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Random Walk

• stationary:

• convergence;

• stationary distribution;

• hitting time:  time to reach a vertex;

• cover time:  time to reach all vertices;

• mixing time:  time to converge.



Mixing Time
M = (⌦, P )Markov chain:

• mixing time:   time to be close to the stationary 
distribution



Total Variation Distance
• two probability measures p, q over Ω:

• total variation distance between p and q:

• equivalent definition:
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COUPLING OF MARKOV CHAINS 
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Figure 11.1: Example of variation distance. The areas shaded by upward diagonal lines correspond 
to values x where DI (x) < D2 (x); the areas shaded by downward diagonal lines correspond to val-
ues x where DI(x) > D 2(x). The total area shaded by upward diagonal lines must equal the total 
area shaded by downward diagonal lines, and the variation distance equals one of these two areas. 

we run the chain for a finite number of steps. If we want to use this Markov chain to 
shuffle the deck, how many steps are necessary before we obtain a shuffle that is 
to uniformly distributed? 

To quantify what we mean by "close to uniform", we must introduce a distance 
measure. 

Definition 11.1: The variation distance between two distributions D, and D2 on (f 

countable state space S is given by 

1 liD, - D211 = 2: LID,(x) - D2(x)l. 
XES 

A pictorial example of the variation distance is given in Figure 11.1. 
The factor 1/2 in the definition of variation distance guarantees that the variation dis-

tance is between 0 and l. It also allows the following useful alternative characterization. 

Lemma 11.1: Foran), A S, let Di(A) = LXEA Di(x)jori = 1,2. Then 

A careful examination of Figure 11.1 helps make the proof of this lemma transparent. 

Proof: Let S+ S be the set of states such that D,(x) D2(X), and let S- S 
the set of states such that D2 (x) > D, (x). 

Clearly, 

and 

But since D,(S) = D2(S) = 1, we have 

D,(S+) + D,(S-) = D2(S+) + D2(S-) = 1, 

272 
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Mixing Time
M = (⌦, P )Markov chain:

• mixing time:  
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Coupling

p(x) =
X
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µ(x, y) q(x) =
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Coupling Lemma

Pr[X 6= Y ] � kp� qkTV1. (X,Y) is a coupling of p,q
2. ∃ a coupling (X,Y) of p,q  s.t. Pr[X 6= Y ] = kp� qkTV

Coupling Lemma



• both are faithful copies of the chain

• once collides, always makes identical moves

Coupling of Markov Chains

⌦

Pr[Xt+1 = y | Xt = x] = Pr[Yt+1 = y | Yt = x] = P (x, y)

Xt+1 = Yt+1Xt = Yt

is a Markov chain (Xt, Yt)

of state space

M = (⌦, P )a coupling of

⌦⇥ ⌦ such that:



Markov Chain Coupling Lemma
M = (⌦, P )Markov chain:
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: distribution at time t when initial state is x

is a coupling of (Xt, Yt) M = (⌦, P )
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Markov Chain Coupling Lemma:



is a coupling of (Xt, Yt) M = (⌦, P )
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Markov Chain Coupling Lemma:
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is a coupling of (Xt, Yt) M = (⌦, P )
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is a coupling of (Xt, Yt) M = (⌦, P )
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Random Walk on Hypercube

0000

0001 0010 0100 1000

0111 1011 1101 1110

1111

0011 0101 0110 1010 1001 1100

⌦ = {0, 1}n
n-dimensional hypercube

lazy random walk:

current state
x 2 {0, 1}n

• with prob. 1/2 do nothing;
• pick a uniform random 

i∊{1,...,n} and flip xi;

aperiodic;
irreducible;
uniform stationary distribution;



Random Walk on Hypercube
⌦ = {0, 1}nn-dimensional hypercube

current state
x 2 {0, 1}n

• with prob. 1/2 do nothing;
• pick a uniform random 

i∊{1,...,n} and flip xi;

current state
x 2 {0, 1}n

• pick a uniform random i∊{1,...,n} and 
a uniform random bit b∊{0,1};

• let xi=b;

equivalent to:



⌦ = {0, 1}nn-dimensional hypercube

current state
x 2 {0, 1}n

• pick a uniform random i∊{1,...,n} and 
a uniform random bit b∊{0,1};

• let xi=b;

coupling rule:
each step, choose the same i and b 

(Xt, Yt) 2 ⌦⇥ ⌦

coupled if all indices in {1,...,n} have been fixed

�(t)  max
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t
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Markov Chain coupling lemma:

 Pr[n coupons are collected in t trials]
^
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⌦ = {0, 1}nn-dimensional hypercube

current state
x 2 {0, 1}n

• pick a uniform random i∊{1,...,n} and 
a uniform random bit b∊{0,1};

• let xi=b;

 Pr[n coupons are collected in t trials]�(t)

t = n lnn+ cn e�c for

�(n lnn+ cn)  e�c

⌧(✏)  n lnn+ n ln
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^
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Card Shuffling
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1. split (cut) :

2. merge (interleaving):

binomial distribution Bin(n,1/2)

L
R

L

L+R

R

L+R

drops cards in sequence,
proportional to the current weights

Riffle Shuffle 
(Gilbert-Shannon-Reeds)

n cards



Card Shuffling
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1. split (cut) :

2. merge (interleaving):

binomial distribution Bin(n,1/2)

L
R

L
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L+R

uniform random interleaving

Riffle Shuffle 
(Gilbert-Shannon-Reeds)

n cards

�n
k

�

2n

1�n
k

�

fix k:

choices

fix a cut: choices

any (cut-interleaving) pair:   2-n prob.



Inverse Riffle Shuffle
Inverse Riffle Shuffle:
• label each card with a bit from {0,1} 

uniformly and independently at random;
• move all 0 cards above all 1 cards, 

respecting the relative order within.

inverse of the Riffle shuffle
same uniform stationary distribution and same mixing time



Inverse Riffle Shuffle:
• label each card with a bit from {0,1} 

uniformly and independently at random;
• move all 0 cards above all 1 cards, 

respecting the relative order within.

coupling rule:
in each round, choose the same random bit for every card



After each round, the cards are 
sorted according to the binary codes.

Lemma

coupling rule:

coupled if all cards have distinct labels

in each round, choose the same random bit for every card



coupling rule:

coupled if all cards have distinct labels

�(t)  max

x,y2⌦
Pr[X

t

6= Y

t

| X0 = x, Y0 = y]

Markov Chain coupling lemma:

 Pr
f :[n]!{0,1}t

[|f([n])| < n] = 1/2e

2t = O(n2)
birthday

⌧
mix

 2 log
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in each round, choose the same random bit for every card



coupling rule:

⌧
mix

 2 log

2

n+O(1)

state space    :⌦ all permutations of n cards

|⌦| = n! log |⌦| = ⇥(n log n)

t 1 2 3 4 5 6 7 8 9
Δ(t) 1.000 1.000 1.000 1.000 0.924 0.614 0.334 0.167 0.003

in each round, choose the same random bit for every card

n=52


