
Randomized Algorithms

南京大学

尹一通

Constraint Satisfaction Problem

• variables: x1, x2, ..., xn ∈ D (domain)

• constraints: C1, C2, ..., Cm

• where

• CSP solution: an assignment of variables
satisfying all constraints

• examples: SAT, graph colorability, ...

• existence: When does a solution exist?

• search: How to find a solution?

Ci(xi1 , xi2 , . . .) 2 {true, false}

The Probabilistic Method

• sampling random values of x1, x2, ..., xn

• Bad event Ai: constraint Ci is violated

• None of the bad events occurs with prob:

• The probabilistic method: being good is possible

Pr

"
m̂

i
Ai

#

Pr

"
m̂

i=1
Ai

#

> 0

CSP C1, C2, ..., Cm defined on x1, x2, ..., xn

A1

A2

A3

A4A5 mutually independentX1, . . . , X4

A1(X1, X4)
A2(X1, X2)
A3(X2, X3)

A4(X4)

A5(X3)

events: A1, A2, ... , Am

d : max degree of dependency graph

dependency graph: D(V,E)
V = { 1, 2, ..., m }

ij ∈E Ai and Aj are dependent

Dependency Graph

events: A1, A2, ... , Am

each event is independent of all but at most d other events

9↵1, . . . ,↵m 2 [0, 1)

8i,Pr[Ai]  ↵i

Y

j⇠i

(1� ↵j)
Pr

"
m̂

i=1

Ai

#
�

mY

i=1

(1� ↵i)

Lovász Local Lemma (general)

• ∀i, Pr[Ai] ≤ p
• ep(d + 1) ≤ 1

Pr

"
m̂

i=1
Ai

#

> 0

Lovász Local Lemma (symmetric)

k-SAT
• n Boolean variables: x1, x2, . . . , x

n

2 {true, false}

• m clauses: C1,C2, . . . ,Cm

• each clause Ci = `i1 _`i2 _ · · ·_`ik

• each literal: for some r

• degree d :

is a disjunction of k distinct literals
`

j

2 {x

r

,¬x

r

}

each clause shares variables
with at most d other clauses

k-CNF ¡=C1 ^C2 ^ · · ·^Cm

• conjunctive normal form:

“Is φ satisfiable?”

Theorem
d  2k�2 ∃ satisfying assignment for φ

e(d+ 1)  2k

for clause Ci , bad event Ai :

uniform random assignment X1, X2, . . . , Xn

Ci is not satisfied

φ : k-CNF of max degree d

LLL: Pr

�
n⇤

i=1
Ai

⇥

> 0

LLL for k-SAT

satisfying assignment can be
found in O(n + km logm) w.h.p.

∃ satisfying assignment for φ

Algorithmic LLL

Theorem
d  2k�2

Theorem (Moser, 2009)

d < 2k�3

φ : k-CNF of max degree d with m clauses on n variables

Solve(φ)
pick a random assignment

x1, x2, ... , xn;

while ∃ unsatisfied clause C
Fix(C);

Fix(C)

replace variables in C with random values;

while ∃ unsatisfied clause D overlapping with C
Fix(D);

φ : k-CNF of max degree d with m clauses on n variables

Solve(φ)
Pick a random assignment

x1, x2, ... , xn;

while ∃ unsatisfied clause C
Fix(C);

Fix(C)
replace variables in C with random values;

while ∃ unsatisfied clause D overlapping with C
Fix(D);

at top-level:

Observation: A clause C is satisfied and
will keep satisfied once it has been fixed.

of top-level calls to Fix(C) : ≤m (# of clauses)

total # of calls to Fix(C) (including recursive calls): t

φ : k-CNF of max degree d with m clauses on n variables

≤m total # nodes: t

Solve(φ)
Pick a random assignment

x1, x2, ... , xn;

while ∃ unsatisfied clause C
Fix(C);

Fix(C)
replace variables in C with random values;

while ∃ unsatisfied clause D overlapping with C
Fix(D);

recursion trees

total # of random bits: n+tk (assigned bits)

Observation: Fix(C) is called
assignment of C is uniquely determined

φ : k-CNF of max degree d with m clauses on n variables

≤m total # nodes: trecursion trees

total # of random bits: n+tk (assigned bits)

the sequence of random bits is encoded to :

final assignment:

recursion trees:
+

n bits

for each recursion tree:

root: dlog2 me bits
each internal node:  log2 d+ O(1)3 bits

 mdlog2 me+ t(log2 d+ 3) bits

Incompressibility Theorem (Kolmogorov)
N uniform random bits cannot be encoded

to less than N - l bits with probability 1-O(2-l).

≤m total # nodes: trecursion trees

total # of random bits: n+tk (assigned bits)

the sequence of random bits is encoded to :

 n+mdlog2 me+ t(log2 d+ 3) bits

≤m total # nodes: trecursion trees

total # of random bits: n+tk (assigned bits)

the sequence of random bits is encoded to :

 n+mdlog2 me+ t(log2 d+ 3) bits

when d < 2k�3

whpt(k � 3� log2 d)  mdlog2 me+ log n

t  mdlog2 me+ log n

k � 3� log2 d

total running time: n+tk = O(n + km logm)

Theorem (Moser, 2009)
satisfying assignment can be

found in O(n + km logm) whpd < 2k�3

φ : k-CNF of max degree d with m clauses on n variables

Algorithmic LLL

Solve(φ)
Pick a random assignment

x1, x2, ... , xn;

while ∃ unsatisfied clause C
Fix(C);

Fix(C)
replace variables in C with random values;

while ∃ unsatisfied clause D overlapping with C
Fix(D);

¡=C1 ^C2 ^ · · ·^Cm

events: A1, A2, ... , Am

Lovász Local Lemma (symmetric)

• ∀i, Pr[Ai] ≤ p
• ep(d + 1) ≤ 1

Pr

"
m̂

i=1
Ai

#

> 0

Lovász Local Lemma (general)

9↵1, . . . ,↵m 2 [0, 1)

8i,Pr[Ai]  ↵i

Y

j⇠i

(1� ↵j)
Pr

"
m̂

i=1

Ai

#
�

mY

i=1

(1� ↵i)

each event is independent of all but at most d other events

mutually independent random variables: X ∈ X
bad events: A ∈ A defined on variables in X

vbl(A)⊆ X: set of variables on which A is defined

neighborhood: Γ(A) = { B ∈ A | B≠A and vbl(A)∩vbl(B) ≠∅ }

inclusive neighborhood: Γ+(A) = Γ(A)∪{ A }
“events that are dependent with A,

excluding/including A itself”

9↵ : A ! [0, 1)
Pr

"
^

A2A
A

#
�

Y

A2A
(1� ↵(A))

> 0

8A 2 A :

Pr[A]  ↵(A)
Y

B2�(A)

(1� ↵(B))

Lovász Local Lemma (general)

∃ values of variables in X
violating all events A ∈ A
simultaneously.

mutually independent random variables: X ∈ X
bad events: A ∈ A defined on variables in X

vbl(A)⊆ X: set of variables on which A is defined

neighborhood: Γ(A) = { B ∈ A | B≠A and vbl(A)∩vbl(B) ≠∅ }

inclusive neighborhood: Γ+(A) = Γ(A)∪{ A }
“events that are dependent with A,

excluding/including A itself”

9↵ : A ! [0, 1)
8A 2 A :

Pr[A]  ↵(A)
Y

B2�(A)

(1� ↵(B))

Lovász Local Lemma (general)

Algorithmic LLL
bad events A ∈ A defined on

mutually independent random variables X ∈ X
vbl(A): set of variables on which A is defined

neighborhood Γ(A) and inclusive neighborhood Γ+(A)

sample all X ∈ X;
while ∃ a non-violated bad event A ∈ A:

resample all X ∈ vbl(A);

RandomSolver:

Assumption:
I. We can efficiently sample an independent evaluation of every

random variable X ∈ X .

II. We can efficiently check the violation of every event A ∈ A.

sample all X ∈ X;
while ∃ a non-violated bad event A ∈ A:

resample all X ∈ vbl(A);

RandomSolver:

bad events A ∈ A defined on
mutually independent random variables X ∈ X
vbl(A): set of variables on which A is defined

neighborhood Γ(A) and inclusive neighborhood Γ+(A)

Moser-Tardos 2010:
9↵ : A ! [0, 1)
8A 2 A :

Pr[A]  ↵(A)
Y

B2�(A)

(1� ↵(B))

RandomSolver finds values of
all X ∈ X violating all A ∈ A
within expected
resamples.

X

A2A

↵(A)

1� ↵(A)

Moser-Tardos 2010:

RandomSolver finds values of
all X ∈ X violating all A ∈ A
within expected |A| /d resamples.

• ∀ A ∈ A, Pr[A] ≤ p
• ep(d + 1) ≤ 1

where d=maxA |Γ(A)|

bad events A ∈ A defined on
mutually independent random variables X ∈ X
vbl(A): set of variables on which A is defined

neighborhood Γ(A) and inclusive neighborhood Γ+(A)

sample all X ∈ X;
while ∃ a non-violated bad event A ∈ A:

resample all X ∈ vbl(A);

RandomSolver:

k-SAT
φ : k-CNF of max degree d with m clauses on n variables

RandomSolver returns
a satisfying assignment within
expected O(n + km/d) time

d  2k�2

pick a random assignment x1, x2, ... , xn;
while ∃ an unsatisfied clause C:

replace variables in C with random values;

RandomSolver:

(e(d+1)≤2k)

Moser-Tardos 2010:
RandomSolver finds values of
all X ∈ X violating all A ∈ A
within expected
resamples.

sample all X ∈ X;
while ∃ a non-violated bad event A ∈ A:

resample all X ∈ vbl(A);

RandomSolver:

bad events A ∈ A defined on
mutually independent random variables X ∈ X
vbl(A): set of variables on which A is defined

neighborhood Γ(A) and inclusive neighborhood Γ+(A)

9↵ : A ! [0, 1)
8A 2 A :

Pr[A]  ↵(A)
Y

B2�(A)

(1� ↵(B))

X

A2A

↵(A)

1� ↵(A)

execution log Λ:

random sequence of resampled events

NA =|{ i | Λi=A }|

sample all X ∈ X;
while ∃ a non-violated A ∈ A:

resample all X ∈ vbl(A);

RandomSolver:

Λ1, Λ2, Λ3,... ∈ A

9↵ : A ! [0, 1)
8A 2 A :

Pr[A]  ↵(A)
Y

B2�(A)

(1� ↵(B))

Moser-Tardos 2010:
8A 2 A :

E[NA] 
↵(A)

1� ↵(A)

total # of times of A is resampled

execution log Λ:

random sequence of resampled events

sample all X ∈ X;
while ∃ a non-violated A ∈ A:

resample all X ∈ vbl(A);

RandomSolver:

Λ1, Λ2, Λ3,... ∈ A

witness tree: A witness tree τ is a labeled tree in which every vertex

v is labeled by an event Av∈A, such that siblings have distinct labels.

T(Λ, t) is a witness tree constructed from exe-log Λ:
• initially, T is a single root with label Λt
• for i = t-1, t-2,...,1

• if ∃ a vertex v in T with label Av∈Γ+(Λi)
• add a new child u to the deepest such v and label it with Λi

• T(Λ, t) is the resulting T

T(Λ, s) ≠ T(Λ, t) for s ≠ t
E[NA] =

X

⌧2TA

Pr[9t, T (⇤, t) = ⌧]

TA: set of all witness trees with root-label A

E[NA] =
X

⌧2TA

Pr[9t, T (⇤, t) = ⌧]


X

⌧2TA

Y

v2⌧

Pr[Av]


X

⌧2TA

Y

v2⌧

2

4↵(Av)
Y

B2�(Av)

(1� ↵(B))

3

5

 ↵(A)

1� ↵(A)

(lemma 1)

(lemma 2)

(hypothesis
of LLL)

execution log Λ:

random sequence of resampled events

sample all X ∈ X;
while ∃ a non-violated A ∈ A:

resample all X ∈ vbl(A);

RandomSolver:

Λ1, Λ2, Λ3,... ∈ A

NA =|{ i | Λi=A }|

9↵ : A ! [0, 1)

8A 2 A : Pr[A]  ↵(A)
Y

B2�(A)

(1� ↵(B))

LLL hypothesis: total # of times of
A is resampled

execution log Λ:

random sequence of resampled events

sample all X ∈ X;
while ∃ a non-violated A ∈ A:

resample all X ∈ vbl(A);

RandomSolver:

Λ1, Λ2, Λ3,... ∈ A

T(Λ, t) is a witness tree constructed from exe-log Λ:
• initially, T is a single root with label Λt
• for i = t-1, t-2,...,1

• if ∃ a vertex v in T with label Av∈Γ+(Λi)
• add a new child u to the deepest such v and label it with Λi

• T(Λ, t) is the resulting T

Lemma 1

Pr[9t, T (⇤, t) = ⌧] 
Y

v2⌧

Pr[Av]

For any particular witness tree τ:

• initially, TA is a single root with label A
• for i = 1, 2, ...

• for every vertex v at depth i (root has depth 1) in TA
• for every B∈Γ+(Av):

• add a new child u to v independently with probability α(B);
• and label it with B;

• stop if no new child added for an entire level

grow a random witness tree TA ∈ TA :

Lemma 2 For any particular witness tree τ ∈ TA:

Pr[TA = ⌧] =
1� ↵(A)

↵(A)

Y

v2⌧

2

4↵(Av)
Y

B2�(Av)

(1� ↵(B))

3

5

E[NA] =
X

⌧2TA

Pr[9t, T (⇤, t) = ⌧]


X

⌧2TA

Y

v2⌧

Pr[Av]


X

⌧2TA

Y

v2⌧

2

4↵(Av)
Y

B2�(Av)

(1� ↵(B))

3

5

 ↵(A)

1� ↵(A)

(lemma 1)

(lemma 2)

(hypothesis
of LLL)

execution log Λ:

random sequence of resampled events

sample all X ∈ X;
while ∃ a non-violated A ∈ A:

resample all X ∈ vbl(A);

RandomSolver:

Λ1, Λ2, Λ3,... ∈ A

NA =|{ i | Λi=A }|

9↵ : A ! [0, 1)

8A 2 A : Pr[A]  ↵(A)
Y

B2�(A)

(1� ↵(B))

LLL hypothesis: total # of times of
A is resampled

 ↵(A)

1� ↵(A)

X

⌧2TA

Pr[TA = ⌧]

Moser-Tardos 2010:
RandomSolver finds values of
all X ∈ X violating all A ∈ A
within expected
resamples.

sample all X ∈ X;
while ∃ a non-violated bad event A ∈ A:

resample all X ∈ vbl(A);

RandomSolver:

bad events A ∈ A defined on
mutually independent random variables X ∈ X
vbl(A): set of variables on which A is defined

neighborhood Γ(A) and inclusive neighborhood Γ+(A)

9↵ : A ! [0, 1)
8A 2 A :

Pr[A]  ↵(A)
Y

B2�(A)

(1� ↵(B))

X

A2A

↵(A)

1� ↵(A)

