 (X_t,Y_t) is a coupling of $\mathfrak{M}=(\Omega,P)$

$$\Delta(t) \le \max_{x,y \in \Omega} \Pr[X_t \ne Y_t \mid X_0 = x, Y_0 = y]$$

 $p_x^{(t)}$: distribution at time t when initial state is x

Markov Chain Coupling Lemma:

$$(X_t,Y_t)$$
 is a coupling of $\mathfrak{M}=(\Omega,P)$

$$\Delta(t) \le \max_{x,y \in \Omega} \Pr[X_t \ne Y_t \mid X_0 = x, Y_0 = y]$$

$$\Delta(t) = \max_{x \in \Omega} ||p_x^{(t)} - \pi||_{TV}$$

$$\leq \max_{x,y \in \Omega} ||p_x^{(t)} - p_y^{(t)}||_{TV}$$

$$\leq \max_{x,y \in \Omega} \Pr[X_t \neq Y_t \mid X_0 = x, Y_0 = y]$$

(coupling lemma)

 $\mathfrak{M} = (\Omega, P)$ stationary distribution: π

 $p_x^{(t)}$: distribution at time t when initial state is x

$$\Delta_x(t) = \|p_x^{(t)} - \pi\|_{TV} \qquad \Delta(t) = \max_{x \in \Omega} \Delta_x(t)$$

$$\tau_x(\epsilon) = \min\{t \mid \Delta_x(t) \le \epsilon\} \quad \tau(\epsilon) = \max_{x \in \Omega} \tau_x(\epsilon)$$

Markov Chain Coupling Lemma:

 (X_t,Y_t) is a coupling of $\mathfrak{M}=(\Omega,P)$

$$\Delta(t) \le \max_{x,y \in \Omega} \Pr[X_t \ne Y_t \mid X_0 = x, Y_0 = y]$$

$$\max_{x,y\in\Omega} \Pr[X_t \neq Y_t \mid X_0 = x, Y_0 = y] \le \epsilon \quad \qquad \qquad \tau(\epsilon) \le t$$

Markov Chain Coupling Lemma:

 (X_t, Y_t) is a coupling of $\mathfrak{M} = (\Omega, P)$

$$\Delta(t) \le \max_{x,y \in \Omega} \Pr[X_t \ne Y_t \mid X_0 = x, Y_0 = y]$$

$$\max_{x,y\in\Omega} \Pr[X_t \neq Y_t \mid X_0 = x, Y_0 = y] \le \epsilon \quad \qquad \tau(\epsilon) \le t$$

Random Walk on Hypercube

n-dimensional hypercube

$$\Omega = \{0, 1\}^n$$

lazy random walk:

current state $x \in \{0,1\}^n$

- with prob. 1/2 do nothing;
- pick a uniform random $i \in \{1,...,n\}$ and flip x_i ;

aperiodic;

irreducible;

uniform stationary distribution;

Random Walk on Hypercube

n-dimensional hypercube $\Omega = \{0,1\}^n$

```
current state x \in \{0, 1\}^n
```

- with prob. 1/2 do nothing;
- pick a uniform random $i \in \{1,...,n\}$ and flip x_i ;

equivalent to:

```
current state x \in \{0, 1\}^n
```

- pick a uniform random $i \in \{1,...,n\}$ and a uniform random bit $b \in \{0,1\}$;
- let $x_i = b$;

n-dimensional hypercube $\Omega = \{0,1\}^n$

current state $x \in \{0, 1\}^n$

- pick a uniform random $i \in \{1,...,n\}$ and a uniform random bit $b \in \{0,1\}$;
- let $x_i=b$;

coupling rule: $(X_t, Y_t) \in \Omega \times \Omega$

each step, choose the same i and b

coupled if all indices in $\{1,...,n\}$ have been fixed Markov Chain coupling lemma:

$$\Delta(t) \leq \max_{x,y \in \Omega} \Pr[X_t \neq Y_t \mid X_0 = x, Y_0 = y]$$

$$\leq \Pr[n \text{ coupons are collected in } t \text{ trials}]$$

n-dimensional hypercube $\Omega = \{0,1\}^n$

current state $x \in \{0, 1\}^n$

- pick a uniform random $i \in \{1,...,n\}$ and a uniform random bit $b \in \{0,1\}$;
- let $x_i=b$;

$$\Delta(t) \leq \Pr[n \text{ coupons are}_{\Lambda}^{\text{not}} \text{collected in } t \text{ trials}]$$

$$\leq e^{-c} \qquad \qquad \text{for } t = n \ln n + cn$$

$$\Delta(n\ln n + cn) \le e^{-c}$$

$$\tau(\epsilon) \le n \ln n + n \ln \frac{1}{\epsilon}$$

Card Shuffling

Riffle Shuffle

(Gilbert-Shannon-Reeds)

1. split (cut): n cards binomial distribution Bin(n,1/2)

2. merge (interleaving):

drops cards in sequence, proportional to the current weights

Card Shuffling

Riffle Shuffle

(Gilbert-Shannon-Reeds)

1. split (cut): n cards

binomial distribution Bin(n,1/2)

2. merge (interleaving):

uniform random interleaving

fix a cut:
$$\frac{1}{\binom{n}{k}}$$
 choices

 $\frac{L}{L+R}$ $\frac{R}{L+R}$

any (cut-interleaving) pair: 2^{-n} prob.

Inverse Riffle Shuffle

Inverse Riffle Shuffle:

- label each card with a bit from {0,1} uniformly and independently at random;
- move all 0 cards above all 1 cards, respecting the relative order within.

inverse of the Riffle shuffle

same uniform stationary distribution and same mixing time

Inverse Riffle Shuffle:

- label each card with a bit from {0,1} uniformly and independently at random;
- move all 0 cards above all 1 cards, respecting the relative order within.

coupling rule:

in each round, choose the same random bit for every card

coupling rule:

in each round, choose the same random bit for every card

Lemma

After each round, the cards are sorted according to the binary codes.

coupled if all cards have distinct labels

coupling rule:

in each round, choose the same random bit for every card

coupled if all cards have distinct labels

Markov Chain coupling lemma:

$$\Delta(t) \le \max_{x,y \in \Omega} \Pr[X_t \ne Y_t \mid X_0 = x, Y_0 = y]$$

$$\leq \Pr_{f:[n]\to\{0,1\}^t}[|f([n])| < n] = 1/2e$$

birthday

coupling rule:

in each round, choose the same random bit for every card

$$\tau_{\text{mix}} \le 2\log_2 n + O(1)$$

state space Ω : all permutations of n cards

$$|\Omega| = n!$$
 $\log |\Omega| = \Theta(n \log n)$

$$n=52$$
 t 1 2 3 4 5 6 7 $8 9 $\Delta(t)$ 1.000 1.000 1.000 1.000 0.924 0.614 0.334 0.167 $0.003$$