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Constraint Satisfaction Problem

• variables:   x1, x2, ..., xn ∈ D  (domain)

• constraints:  C1, C2, ..., Cm

• where

• CSP solution: an assignment of variables 
satisfying all constraints

• examples:  SAT, graph colorability, ...

• existence:  When does a solution exist?

• search:  How to find a solution?

Ci(xi1 , xi2 , . . .) 2 {true, false}



The Probabilistic Method

• sampling random values of x1, x2, ..., xn

• Bad event Ai:  constraint Ci is violated

• None of the bad events occurs with prob:

• The probabilistic method:  being good is possible
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CSP C1, C2, ..., Cm defined on x1, x2, ..., xn
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events:   A1, A2, ... , Am

d :  max degree of dependency graph 

dependency graph: D(V,E)
V = { 1, 2, ..., m }

ij ∈E Ai and Aj are dependent

Dependency Graph



events:   A1, A2, ... , Am

each event is independent of all but at most d other events
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Lovász Local Lemma (general) 

• ∀i,  Pr[Ai] ≤ p
• ep(d + 1) ≤ 1
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Lovász Local Lemma (symmetric) 



k-SAT
• n Boolean variables: x1, x2, . . . , x

n

2 {true, false}

• m clauses: C1,C2, . . . ,Cm

• each clause Ci = `i1 _`i2 _ · · ·_`ik

• each literal: for some r

• degree d :

is a disjunction of k distinct literals
`
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each clause shares variables
with at most d other clauses

k-CNF ¡=C1 ^C2 ^ · · ·^Cm

•  conjunctive normal form:

“Is φ satisfiable?”



Theorem 
d  2k�2 ∃ satisfying assignment for φ

e(d+ 1)  2k

for clause Ci , bad event Ai :

uniform random assignment X1, X2, . . . , Xn

Ci  is not satisfied

φ :  k-CNF of max degree d

LLL: Pr
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LLL for k-SAT



satisfying assignment can be
found in O(n + km logm) w.h.p.

∃ satisfying assignment for φ

Algorithmic LLL

Theorem 
d  2k�2

Theorem (Moser, 2009) 

d < 2k�3

φ :  k-CNF of max degree d with m clauses on n variables



Solve(φ)
pick a random assignment

x1, x2, ... , xn;

while ∃ unsatisfied clause C
Fix(C);

Fix(C)

replace variables in C with random values;

while ∃ unsatisfied clause D overlapping with C
Fix(D);

φ :  k-CNF of max degree d with m clauses on n variables



Solve(φ)
Pick a random assignment

x1, x2, ... , xn;

while ∃ unsatisfied clause C
Fix(C);

Fix(C)
replace variables in C with random values;

while ∃ unsatisfied clause D overlapping with C
Fix(D);

at top-level:

Observation:  A clause C is satisfied and 
will keep satisfied once it has been fixed.

# of top-level calls to Fix(C) : ≤m (# of clauses)

total # of calls to Fix(C) (including recursive calls): t

φ :  k-CNF of max degree d with m clauses on n variables



≤m total # nodes: t

Solve(φ)
Pick a random assignment

x1, x2, ... , xn;

while ∃ unsatisfied clause C
Fix(C);

Fix(C)
replace variables in C with random values;

while ∃ unsatisfied clause D overlapping with C
Fix(D);

recursion trees

total # of random bits: n+tk (assigned bits)

Observation:  Fix(C) is called
assignment of C is uniquely determined

φ :  k-CNF of max degree d with m clauses on n variables



≤m total # nodes: trecursion trees

total # of random bits: n+tk (assigned bits)

the sequence of random bits is encoded to :

final assignment:

recursion trees:
+

n bits

for each recursion tree:

root: dlog2 me bits
each internal node:  log2 d+ O(1)3 bits

 mdlog2 me+ t(log2 d+ 3) bits



Incompressibility  Theorem (Kolmogorov) 
N uniform random bits cannot be encoded 

to less than N - l bits with probability 1-O(2-l).

≤m total # nodes: trecursion trees

total # of random bits: n+tk (assigned bits)

the sequence of random bits is encoded to :

 n+mdlog2 me+ t(log2 d+ 3) bits



≤m total # nodes: trecursion trees

total # of random bits: n+tk (assigned bits)

the sequence of random bits is encoded to :

 n+mdlog2 me+ t(log2 d+ 3) bits

when d < 2k�3

whpt(k � 3� log2 d)  mdlog2 me+ log n

t  mdlog2 me+ log n

k � 3� log2 d

total running time: n+tk = O(n + km logm)



Theorem (Moser, 2009) 
satisfying assignment can be

found in O(n + km logm) whpd < 2k�3

φ :  k-CNF of max degree d with m clauses on n variables

Algorithmic LLL

Solve(φ)
Pick a random assignment

x1, x2, ... , xn;

while ∃ unsatisfied clause C
Fix(C);

Fix(C)
replace variables in C with random values;

while ∃ unsatisfied clause D overlapping with C
Fix(D);

¡=C1 ^C2 ^ · · ·^Cm



events:   A1, A2, ... , Am

Lovász Local Lemma (symmetric) 

• ∀i,  Pr[Ai] ≤ p
• ep(d + 1) ≤ 1
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Lovász Local Lemma (general) 

9↵1, . . . ,↵m 2 [0, 1)

8i,Pr[Ai]  ↵i

Y

j⇠i

(1� ↵j)
Pr

"
m̂

i=1

Ai

#
�

mY

i=1

(1� ↵i)

each event is independent of all but at most d other events



mutually independent random variables:  X ∈ X
bad events: A ∈ A defined on variables in X

vbl(A)⊆ X:  set of variables on which A is defined

neighborhood:  Γ(A) = { B ∈ A | B≠A and vbl(A)∩vbl(B) ≠∅ }

inclusive neighborhood:  Γ+(A) = Γ(A)∪{ A }
“events that are dependent with A,

excluding/including A itself”
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Lovász Local Lemma (general) 



∃ values of variables in X 
violating all events A ∈ A 
simultaneously.

mutually independent random variables:  X ∈ X
bad events: A ∈ A defined on variables in X

vbl(A)⊆ X:  set of variables on which A is defined

neighborhood:  Γ(A) = { B ∈ A | B≠A and vbl(A)∩vbl(B) ≠∅ }

inclusive neighborhood:  Γ+(A) = Γ(A)∪{ A }
“events that are dependent with A,

excluding/including A itself”
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Lovász Local Lemma (general) 



Algorithmic LLL
bad events A ∈ A defined on 

mutually independent random variables X ∈ X
vbl(A):  set of variables on which A is defined

neighborhood Γ(A) and inclusive neighborhood Γ+(A)

sample all X ∈ X;
while ∃ a non-violated bad event A ∈ A:

resample all X ∈ vbl(A);

RandomSolver:

Assumption:
I. We can efficiently sample an independent evaluation of every 

random variable X ∈ X .

II. We can efficiently check the violation of every event A ∈ A.



sample all X ∈ X;
while ∃ a non-violated bad event A ∈ A:

resample all X ∈ vbl(A);

RandomSolver:

bad events A ∈ A defined on 
mutually independent random variables X ∈ X
vbl(A):  set of variables on which A is defined

neighborhood Γ(A) and inclusive neighborhood Γ+(A)

Moser-Tardos  2010:
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RandomSolver finds values of 
all X ∈ X violating all A ∈ A
within expected             
resamples.
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Moser-Tardos  2010:

RandomSolver finds values of 
all X ∈ X violating all A ∈ A
within expected |A| /d resamples.

• ∀ A ∈ A,  Pr[A] ≤ p
• ep(d + 1) ≤ 1

where d=maxA |Γ(A)| 

bad events A ∈ A defined on 
mutually independent random variables X ∈ X
vbl(A):  set of variables on which A is defined

neighborhood Γ(A) and inclusive neighborhood Γ+(A)

sample all X ∈ X;
while ∃ a non-violated bad event A ∈ A:

resample all X ∈ vbl(A);

RandomSolver:



k-SAT
φ :  k-CNF of max degree d with m clauses on n variables

RandomSolver returns 
a satisfying assignment within 
expected O(n + km/d) time

d  2k�2

pick a random assignment x1, x2, ... , xn;
while ∃ an unsatisfied clause C:

replace variables in C with random values;

RandomSolver:

( e(d+1)≤2k )



Moser-Tardos 2010:
RandomSolver finds values of 
all X ∈ X violating all A ∈ A
within expected             
resamples.

sample all X ∈ X;
while ∃ a non-violated bad event A ∈ A:

resample all X ∈ vbl(A);

RandomSolver:

bad events A ∈ A defined on 
mutually independent random variables X ∈ X
vbl(A):  set of variables on which A is defined

neighborhood Γ(A) and inclusive neighborhood Γ+(A)
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execution log Λ:

random sequence of resampled events

NA =|{ i | Λi=A }|

sample all X ∈ X;
while ∃ a non-violated A ∈ A:

resample all X ∈ vbl(A);

RandomSolver:

Λ1, Λ2, Λ3,... ∈ A 
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Moser-Tardos 2010:
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total # of times of A  is resampled



execution log Λ:

random sequence of resampled events

sample all X ∈ X;
while ∃ a non-violated A ∈ A:

resample all X ∈ vbl(A);

RandomSolver:

Λ1, Λ2, Λ3,... ∈ A 

witness tree: A witness tree τ is a labeled tree in which every vertex 

v is labeled by an event Av∈A, such that siblings have distinct labels. 

T(Λ, t) is a witness tree constructed from exe-log Λ:
• initially, T is a single root with label Λt 
• for i = t-1, t-2,...,1

• if ∃ a vertex v in T with label Av∈Γ+(Λi)
• add a new child u to the deepest such v and label it with Λi 

• T(Λ, t) is the resulting T 

T(Λ, s) ≠ T(Λ, t) for s ≠ t
E[NA] =

X

⌧2TA

Pr[9t, T (⇤, t) = ⌧ ]

TA: set of all witness trees with root-label A
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(lemma 1)

(lemma 2)

(hypothesis
of LLL)

execution log Λ:

random sequence of resampled events

sample all X ∈ X;
while ∃ a non-violated A ∈ A:

resample all X ∈ vbl(A);

RandomSolver:

Λ1, Λ2, Λ3,... ∈ A 

NA =|{ i | Λi=A }|

9↵ : A ! [0, 1)

8A 2 A : Pr[A]  ↵(A)
Y

B2�(A)

(1� ↵(B))

LLL hypothesis: total # of times of 
A  is resampled



execution log Λ:

random sequence of resampled events

sample all X ∈ X;
while ∃ a non-violated A ∈ A:

resample all X ∈ vbl(A);

RandomSolver:

Λ1, Λ2, Λ3,... ∈ A 

T(Λ, t) is a witness tree constructed from exe-log Λ:
• initially, T is a single root with label Λt 
• for i = t-1, t-2,...,1

• if ∃ a vertex v in T with label Av∈Γ+(Λi)
• add a new child u to the deepest such v and label it with Λi 

• T(Λ, t) is the resulting T 

Lemma 1

Pr[9t, T (⇤, t) = ⌧ ] 
Y

v2⌧

Pr[Av]

For any particular witness tree τ:



• initially, TA is a single root with label A 
• for i = 1, 2, ...

• for every vertex v at depth i (root has depth 1) in TA 
• for every B∈Γ+(Av):

• add a new child u to v independently with probability α(B);
• and label it with B; 

• stop if no new child added for an entire level 

grow a random witness tree TA ∈ TA : 

Lemma 2 For any particular witness tree τ ∈ TA:
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E[NA] =
X

⌧2TA

Pr[9t, T (⇤, t) = ⌧ ]
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X
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execution log Λ:

random sequence of resampled events

sample all X ∈ X;
while ∃ a non-violated A ∈ A:

resample all X ∈ vbl(A);

RandomSolver:

Λ1, Λ2, Λ3,... ∈ A 

NA =|{ i | Λi=A }|
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Moser-Tardos 2010:
RandomSolver finds values of 
all X ∈ X violating all A ∈ A
within expected             
resamples.

sample all X ∈ X;
while ∃ a non-violated bad event A ∈ A:

resample all X ∈ vbl(A);

RandomSolver:

bad events A ∈ A defined on 
mutually independent random variables X ∈ X
vbl(A):  set of variables on which A is defined

neighborhood Γ(A) and inclusive neighborhood Γ+(A)
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