Randomized Algorithms

南京大学

尹一通

Constraint Satisfaction Problem

- variables: $x_1, x_2, ..., x_n \in D$ (domain)
- constraints: $C_1, C_2, ..., C_m$
 - where $C_i(x_{i_1}, x_{i_2}, \ldots) \in \{\text{true}, \text{false}\}$
- CSP solution: an assignment of variables satisfying all constraints
- examples: SAT, graph colorability, ...
- existence: When does a solution exist?
- search: How to find a solution?

The Probabilistic Method

CSP $C_1, C_2, ..., C_m$ defined on $x_1, x_2, ..., x_n$

- sampling random values of $x_1, x_2, ..., x_n$
- Bad event A_i : constraint C_i is violated
- None of the bad events occurs with prob: $\Pr \left| \bigwedge_{i}^{m} \overline{A_{i}} \right|$
- The probabilistic method: being good is possible

$$\Pr\left[\bigwedge_{i=1}^{m} \overline{A_i} \right] > 0$$

Dependency Graph

events: A_1, A_2, \dots, A_m

dependency graph: D(V,E)

$$V = \{1, 2, ..., m\}$$

 $ij \in E \iff A_i \text{ and } A_j \text{ are dependent}$

d: max degree of dependency graph

events: A_1, A_2, \dots, A_m

each event is independent of all but at most d other events

Lovász Local Lemma (symmetric)

•
$$\forall i$$
, $\Pr[A_i] \le p$
• $ep(d+1) \le 1$ $\Pr\begin{bmatrix} M \\ A_i \\ i=1 \end{bmatrix} > 0$

Lovász Local Lemma (general)

$$\exists \alpha_1, \dots, \alpha_m \in [0, 1)$$

$$\forall i, \Pr[A_i] \le \alpha_i \prod_{j \sim i} (1 - \alpha_j)$$

$$\Pr\left[\bigwedge_{i=1}^m \overline{A_i}\right] \ge \prod_{i=1}^m (1 - \alpha_i)$$

k-SAT

- *n* Boolean variables: $x_1, x_2, ..., x_n \in \{\text{true}, \text{false}\}$
- conjunctive normal form:

k-CNF
$$\phi = C_1 \wedge C_2 \wedge \cdots \wedge C_m$$

"Is ϕ satisfiable?"

- m clauses: C_1, C_2, \ldots, C_m
- each clause $C_i = \ell_{i_1} \vee \ell_{i_2} \vee \cdots \vee \ell_{i_k}$ is a disjunction of k distinct literals
- each literal: $\ell_j \in \{x_r, \neg x_r\}$ for some r
- degree d: each clause shares variables with at most d other clauses

LLL for k-SAT

 ϕ : k-CNF of max degree d

Theorem

$$d \le 2^{k-2}$$

 $d \leq 2^{k-2} \qquad \exists \ \text{satisfying assignment for} \ \phi$

uniform random assignment X_1, X_2, \ldots, X_n

for clause C_i , bad event A_i : C_i is not satisfied

LLL:
$$e(d+1) \le 2^k$$
 \longrightarrow $\Pr\left[\bigwedge_{i=1}^n \overline{A_i}\right] > 0$

Algorithmic LLL

 ϕ : k-CNF of max degree d with m clauses on n variables

Theorem

$$d \le 2^{k-2}$$

 \exists satisfying assignment for ϕ

Theorem (Moser, 2009)

$$d < 2^{k-3} \quad \square$$

satisfying assignment can be found in $O(n + km \log m)$ w.h.p.

 ϕ : k-CNF of max degree d with m clauses on n variables

Solve(ϕ)

pick a random assignment

$$\chi_1, \chi_2, \ldots, \chi_n$$
;

while \exists unsatisfied clause C $\mathbf{Fix}(C)$;

Fix(*C*)

replace variables in C with random values;

while \exists unsatisfied clause D overlapping with C

ϕ : k-CNF of max degree d with m clauses on n variables

Solve(ϕ)

Pick a random assignment $x_1, x_2, ..., x_n$; while \exists unsatisfied clause CFix(C);

Fix(*C*)

replace variables in C with random values; while \exists unsatisfied clause D overlapping with CFix(D);

at top-level:

Observation: A clause C is satisfied and will keep satisfied once it has been fixed.

of top-level calls to Fix(C): $\leq m$ (# of clauses) total # of calls to Fix(C) (including recursive calls): t

 ϕ : k-CNF of max degree d with m clauses on n variables

Solve (ϕ)

Pick a random assignment

$$x_1, x_2, \ldots, x_n;$$

while \exists unsatisfied clause C**Fix**(C);

Fix(*C*)

replace variables in C with random values; while \exists unsatisfied clause D overlapping with C $\mathbf{Fix}(D)$;

 $\leq m$ recursion trees

total # nodes: t

• • • • • •

total # of random bits: n+tk (assigned bits)

Observation: Fix(C) is called assignment of C is uniquely determined

 $\leq m$ recursion trees total # nodes: t

total # of random bits: n+tk (assigned bits)

the sequence of random bits is encoded to:

final assignment: *n* bits

recursion trees: $\leq m\lceil \log_2 m \rceil + t(\log_2 d + 3)$ bits

for each recursion tree:

root: $\lceil \log_2 m \rceil$ bits

each internal node: $\leq \log_2 d + \mathcal{D}(1)$ bits

 $\leq m$ recursion trees

total # nodes: t

• • • • • •

total # of random bits: n+tk (assigned bits) the sequence of random bits is encoded to:

$$\leq n + m\lceil \log_2 m \rceil + t(\log_2 d + 3)$$
 bits

Incompressibility Theorem (Kolmogorov)

N uniform random bits cannot be encoded to less than N - l bits with probability 1-O(2^{-l}).

 $\leq m$ recursion trees

total # nodes: t

total # of random bits: n+tk (assigned bits) the sequence of random bits is encoded to:

$$\leq n + m\lceil \log_2 m \rceil + t(\log_2 d + 3)$$
 bits

when
$$d < 2^{k-3}$$
 $t \le \frac{m|\log_2 m| + \log n}{k - 3 - \log_2 d}$

total running time: $n+tk = O(n + km \log m)$

Algorithmic LLL

 ϕ : k-CNF of max degree d with m clauses on n variables

$$\phi = C_1 \wedge C_2 \wedge \cdots \wedge C_m$$

Theorem (Moser, 2009)

$$d < 2^{k-3}$$

satisfying assignment can be found in $O(n + km \log m)$ whp

Solve(ϕ)

Pick a random assignment

$$x_1, x_2, \ldots, x_n;$$

while \exists unsatisfied clause C $\mathbf{Fix}(C)$;

Fix(*C*)

replace variables in C with random values; while \exists unsatisfied clause D overlapping with C $\mathbf{Fix}(D)$; events: A_1, A_2, \dots, A_m

each event is independent of all but at most d other events

Lovász Local Lemma (symmetric)

•
$$\forall i$$
, $\Pr[A_i] \le p$
• $ep(d+1) \le 1$ $\Pr\begin{bmatrix} M \\ A_i \\ i=1 \end{bmatrix} > 0$

Lovász Local Lemma (general)

$$\exists \alpha_1, \dots, \alpha_m \in [0, 1)$$

$$\forall i, \Pr[A_i] \leq \alpha_i \prod_{j \sim i} (1 - \alpha_j)$$

$$\Pr\left[\bigwedge_{i=1}^m \overline{A_i}\right] \geq \prod_{i=1}^m (1 - \alpha_i)$$

$$\Pr\left[\bigwedge_{i=1}^{m} \overline{A_i}\right] \ge \prod_{i=1}^{m} (1 - \alpha_i)$$

mutually independent random variables: $X \in \mathcal{X}$

bad events: $A \in \mathcal{A}$ defined on variables in \mathcal{X}

 $\mathsf{vbl}(A) \subseteq \mathcal{X}$: set of variables on which A is defined

neighborhood: $\Gamma(A) = \{ B \in \mathcal{A} \mid B \neq A \text{ and } \mathsf{vbl}(A) \cap \mathsf{vbl}(B) \neq \emptyset \}$

inclusive neighborhood: $\Gamma^+(A) = \Gamma(A) \cup \{A\}$

"events that are dependent with A, excluding/including A itself"

Lovász Local Lemma (general)

$$\exists \alpha : \mathcal{A} \to [0,1)$$

$$\forall A \in \mathcal{A}$$
:

$$\Pr[A] \le \alpha(A) \prod_{B \in \Gamma(A)} (1 - \alpha(B))$$

$$\Pr\left[\bigwedge_{A \in \mathcal{A}} \overline{A}\right] \ge \prod_{A \in \mathcal{A}} (1 - \alpha(A))$$

mutually independent random variables: $X \in \mathcal{X}$

bad events: $A \in \mathcal{A}$ defined on variables in \mathcal{X}

 $\mathsf{vbl}(A) \subseteq \mathcal{X}$: set of variables on which A is defined

neighborhood: $\Gamma(A) = \{ B \in \mathcal{A} \mid B \neq A \text{ and } \mathsf{vbl}(A) \cap \mathsf{vbl}(B) \neq \emptyset \}$

inclusive neighborhood: $\Gamma^+(A) = \Gamma(A) \cup \{A\}$

"events that are dependent with A, excluding/including A itself"

Lovász Local Lemma (general)

 $\exists \alpha : \mathcal{A} \to [0,1)$

 $\forall A \in \mathcal{A}$:

$$\Pr[A] \le \alpha(A) \prod_{B \in \Gamma(A)} (1 - \alpha(B))$$

 \exists values of variables in \mathcal{X} violating all events $A \in \mathcal{A}$ simultaneously.

Algorithmic LLL

bad events $A \in \mathcal{A}$ defined on mutually independent random variables $X \in \mathcal{X}$

vbl(A): set of variables on which A is defined neighborhood $\Gamma(A)$ and inclusive neighborhood $\Gamma^+(A)$

Assumption:

- I. We can efficiently sample an independent evaluation of every random variable $X \in \mathcal{X}$.
- II. We can efficiently check the violation of every event $A \subseteq \mathcal{A}$.

RandomSolver:

sample all $X \in \mathcal{X}$; while \exists a non-violated bad event $A \in \mathcal{A}$: resample all $X \in \text{vbl}(A)$;

bad events $A \in \mathcal{A}$ defined on mutually independent random variables $X \in \mathcal{X}$

vbl(A): set of variables on which A is defined neighborhood $\Gamma(A)$ and inclusive neighborhood $\Gamma^+(A)$

RandomSolver:

sample all $X \in \mathcal{X}$; while \exists a non-violated bad event $A \in \mathcal{A}$: resample all $X \in \text{vbl}(A)$;

Moser-Tardos 2010:

$$\exists \alpha : \mathcal{A} \to [0, 1)$$

$$\forall A \in \mathcal{A} :$$

$$\Pr[A] \le \alpha(A) \prod_{B \in \Gamma(A)} (1 - \alpha(B))$$

RandomSolver finds values of all $X \in \mathcal{X}$ violating all $A \in \mathcal{A}$ within expected $\sum_{A \in \mathcal{A}} \frac{\alpha(A)}{1 - \alpha(A)}$ resamples.

bad events $A \in \mathcal{A}$ defined on mutually independent random variables $X \in \mathcal{X}$

vbl(A): set of variables on which A is defined neighborhood $\Gamma(A)$ and inclusive neighborhood $\Gamma^+(A)$

RandomSolver:

sample all $X \in \mathcal{X}$; while \exists a non-violated bad event $A \in \mathcal{A}$: resample all $X \in \text{vbl}(A)$;

Moser-Tardos 2010:

- $\forall A \in \mathcal{A}, \Pr[A] \leq p$
- $ep(d + 1) \le 1$ where $d=\max_A |\Gamma(A)|$

RandomSolver finds values of all $X \in \mathcal{X}$ violating all $A \in \mathcal{A}$ within expected $|\mathcal{A}|/d$ resamples.

k-SAT

 ϕ : k-CNF of max degree d with m clauses on n variables

RandomSolver:

pick a random assignment $x_1, x_2, ..., x_n$; while \exists an unsatisfied clause C: replace variables in C with random values;

$$d \le 2^{k-2}$$

$$(e(d+1) \le 2^k)$$

RandomSolver returns a satisfying assignment within expected O(n + km/d) time

bad events $A \in \mathcal{A}$ defined on mutually independent random variables $X \in \mathcal{X}$

vbl(A): set of variables on which A is defined neighborhood $\Gamma(A)$ and inclusive neighborhood $\Gamma^+(A)$

RandomSolver:

sample all $X \in \mathcal{X}$; while \exists a non-violated bad event $A \in \mathcal{A}$: resample all $X \in \text{vbl}(A)$;

Moser-Tardos 2010:

$$\exists \alpha : \mathcal{A} \to [0, 1)$$

$$\forall A \in \mathcal{A} :$$

$$\Pr[A] \le \alpha(A) \prod_{B \in \Gamma(A)} (1 - \alpha(B))$$

RandomSolver finds values of all $X \in \mathcal{X}$ violating all $A \in \mathcal{A}$ within expected $\sum_{A \in \mathcal{A}} \frac{\alpha(A)}{1 - \alpha(A)}$ resamples.

sample all $X \in \mathcal{X}$; while \exists a non-violated $A \in \mathcal{A}$: resample all $X \in \text{vbl}(A)$;

execution $\log \Lambda$:

$$\Lambda_1, \Lambda_2, \Lambda_3, \dots \in \mathcal{A}$$

random sequence of resampled events

$$N_A = |\{i \mid \Lambda_i = A\}|$$

total # of times of A is resampled

Moser-Tardos 2010:

$$\exists \alpha : \mathcal{A} \to [0, 1)$$

$$\forall A \in \mathcal{A} :$$

$$\Pr[A] \le \alpha(A) \prod_{B \in \Gamma(A)} (1 - \alpha(B))$$

$$\forall A \in \mathcal{A}:$$

$$\mathbb{E}[N_A] \le \frac{\alpha(A)}{1 - \alpha(A)}$$

sample all $X \in \mathcal{X}$; while \exists a non-violated $A \in \mathcal{A}$: resample all $X \in \text{vbl}(A)$;

execution $\log \Lambda$:

$$\Lambda_1, \Lambda_2, \Lambda_3, \dots \in \mathcal{A}$$

random sequence of resampled events

witness tree: A witness tree τ is a labeled tree in which every vertex v is labeled by an event $A_v \in \mathcal{A}$, such that siblings have distinct labels.

$T(\Lambda, t)$ is a witness tree constructed from exe-log Λ :

- initially, T is a single root with label Λ_t
- for i = t-1, t-2,...,1
 - if \exists a vertex v in T with label $A_v \in \Gamma^+(\Lambda_i)$
 - add a new child u to the deepest such v and label it with Λ_i
- $T(\Lambda, t)$ is the resulting T

$$T(\Lambda, s) \neq T(\Lambda, t)$$
 for $s \neq t$ \mathcal{T}_A : set of all witness trees with root-label A $\mathbf{E}[N_A] = \sum \Pr[\exists t, T(\Lambda, t) = \tau]$

$$au\in\mathcal{T}_A$$

sample all $X \in \mathcal{X}$; while \exists a non-violated $A \in \mathcal{A}$: resample all $X \in vbl(A)$;

execution $\log \Lambda$:

$$\Lambda_1, \Lambda_2, \Lambda_3, ... \in \mathcal{A}$$

random sequence of resampled events

LLL hypothesis: $\exists \alpha : \mathcal{A} \rightarrow [0, 1)$

$$orall A \in \mathcal{A}: \Pr[A] \leq \alpha(A) \prod_{B \in \Gamma(A)} (1 - \alpha(B))$$
 $\mathbf{E}[N_A] = \sum \Pr[\exists t, T(\Lambda, t) = \tau]$

total # of times of A is resampled

$$N_A = |\{i \mid \Lambda_i = A\}|$$

$$\mathbf{E}[N_A] = \sum_{\tau \in \mathcal{T}_A} \Pr[\exists t, T(\Lambda, t) = \tau]$$

(lemma 1)
$$\leq \sum_{\tau \in \mathcal{T}_A} \prod_{v \in \tau} \Pr[A_v]$$

(hypothesis of LLL)
$$\leq \sum_{\tau \in \mathcal{T}_A} \prod_{v \in \tau} \left[\alpha(A_v) \prod_{B \in \Gamma(A_v)} (1 - \alpha(B)) \right]$$

(lemma 2)
$$\leq \frac{\alpha(A)}{1 - \alpha(A)}$$

sample all $X \in \mathcal{X}$; while \exists a non-violated $A \in \mathcal{A}$: resample all $X \in \text{vbl}(A)$;

execution $\log \Lambda$:

$$\Lambda_1, \Lambda_2, \Lambda_3, \dots \in \mathcal{A}$$

random sequence of resampled events

$T(\Lambda, t)$ is a witness tree constructed from exe-log Λ :

- ullet initially, T is a single root with label Λ_t
- for i = t-1, t-2,...,1
 - if \exists a vertex v in T with label $A_v \in \Gamma^+(\Lambda_i)$
 - add a new child u to the deepest such v and label it with Λ_i
- $T(\Lambda, t)$ is the resulting T

Lemma 1 For any particular witness tree τ :

$$\Pr[\exists t, T(\Lambda, t) = \tau] \le \prod_{v \in \tau} \Pr[A_v]$$

grow a random witness tree $T_A \in \mathcal{T}_A$:

- initially, T_A is a single root with label A
- for i = 1, 2, ...
 - for every vertex v at depth i (root has depth 1) in T_A
 - for every $B \in \Gamma^+(A_v)$:
 - add a new child u to v independently with probability $\alpha(B)$;
 - and label it with B;
- stop if no new child added for an entire level

Lemma 2 For any particular witness tree $\tau \in \mathcal{T}_A$:

$$\Pr[T_A = \tau] = \frac{1 - \alpha(A)}{\alpha(A)} \prod_{v \in \tau} \left[\alpha(A_v) \prod_{B \in \Gamma(A_v)} (1 - \alpha(B)) \right]$$

sample all $X \in \mathcal{X}$; while \exists a non-violated $A \in \mathcal{A}$: resample all $X \in vbl(A)$;

execution $\log \Lambda$:

$$\Lambda_1, \Lambda_2, \Lambda_3, ... \in \mathcal{A}$$

random sequence of resampled events

LLL hypothesis: $\exists \alpha : \mathcal{A} \rightarrow [0, 1)$

$$\forall A \in \mathcal{A}: \Pr[A] \leq \alpha(A) \prod_{B \in \Gamma(A)} (1 - \alpha(B))$$

$$\mathbf{E}[N_A] = \sum \Pr[\exists t, T(\Lambda, t) = \tau]$$

total # of times of A is resampled

$$N_A = |\{i \mid \Lambda_i = A\}|$$

$$\mathbf{E}[N_A] = \sum_{\tau \in \mathcal{T}_A} \Pr[\exists t, T(\Lambda, t) = \tau]$$

(lemma 1)
$$\leq \sum_{\tau \in \mathcal{T}_A} \prod_{v \in \tau} \Pr[A_v]$$

(hypothesis of LLL)
$$\leq \sum_{\tau \in \mathcal{T}_A} \prod_{v \in \tau} \left[\alpha(A_v) \prod_{B \in \Gamma(A_v)} (1 - \alpha(B)) \right]$$

(lemma 2)
$$\leq \frac{\alpha(A)}{1 - \alpha(A)} \sum_{\tau \in \mathcal{T}_A} \Pr[T_A = \tau] \leq \frac{\alpha(A)}{1 - \alpha(A)}$$

bad events $A \in \mathcal{A}$ defined on mutually independent random variables $X \in \mathcal{X}$

vbl(A): set of variables on which A is defined neighborhood $\Gamma(A)$ and inclusive neighborhood $\Gamma^+(A)$

RandomSolver:

sample all $X \in \mathcal{X}$; while \exists a non-violated bad event $A \in \mathcal{A}$: resample all $X \in \text{vbl}(A)$;

Moser-Tardos 2010:

$$\exists \alpha : \mathcal{A} \to [0, 1)$$

$$\forall A \in \mathcal{A} :$$

$$\Pr[A] \le \alpha(A) \prod_{B \in \Gamma(A)} (1 - \alpha(B))$$

RandomSolver finds values of all $X \in \mathcal{X}$ violating all $A \in \mathcal{A}$ within expected $\sum_{A \in \mathcal{A}} \frac{\alpha(A)}{1 - \alpha(A)}$ resamples.