Randomized Algorithms

Min-Cut

Partition V into two parts:
Sand T

minimize the cut (S, T)]

many important applications

|
|
|
il
1
(e.g. parallel computing) 1

deterministic algorithm:

® max-flow min-cut

C(8,T)

® best known upper ={uw e F|ueSandv eT}
bound: O(mn + n?log n)

Contraction

e multigraph G(V, E)

e multigraph: allow parallel edges

e for an edge e, contract(e)
merges the two endpoints.

Contraction

e multigraph G(V, E)
e multigraph: allow parallel edges

e for an edge e, contract(e)
merges the two endpoints.

Karger’s min-cut Algorithm

MinCut (multigraph G(V.E))

while |VI>2 do

choose a uniform ¢ €F ;

contract(e);

return remaining edges;

Karger’s min-cut Algorithm

MinCut (multigraph G(V.E))

while |VI>2 do

choose a uniform ¢ €F ;

contract(e);

return remaining edges;

Karger’s min-cut Algorithm

MinCut (multigraph G(V.E))

while |VI>2 do

choose a uniform ¢ €F ;

contract(e);

return remaining edges;

Karger’s min-cut Algorithm

MinCut (multigraph G(V.E))

while |VI>2 do

choose a uniform ¢ €F ;

contract(e);

return remaining edges;

Karger’s min-cut Algorithm

MinCut (multigraph G(V.E))

while |VI>2 do

choose a uniform ¢ €F ;

contract(e);

return remaining edges;

Karger’s min-cut Algorithm

MinCut (multigraph G(V.E))

while |VI>2 do

choose a uniform ¢ €F ;

contract(e);

return remaining edges;

Karger’s min-cut Algorithm

MinCut (multigraph G(V.E))

while |VI>2 do

choose a uniform ¢ €F ;

contract(e);

return remaining edges;

edges returned

MinCut (multigraph G(V.E)) Theorem (Karger 1993):
while 1VI>2 do

choose a uniform ¢ €F ;

Pr[a min-cut 1S returned] > n(n2—1)

contract(e); repeat independently
return remaining edges; for n(n-1)/2 times
and return the smallest cut

Prlfail to finally return a min-cut]

= (Pr[fail to find a min-cut in a running])™"~1)/2

| 9 n(n—1)/2
n(n—1)

1
e

VAN

MinCut (multigraph G(V.E)) suppose €1,€2;...,€En_2
while [VI>2 do are contracted edges
choose a uniform ¢ €F’; nitially: Gy = G
contract(e); .
. . i-th round:
return remaining edges;

G; = contract(G;_1,€;_1)

C' is a min-cut in G,;_1
I:I| > (U is a min-cut in G;
ei—1 €C } 7’

C: a min-cut of G
Pr|C is returned] = Prlei,es,...,ep_9 & C]

chain rule: H Prie; # C | e1,e2,...,6i-1 ¢ C]

suppose €1,€2,...,€6n,_2 are contracted edges

initially: G;{ =G i-th round: G; = contract(G;_1,¢€;_1)

(' i1s a min-cut in Gi—l
|:|| > ('is a min-cut in G
e;—1 & C } Z

(C: a min-cut of G

n—2
Pr|C' is returned| = H Prle; € C |le1,es,...,e;1 & C|
i=1

(' is a min-cut in G

C' is a min-cut in G(V, F)
=> |B| > 3/C||V]

Proof: degree of G = |C]

MinCut (multigraph G(V.E))
while [VI>2 do

choose a uniform ¢ €F ;

contract(e);

return remaining edges;

suppose €1,€2,...,€,_2 are contracted edges

initially: G; =G i-th round: G; = contract(G;_1,€e;_1)
C' is a min-cut in Gj |::> E(G;)| > £|C||V(G))]

< I [
HleC = EE T evien] T i

suppose €1,€2,...,€6n,_2 are contracted edges

initially: G;{ =G i-th round: G; = contract(G;_1,¢€;_1)

(' is a min-cut in G;_1
I:I| > (' is a min-cut in G,
e; ¢ C } :

(C: a min-cut of G

n—2
Pr|C' is returned| = H Prle; € C |le1,es,...,e;1 & C|
i=1

(' is a min-cut in G;
C' is a min-cut in G(V, E) n—2 9
| > 1] (1 ,
=> |E| > L[C||V] 7;1((n—z+1)>

ﬁn—i—f- B 2
cen—i+1 n(n — 1)

MinCut (multigraph G(V,E))
while [VI>2 do

choose a uniform e €F ;

contract(e);

return remaining edges;

Theorem (Karger 1993):

For any min-cut C,

Pr|C' is returned| > n(n2—1)

running time: O(n?)

Number of Min-Cuts

Theorem (Karger 1993):

For any min-cut C,

Pr|C is returned| > n(nz_l)

Corollary

The number of distinct min-cuts
in a graph of n vertices is at most n(n-1)/2.

An Observation

MinCut (multigraph G(V.E))
while [VI> 7 do

choose a uniform ¢ €F ;

contract(e);

return remaining edges;

(: a min-cut of G

n—t
Pr[el,...,en_t QC] — HPT[G@ Q/C | €l1,...,€6;-1 €C]

>Hn—z’—’_ _ t(t—1)

n—i+1 n(n—1)

only getting bad when t is small

Fast Min-Cut

Contract (G, 1)
while [VI>t do

choose a uniform e €F ;

contract(e);

return current multigraph G;

FastCut (G)

if |VI<6 then return a min-cut by brute force;
else: (f to be fixed later)

G1= Contract(G,?);

Go= Contract(G,r);

return min{FastCut(G), FastCut(G»)};

(independently)

FastCut (G)
if [VI<6 then return a min-cut by brute force;

else: (7 to be fixed later)
G1= Contract(G,r);
Go= Contract(G,t);
return min{FastCut(G1), FastCut(G2)};

(independently)

C: amin-cutin G
E:no edge in C is contracted during Contract(G)

n—t
— HPr[eigC\el,...,ei—l Z C]

>Hn—z—_ > t(t —1) >l
n—1+1 nn—1) — 2

choose t = {1

v

FastCut (G)
if [VI<6 then return a min-cut by brute force;

else: set ¢t = {1 + %W
G1= Contract(G,t);
Go= Contract(G,t);
return min{FastCut(G1), FastCut(G2)};

(independently)

C: amin-cutin G

E:no edge in C is contracted during Contract(G)

1

p(n) = Pr|C = FastCut(G)
=1 — (1 — Pr[E] Pr[C = FastCut(G,) | E])

-1 (1= (1]))

FastCut (G)
if [VI<6 then return a min-cut by brute force;

else: set ¢t = {1 + %W
G1= Contract(G,t);
Go= Contract(G,t);
return min{FastCut(G1), FastCut(G2)};

(independently)

C: amin-cutin G

p(n) = Pr|C = FastCut(G)] > 1 — (1 —1p ({1 +

1
by induction: »(n) = <logn>

running time: T(n) = 2T ({1 + %D + O(n?)

by induction: T'(n) = O(n?logn)

FastCut (G)
if [VI<6 then return a min-cut by brute force;
else: set t = {1 + %W
G1= Contract(G,rt);
(independently)
Go= Contract(G,r);

return min{FastCut(G1), FastCut(G2)};

Theorem (Karger-Stein 1996):

FastCut runs in time O(n? log n) and
returns a min-cut with probability C2(1/log n).

repeat independently for O(log n) times
total running time: O(n? log? n)

returns a min-cut with probability 1-O(1/n)

Primality lest

Input: positive integer n
Output: “yes” if n is prime

“no” if N is composite

efficient?

efficient algorithm: running time is polynomial

of the length of input

(logn)°™) time for primality test

Fermat’s little theorem

n is prime

This proof requires the most basic elements of group theory. \
The idea is 1o recogrise that the set G={1, 2, ..., p - 1}, with the operation of multipication (taken modulo p), forms a gro..:'

The only group axiom that requires some effort to venty is that each element of G is invertible. Taking this on trust for the
moment, ket us assume that ais intherange 1 =a<p -1, that is, ais an element of G. Let k be the order of a, so that

s 'f Pierre de Fermat

By Lagrange's theorem, k divides the order of G, which is p - 1, s0 p - 1 = km for some positive integer m. Then

o Sl e amateur mathematician

The invertibility property (e
To prove that every element b of G is invertible, we may proceed as follows. First, b is relatively pnme to p. Then Bézout's
dentity assures us that there are integers x and y such that

br + py = 1.
Reading this equation modulo p, we see that x is an inverse for b, since
brm 1 (modp).

Therefore every element of G is invertible, so as remarked earler, G is a group.

T 5

Jaci{l,2,....,n—1}
a" 1 #1 (mod n)

v

n Is composite

compositeness

e Does it exist?

find such a proof a e How to find it?

Fermat Test

e Choose a random a € {1,2,...,n — 1}.
non-Carmichael
o If a™ 1 #£1 (mod n), return composite.

e Else return probably prime.or Carmichael

Carmichael number

n is composite, and
Vvae{l,2,....,n=1} a" 1 =1 (mod n)

fools the Fermat test

Fermat Test

e Choose a random a € {1,2,...,n — 1}.
e If " ! #1 (mod n), return composite.

e Else return probably prime.

n is prime: return probably prime

n is non-Carmichael composite:
gooda a7 #1 bada a" =1

n is Carmichael:
incorrectly return probably prime

Fermat Test

e Choose a random a € {1,2,...,n — 1}.
e If " ! #1 (mod n), return composite.

e Else return probably prime.

multiplicative group modulo n
7 ={{a|1<a<n-—1Aged(a,n) =1}

o closed under
B = {CL < Z;l; | a" = (mOd n)} multiplication mod n

::> B is subgroup of Z ::> 7%\ | | B

Fermat Test

e Choose a random a € {1,2,...,n — 1}.
e If " ! #1 (mod n), return composite.

e Else return probably prime.

n is prime: return probably prime

n is non-Carmichael composite:
return composite with probability = 1/2

n is Carmichael:
incorrectly return probably prime

Fermat’s proof of compositeness:

a""'#1 (modn) incomplete

Another proof of compositeness:

nontrivial square root of

*=1 (mod n) a %= +1 (mod n)

Theorem
If n is prime, 1 does not have nontrivial square root.

a

2 =1

>

(mod n) > (a+1)(a—1)=0 (mod n)
(a+1)(a—1)|n

Fermat’s proof of compositeness:
a""'#1 (modn) incomplete

Another proof of compositeness:
¢ =1 (mod n)

a ?é +1 (mod n)

for composite n:

find an a&{1,2, ..., n-1} such that a1 =+ 1 (mod n)

or a %2=+1 (modn) but a? = (mod n)

Miller-Rabin test

choose a random a € {1,2,...,n — 1};
decompose n — 1 as n — 1 = 2'm with odd m;

compute a™, a*™, ..., aQim, . ,a2tm (mod n);
Fermat test

n—1 2'm

n), return composite;

if 3i,a>™ =1 but a> ™ # +1, return composite;
hontri

else return probably prlme;wal square root of 1

n is prime: return probably prime

n is non-Carmichael composite: Fermat test
return composite with probability > 1/2

n is Carmichael: 9

Miller-Rabin test

choose a random a € {1,2,...,n — 1};
decompose n — 1 as n — 1 = 2'm with odd m;

compute a™, a*™, ..., aQim, . ,ath (mod n);
Fermat test

. . t

n), return composite;

-1, return composite;

else return probably Ig\IQinr;rlrel;wal square root of 1

let j be the maximum such j satisfying:
db € 7 s.t. pm = _ (mod n)

let B = {CL & Z;: ‘ a2jm = +1 (mod n)}

is a proper subgroup of 7> for Carmichael n

Miller-Rabin test

choose a random a € {1,2,...,n — 1};

decompose n — 1 as n — 1 = 2'm with odd m;

compute a™,a?™,....a®™,...,a®™ (mod n);
Fermat test

if ”_1 m n), return composite;

if 3i,a2™ =1 but a® ™ # +1, return composite:;

else return probably Ig\IQinJIrel;wal square root of 1

n is prime: return probably prime

n is non-Carmichael composite: Fermat test
return composite with probability > 1/2

n is Carmichael: all bad a € a proper subgroup
return composite with probability > 1/2

Nondeterminism

Miller-Rabin test
over half

For any composite n, there exist,a € {1,2,...,n— 1}

a" ' #£1 (mod n) or

Ji,a2™ =1 (mod n) but a® ™ # +1 (mod n)

where m is odd and n — 1 = 2tm.

efficiently verifiable
certificate (proof, witness) of compositeness of n

COMPOSITE € NP in 2002 PRIME ¢ P
PRIME € co-NP (AKS test)

Randomization: redundancy of certificates

Randomized Algorithms

“algorithms which use randomness in computation”

How!

® TJo hit a witness.

® TJo fool an adversary.

® TJo simulate random samples.
® TJo construct a solution.

® To break symmetry.

