Randomized Algorithms



Constraint Satisfaction Problem

® variables: xi1,x2,...,x, €D (domain)

® constraints: Ci, Ca, ..., Cy
® where C;(x;,,x;,,...) € {true, false}

® CSP solution:an assignment of variables
satisfying all constraints

® examples: SAT, graph colorability, ...

® cxistence: YWhen does a solution exist!?

® search: How to find a solution?



The Probabilistic Method

CSP Cy, (C,, ..., C,, defined on x1, x2, ..., Xn
e sampling random values of x1, x2, ..., x,

e Bad event A;: constraint C; is violated

o
e None of the bad events occurs with prob: Pr|/\ 4;
i

e [he probabilistic method: being good is possible

rm_*
Pri/\ A;| >0
li=1




Dependency Graph

events: A1, Ao, ..., Am
dependency graph: D(V.E)
V={1,2,....m}
1 €k <:Z:> Ai;and A; are dependent

d : max degree of dependency graph

A
y A3(Xo, X3) O

Xi,..., X4 mutually independent



events: A1, Ao, ..., Am

each event is independent of all but at most d other events

Lovasz Local Lemma (symmetric)

QVi, PI‘[A,]Sp :> Pr /n<A—l >0
sep(d+1)=<1 =1

Lovasz Local Lemma (general)

dag, ..., €(0,1) w1 m
Vi, Pr|A;] < «; H(1 — ;) :> Pr A\ A;| > E(l — ;)

jri




k-SAT

* 1 Boolean variables: xi,x9,...,Xx, € {true, false}
* conjunctive normal form:
k<CNF ¢=Ci1ACoA---ACpy
“Is ¢ satisfiable?”

* m clauses: Cy,Co,...,C,,

*each clause C;=/¢; vl Vv---v{;
is a disjunction of £ distinct literals

* each literal: ¢; € {x;,7x,;} for some r

* degree d : each clause shares variables
with at most d other clauses



LLL for k-SAT

¢ : k-CNF of max degree d

Theorem

d < 2k—2 > 3 satisfying assignment for ¢

uniform random assighment X;,X,,..., X,

for clause C;, bad event A; : C; is not satisfied

n

LLL:  e(d+1) <2” > Pr

l

e

A; | >0

1



Algorithmic LLL

¢ : k-CNF of max degree d with m clauses on n variables

Theorem

d < 2F—2 > 3 satisfying assignment for ¢

Theorem (Moser, 20009)

ok—3 satisfying assighment can be
found in O(n + km logm) w.h.p.

d <




¢ : k-CNF of max degree d with m clauses on n variables

Solve(p)

pick a random assignment
X1y X2y ooe s Xns

while 3 unsatisfied clause C
Fix(C);

Fix(C)

replace variables in C with random values;

while 3 unsatisfied clause D overlapping with C

Fix(D);




¢ : k-CNF of max degree d with m clauses on n variables

Solve(p) Fix(C)

Pick a random assignment

replace variables in C with random values;
X1y X2, ee s Xn; : : , ,
while 3 unsatisfied clause D overlapping with C

Fix(D);

while 3 unsatisfied clause C
Fix(O);

at top-level:

Observation: A clause C is satisfied and
will keep satisfied once it has been fixed.

# of top-level calls to Fix(C) : <m (# of clauses)

total # of calls to Fix(C) (including recursive calls): ¢



¢ : k-CNF of max degree d with m clauses on n variables

Solve(p) Fix(C)

Pick a random assignment

replace variables in C with random values;
X1,X2, ... ,Xn; . . . .
while 3 unsatisfied clause D overlapping with C

Fix(D);

while 3 unsatisfied clause C
Fix(O);

<m recursion trees total # nodes: ¢

........................................................................................

total # of random bits: n+tk (assigned bits)

Observation: Fix(C) is called >
assignment of C is uniquely determined




<m recursion trees total # nodes: ¢

........................................................................................

total # of random bits: n+tk (assigned bits)

the sequence of random bits is encoded to :

final assignment: 7 bits

+
recursion trees: < mllog,m|+t(log,d+ 3) bits

for each recursion tree:

root: [log,m] bits
each internal node: <log,d+ 8(1) bits



<m recursion trees total # nodes: ¢

........................................................................................

total # of random bits: n+tk (assigned bits)

the sequence of random bits is encoded to :

<n-+m|logy,m|+t(log,d+ 3) bits

Incompressibility Theorem (Kolmogorov)

N uniform random bits cannot be encoded
to less than N - [ bits with probability 1-O(2).



<m recursion trees total # nodes: ¢

........................................................................................

total # of random bits: n+tk (assigned bits)

the sequence of random bits is encoded to :

<n-+m|logy,m|+t(log,d+ 3) bits

> t(k — 3 —logyd) < m|logym| +logn whp

> m|log, m| + logn
t <
~  k—3-—log,d

total running time: n+tk = O(n + km logm)

when d < 2F—3




Algorithmic LLL

¢ : k-CNF of max degree d with m clauses on n variables

G=CiNANCoN---NCy,

Theorem (Moser, 20009)

] < ok—3 satisfying assighment can be
= found in O(n + km logm) whp

Solve(¢p) Fix(O)

Pick a random assignment

replace variables in C with random values;
X1, X2, oo y Xp; . . . .
while 3 unsatisfied clause D overlapping with C

Fix(D);

while 3 unsatisfied clause C
Fix(O);




events: A1, Ao, ..., Am

each event is independent of all but at most d other events

Lovasz Local Lemma (symmetric)

QVi, PI‘[A,]Sp :> Pr /n<A—l >0
sep(d+1)=<1 =1

Lovasz Local Lemma (general)

dag, ..., €(0,1) w1 m
Vi, Pr|A;] < «; H(1 — ;) :> Pr A\ A;| > E(l — ;)

jri




mutually independent random variables: X € X
bad events: A & A defined on variables in X

vbl(A)C X set of variables on which A is defined
neighborhood: T'(A) ={ B &€ A | B#A and vbl(A)nvbl(B) #J }
inclusive neishborhood: 1+(A) =1 (A)U{ A}

“events that are dependent with A,
excluding/including A itself”

Lovasz Local Lemma (general)

da: A — |0,1)

VAe A: :>Pr /\Z 2H(1_Q(A))
PriA] <a(A) |] (1-a(B)) LAeA 1 AeA
BeT'(A) > 0




mutually independent random variables: X € X
bad events: A & A defined on variables in X

vbl(A)C X set of variables on which A is defined
neighborhood: T'(A) ={ B &€ A | B#A and vbl(A)nvbl(B) #J }
inclusive neishborhood: 1+(A) =1 (A)U{ A}

“events that are dependent with A,
excluding/including A itself”

Lovasz Local Lemma (general)

da: A — |0,1)
VAe A:
PriA] <a(4) J] (1-a(B))

BeT'(A)

3 values of variables in X

:> violating all events A € A

simultaneously.




Algorithmic LLL

bad events A € A defined on
mutually independent random variables X € U

vbl(A): set of variables on which A is defined
neighborhood I'(A) and inclusive neighborhood 1*(A)

Assumption:

l. We can efficiently sample an independent evaluation of every
random variable X € X .

ll. We can efficiently check the violation of every event A € A.

RandomSolver:

sample all X € X;
while 3 a non-violated bad event A &€ A:

resample all X € vbl(A);



bad events A € A defined on
mutually independent random variables X € X

vbl(A): set of variables on which A is defined
neighborhood I'(A) and inclusive neighborhood 1*(A)

RandomSolver:

sample all X € X;
while 3 a non-violated bad event A € A:

resample all X € vbl(A);

Moser-Tardos 2010:

Ja: A —[0,1) RandomSol?/er ﬁnds values of
VA e A : aII. )E.E X wola;mg all 12(;16) A
Prid] <a(4) [] (1-a(B) within expecte %1_&@4)

Bel'(A) resamples.




bad events A € A defined on
mutually independent random variables X € X

vbl(A): set of variables on which A is defined
neighborhood I'(A) and inclusive neighborhood 1*(A)

RandomSolver:

sample all X € X;
while 3 a non-violated bad event A € A:

resample all X € vbl(A);

Moser-Tardos 2010:

c VAEA, Pr[A] =p RandomSolver finds values of
e ep(d+1)=1 ::> all X € X violating all A € A
where d=max IT(A)| within expected | A /d resamples.




k-SAT

¢ : k-CNF of max degree d with m clauses on n variables

RandomSolver:

pick a random assignment x1, x2, ... , Xz;
while 3 an unsatisfied clause C:

replace variables in C with random values;

RandomSolver returns
d < 2F—2 > a satisfying assignment within
(e(d+1)<2k) expected O(n + km/d) time




bad events A € A defined on
mutually independent random variables X € X

vbl(A): set of variables on which A is defined
neighborhood I'(A) and inclusive neighborhood 1*(A)

RandomSolver:

sample all X € X;
while 3 a non-violated bad event A € A:

resample all X € vbl(A);

Moser-Tardos 2010:

Ja: A —[0,1) RandomSol?/er ﬁnds values of
VA e A : aII. )E.E X wola;mg all 12(;16) A
Prid] <a(4) [] (1-a(B) within expecte %1_&@4)

Bel'(A) resamples.




RandomSolver: execution log A:
sample all X € X;
i A1, A2, As,... E A

while 3 a non-violated A € A:
resample all X € vbl(A); random sequence of resampled events

Na=|{il A=A Y|

total # of times of A is resampled

Moser-Tardos 2010:

da: A — [0, 1) VA e A:
VA e A: ::> ] a(A)
Pr[A] < a(A) H (1 —a(B)) t[NA] = 1 — ()J(A)
BeT'(A)




RandomSolver: execution log A:
sample all X € X;
i A1, A2, As,... E A

while 3 a non-violated A € A:
resample all X € vbl(A); random sequence of resampled events

witness tree: A witness tree T is a labeled tree in which every vertex

v is labeled by an event A,&.4, such that siblings have distinct labels.

T(A, 1) is a witness tree constructed from exe-log A:

* initially, T is a single root with label A;
e fori=1t-1,12,....1
e if 3a vertex vin T with label A,&I+(A))

* add a new child u to the deepest such v and label it with A;
* T(A,1t)is the resulting T

TIA,s)ZT(A,t)for s #t J A set of all witness trees with root-label A

> E[Nal= Y Pr[3tT(At) =]

TET A




RandomSolver: execution log A:

sample all X € X;
while 3 a non-violated A € A: Al’ Az, A3"" cA
resamplejall X'e vbl(4); random sequence of resampled events
LLL hypothesis: 3Jo:.A — [0,1) tota! # of times of
VA€ A: PrAl<a(a) [ (- a(B) A is resampl.ed
BeTl'(A) NA z‘{ l | Ale }‘
E[Ns] = ) Pr[3t,T(At) =]
TETA
(lemmal) < Z H Pr[A,]
TET A ’UE7: ]
(hypothesis
<> 1] a4 1] (—-aB)
of LLL)
TETAVET | BeT(Ay) ]
a(A)

(lemma2) < 1~ o(A)



RandomSolver: execution log A:
sample all X € X;
i A1, A2, As,... E A

while 3 a non-violated A € A:
resample all X e vbl(A); random sequence of resampled events

T(A, 1) is a witness tree constructed from exe-log A:

* initially, T is a single root with label A;
e fori=1¢t1,1-2,....1
e if 3 a vertex vin T with label A,&I1+(A))
* add a new child u to the deepest such v and label it with A;
* T(A\,1)is the resulting T

Lemma 1l For any particular witness tree 7:

Pr[3t, T(A,t) = 7] < | | Pr[A,]

VET



grow a random witness tree T4 & J A :

* initially, T4 is a single root with label A
e fori=1,2, ...
* for every vertex v at depth i (root has depth 1) in T4
e for every BEI*(A)):
* add a new child u to v independently with probability a(B);
e and label it with B;
* stop if no new child added for an entire level

Lemma 2  For any particular witness tree 7 € J a:

pilts =7 = S ] o) [T (-a(s)

VET BeTl'(Ay)




RandomSolver: execution log A:

sample all X € X;
while 3 a non-violated A € A: Al’ Az, A3"" cA
resamplejall X'e vbl(4); random sequence of resampled events
LLL hypothesis: 3Jo:.A — [0,1) tota! # of times of
VA€ A: PrAl<a(a) [ (- a(B) A is resampl.ed
Ber(4) Na=[{ il A=A }]
E[Ns] = ) Pr[3t,T(At) =]
TETA
(lemmal) < Z H Pr[A,]
TET A ’UE7: ]
(hypothesis . Z H 4,) H 1 a(B))
of LLL) ~ A
TETAVET | BeT(Ay) ]
aA) aA)
< Pr|Ty = <
(lemma 2) _1—04(A)Z r| Ty = 7] = T ald)



bad events A € A defined on
mutually independent random variables X € X

vbl(A): set of variables on which A is defined
neighborhood I'(A) and inclusive neighborhood 1*(A)

RandomSolver:

sample all X € X;
while 3 a non-violated bad event A € A:

resample all X € vbl(A);

Moser-Tardos 2010:

Ja: A —[0,1) RandomSol?/er ﬁnds values of
VA e A : aII. )E.E X wola;mg all 12(;16) A
Prid] <a(4) [] (1-a(B) within expecte %1_&@4)

Bel'(A) resamples.




