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Definition:
Random variables X1, X2, . . . , Xn are mutually
independent if for any subset I � [n] and any
values xi, where i ⇥ I,

Pr
�⌅

i�I(Xi = xi)
⇥

=
⇤

i�I Pr[Xi = xi].

Definition:
Events E1, E2, . . . , En are mutually independent
if for any subset I � {1, 2, . . . , n},

Pr
�⌅

i�I Ei

⇥
=

⇤
i�I Pr[Ei].



Definition:

Definition:

k-wise Independence

with |I| � k

with |I| � k

pairwise:  2-wise

Random variables X1, X2, . . . , Xn are k-wise in-
dependent if for any subset I ⇢ [n] and any val-

ues xi, where i 2 I,

Pr

⇥V
i2I(Xi = xi)

⇤
=

Q
i2I Pr[Xi = xi].

Events E1, E2, . . . , En are k-wise independent if

for any subset I ✓ {1, 2, . . . , n},
Pr

⇥V
i2I Ei

⇤
=

Q
i2I Pr[Ei].



2-wise Independent Bits
uniform & independent bits:

X1, X2, . . . , Xm 2 {0, 1}

(random source)

Goal: 2-wise independent uniform bits:

Y1, Y2, . . . , Yn 2 {0, 1} n � m

0 0 0
0 1 1
1 0 1
1 1 0

a b a� b

S1, S2, . . . , S2m�1 ✓ {1, 2, . . . ,m}

nonempty subsets:

; 6=

Yj =
M

i2Sj

Xi



X1, X2, . . . , Xm 2 {0, 1}

S1, S2, . . . , S2m�1 ✓ {1, 2, . . . ,m}nonempty subsets:
uniform & independent bits:

Yj =
M

i2Sj

Xi

Y1, Y2, . . . , Y2m�1 2 {0, 1}

2-wise independent uniform bits:

log2 n total random bits

n-1 pairwise independent bits



T
S

Max-Cut

• partition V into two parts:  
S and T

• maximize the cut |C(S,T)|

• NP-hard

• 0.878~-approximation in 
poly-time by SDP

• easy 0.5-approximation

= {uv � E | u � S ��� v � T}C(S, T )



for each vertex v 2 V

uniform & independent
v 2 S

v 2 T

Yv 2 {0, 1}
Yv = 1

Yv = 0

Yuv =

(
1 Yu 6= Yv

0 Yu = Yv

for each edge uv 2 E

|C(S, T )| =
X

uv2E

Yuv

E[|C(S, T )|] =
X

uv2E

Pr[Yu 6= Yv] =
|E|
2

� OPT

2

Random Cut



Random Cut
for each vertex v 2 V

uniform & 2-wise independent
v 2 S

v 2 T

Yv 2 {0, 1}
Yv = 1

Yv = 0

Yuv =

(
1 Yu 6= Yv

0 Yu = Yv

for each edge uv 2 E

|C(S, T )| =
X

uv2E

Yuv

E[|C(S, T )|] =
X

uv2E

Pr[Yu 6= Yv] =
|E|
2

� OPT

2



Derandomization
for each vertex v 2 V

uniform & 2-wise independent
v 2 S

v 2 T

Yv 2 {0, 1}
Yv = 1

Yv = 0

for each edge uv 2 E

E[|C(S, T )|] =
X

uv2E

Pr[Yu 6= Yv] =
|E|
2

� OPT

2

V = {v1, v2, . . . , vn}

Yv1 , Yv2 , . . . , Yvn constructed from bitsdlog2(n+ 1)e

try all 2dlog2(n+1)e = O(n2) possibilities!



2-wise Independent Variables

Goal: uniform and 2-wise independent

2 [p] prime p

random source: uniform and independent

X0, X1 2 [p]

Yi = (X0 + i ·X1) mod pi 2 [p]for

Y0, Y1, . . . , Yp�1

uniformity: 8i, a 2 [p] Pr[Yi = a] =
1

p
2-wise independence: 8i 6= j, a, b 2 [p]

Pr[Yi = a ^ Yj = b] =
1

p2



Yi = (X0 + i ·X1) mod pi 2 [p]for

uniformity: 8i, a 2 [p]

uniform and independent X0, X1 2 [p]

Pr[Yi = a]

= Pr [(X0 + i ·X1) mod p = a]

=

X

j2[p]

Pr[X1 = j] · Pr [(X0 + ij) mod p = a]

=

1

p

X

j2[p]

Pr [X0 ⌘ (a� ij) (mod p)]

=
1

p



Yi = (X0 + i ·X1) mod pi 2 [p]for

uniform and independent X0, X1 2 [p]

2-wise independence: 8i 6= j, a, b 2 [p]

Pr[Yi = a ^ Yj = b]

= Pr[(X0 + iX1) mod p = a ^ (X0 + jX1) mod p = b]
(
(X0 + iX1) ⌘ a (mod p)

(X0 + jX1) ⌘ b (mod p)

has unique solution
X0 = x0, X1 = x1

= Pr[X0 = x0 ^X1 = x1] =
1

p2



Perfect Hashing

af cb de

h

Table T:
m

S = { a, b, c, d, e, f }

search(x): retrieve h;

check whether T [h(x)] = x;

UHA:  Uniform Hash Assumption

uniform
random Pr[perfect] > 1/2

birthday!
= O(n2)

[N ] ! [m]

✓ [N ]



Universal Hash Family
(Carter-Wegman 1977)

universe [N] range [m]
Hhash family 8h 2 H h : [N ] ! [m]

H is   -universal if for uniform random
∀ distinct x1, x2 2 [N ]

2 h 2 H

Pr[h(x1) = h(x2)] 
1

m

“locally” like a uniform random hash function!



x1, x2, . . . , xk 2 [N ]

k

Universal Hash Family
(Carter-Wegman 1977)

universe [N] range [m]
Hhash family 8h 2 H h : [N ] ! [m]

H is   -universal if for uniform random
∀ distinct

h 2 H

Pr[h(x1) = h(x2) = · · · = h(xk)] 
1

m

k�1

“locally” like a uniform random hash function!



2-Universal H
prime p ha,b : [p] ! [p]for a, b 2 [p] define

ha,b(x) = (a · x+ b) mod p

H = {ha,b | a, b 2 [p]}hash family

H is 2-universal

x1 6= x2 random a, b 2 [p]

andha,b(x1) ha,b(x2) are 2-wise independent



2-Universal H
universe [N] range [m] prime p � N

for a, b 2 [p] define ha,b : [N ] ! [m]

ha,b(x) = ((a · x+ b) mod p) mod m

hash family H = {ha,b | 1  a  p� 1, b 2 [p]}

H is 2-universal



2-Universal H
universe [N] range [m] prime p � N

for a, b 2 [p] define ha,b : [N ] ! [m]

ha,b(x) = ((a · x+ b) mod p) mod m

hash family H = {ha,b | 1  a  p� 1, b 2 [p]}

H is 2-universal

x1 6= x2 random 1  a  p� 1, b 2 [p]

Pr[ha,b(x1) = ha,b(x2)] =
|{(a, b) | ha,b(x1) = ha,b(x2)}|

|H|p(p� 1)



for a, b 2 [p] define ha,b : [N ] ! [m]

ha,b(x) = ((a · x+ b) mod p) mod m

x1 6= x2 random 1  a  p� 1, b 2 [p]

Pr[ha,b(x1) = ha,b(x2)] =
|{(a, b) | ha,b(x1) = ha,b(x2)}|

p(p� 1)

(a · x1 + b) mod p 6= (a · x2 + b) mod p

(
(a · x1 + b) mod p = u

(a · x2 + b) mod p = v

u 6= v

each (u,v) corresponds to exact one (a,b)
|{(a, b) | ha,b(x1) = ha,b(x2)}|

= |{(u, v) | u 6= v, u ⌘ v (mod m)}|  p(p� 1)/m

 1

m

observation:



universe [N] range [m] prime p � N

for a, b 2 [p] define ha,b : [N ] ! [m]

ha,b(x) = ((a · x+ b) mod p) mod m

hash family H = {ha,b | 1  a  p� 1, b 2 [p]}

H is 2-universal

∀ distinct x1, x2, . . . , xn 2 [N ]

uniform random h 2 H

Pr[h(xi) = h(xj)] 
1

m

8i 6= j



H is 2-universal

∀ distinct x1, x2, . . . , xn 2 [N ]

uniform random h 2 H

Pr[h(xi) = h(xj)] 
1

m

8i 6= j

Collision Number

8i 6= j
Xij =

(
1 h(xi) = h(xj)

0 h(xi) 6= h(xj)

X =
X

i<j

Xijcollision no.:

collision

E[X] =
X

i<j

E[Xij ]  n2

2m

birthday: Pr[X � 1]  1

E[X]
 2m

n2 =
1

2
n = 2

p
m



Perfect Hashing

h

Table T:
m

search(x): retrieve h;

check whether T [h(x)] = x;

2-universal Pr[perfect] > 1/2

birthday!
= O(n2)

[N ] ! [m]

✓ [N ]S = {x1, x2, . . . , xn}

h is from 2-universal H
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COROLLARY 2. There exists a k' E U, such that the mapping x ~ (k 'x  mod 
p)mod r 2 is one-to-one when restrtcted to W. 

PROOF. Choosing s --- r 2, Lemma 1 provides a k' such that B(r 2, W, k', j)  <- 1 
for all j. I"! 

Given S c U, [ S I = n, our technique for representing the set S works as follows. 
The content k of cell 710] is used to partition S into n blocks Wj, 1 ___ j _< n, as 
determined by the value of the function f(x) = (kx mod p)mod n; pointers to 
corresponding blocks Tj in the memory T are provided in locations T[j], 1 <_ j <_ 
n. More specifically, a k is chosen satisfying Corollary 1 (with W = S and r = n), 
so that Y~ I W~ 12 < 3n. The amount of space allocated to the block Tj for Wj is 
I Wj 12 + 2. The subset Wj is resolved within this space by using the perfect hash 
function provided by Corollary 2 (setting W = Wj and r -- I W~I). In the first 
location of Tj we store I W~I, and in the second location we store the value k' 
provided by Corollary 2; each x ~ Wj is stored in location [(k'x mod p)mod I Wj 12] 
+ 2 of block Tj. 

A membership query for q is executed as follows: 

1. Set k = T[0] and setj  = (kq mod p)mod n. 
2. Access in T[j] the pointer to block Tj of T and use this pointer to access the 

quantities [ I11::1 and k' in the first two locations of block Tj. 
3. Access cell ((k'q mod p)mod I Wj [2) + 2 of block T~; q is in S if and only if q 

lies in this cell. 

A query requires five probes, and our choice of k in Corollary 1 implies that the 
size of T is at most 6n. An example is provided below. 

Example 
m - - 3 0 ,  p = 3 1 ,  n = 6 ,  S = { 2 , 4 , 5 , 1 5 , 1 8 , 3 0 1  

0 1 2 3  4 5 6 

12 13 14 15 16 17 18 19 20 21 22 
1111141  1211 1 5 1 2 1  I I 1 2 1 3 1  I 1181301 
I W21k'  I W4I k '  I WsI k '  

23 24 
I l l  1 1151 
I W61 k '  

A query for 30 is processed as follows: 

1. k = T[0] = 2 , j  = (30.2 mod 31)mod 6 = 5. 
2. T[5] = 16, and from cells T[16] and 7117] we learn that block 5 has two 

elements and that k' --- 3. 
3. (30 k' mod 3 l)mod 22 --- 4. Hence, we check the 4 + 2 = 6th cell of block 5 

and find that 30 is indeed present. 

The time required to construct the representation for S might be as bad as O(mn) 
in the worst case; finding k may require testing many possible values before a 
suitable one is found. However, by increasing the size of T by a constant factor, 

FKS Perfect Hashing
(Fredman, Komlós, Szemerédi, 1984) 

Goal:  O(n) space,  O(1) worst-case search time



FKS Perfect Hashing

h

B1 B2 Bn

buckets:

n itemsS :

from a 2-universal H
[N ]� [n]



FKS Perfect Hashing

h2 hn�

perfect hashing
for B1

h1

�
perfect hashing

for Bn

B1 B2 Bn



FKS Perfect Hashing

h2 hn

h

B1 B2 Bn

�

perfect hashing
for B1

h1

�
perfect hashing

for Bn

[N ]� [n]
search(x):

goto bucket h(x);
retrieve h;

perfect hashing
within bucket;



FKS Perfect Hashing

• search time: O(1)
• space ?

h2 hn

h

B1 B2 Bn

�

perfect hashing
for B1

h1

�
perfect hashing

for Bn

n�

i=1
|Bi |2 =O(n)

for a set S of n items:

Goal:



FKS Perfect Hashing

h

n�

i=1
|Bi |2 =O(n)

B1 B2 Bn

n⇤

i=1

�
|Bi|
2

⇥
=

1
2

n�

i=1

|Bi|(|Bi|� 1)

=
1
2

�
n⇤

i=1

|Bi|2 �
n⇤

i=1

|Bi|
⇥

=
1
2

�
n⇤

i=1

|Bi|2 � n

⇥

Collision #:

n itmes for a set S of n items:

uniform random h 2 H



FKS Perfect Hashing

h

n�

i=1
|Bi |2 =O(n)

B1 B2 Bn

n itmes for a set S of n items:

uniform random h 2 H

n�

i=1

|Bi|2 = n + 2 · (collision #) E[collision #] � n

2

E

�
n⇤

i=1

|Bi|2
⇥
� 2n Markov ! � 4n with

prob ⇥ 1
2 .



FKS Perfect Hashing
(Fredman, Komlós, Szemerédi, 1984) 

Goal:  O(n) space,  O(1) worst-case search time

h2 hn

h

B1 B2 Bn

�

perfect hashing
for B1

h1

�
perfect hashing

for Bn


