Randomized Algorithms

南京大学

尹一通

Definition:

Events $\mathcal{E}_1, \mathcal{E}_2, \dots, \mathcal{E}_n$ are mutually independent if for any subset $I \subseteq \{1, 2, \dots, n\}$, $\Pr\left[\bigwedge_{i \in I} \mathcal{E}_i\right] = \prod_{i \in I} \Pr[\mathcal{E}_i]$.

Definition:

Random variables $X_1, X_2, ..., X_n$ are **mutually** independent if for any subset $I \subset [n]$ and any values x_i , where $i \in I$,

$$\Pr\left[\bigwedge_{i\in I}(X_i=x_i)\right] = \prod_{i\in I}\Pr[X_i=x_i].$$

k-wise Independence

Definition:

Events $\mathcal{E}_1, \mathcal{E}_2, \dots, \mathcal{E}_n$ are k-wise independent if for any subset $I \subseteq \{1, 2, \dots, n\}$, with $|I| \le k$ $\Pr\left[\bigwedge_{i \in I} \mathcal{E}_i\right] = \prod_{i \in I} \Pr[\mathcal{E}_i]$.

Definition:

Random variables $X_1, X_2, ..., X_n$ are k-wise independent if for any subset $I \subset [n]$ and any values x_i , where $i \in I$, with $|I| \le k$ $\Pr\left[\bigwedge_{i \in I} (X_i = x_i)\right] = \prod_{i \in I} \Pr[X_i = x_i]$.

pairwise: 2-wise

2-wise Independent Bits

uniform & independent bits: (random source)

$$X_1, X_2, \dots, X_m \in \{0, 1\}$$

Goal: 2-wise independent uniform bits:

$$Y_1, Y_2, \dots, Y_n \in \{0, 1\}$$
 $n \gg m$

$oxed{a}$	b	$a \oplus b$
0	0	0
0	1	1
1	0	1
1	1	0

nonempty subsets:

$$\emptyset \neq S_1, S_2, \dots, S_{2^m-1} \subseteq \{1, 2, \dots, m\}$$

$$Y_j = \bigoplus_{i \in S_j} X_i$$

uniform & independent bits: $X_1, X_2, \ldots, X_m \in \{0, 1\}$ nonempty subsets: $S_1, S_2, ..., S_{2^m-1} \subseteq \{1, 2, ..., m\}$

$$Y_j = \bigoplus_{i \in S_j} X_i$$

2-wise independent uniform bits:

$$Y_1, Y_2, \dots, Y_{2^m-1} \in \{0, 1\}$$

 $\log_2 n$ total random bits

n-1 pairwise independent bits

Max-Cut

- partition V into two parts: S and T
- maximize the cut |C(S,T)|
- NP-hard
 - 0.878~-approximation in poly-time by SDP
 - easy 0.5-approximation

$$C(S,T) = \{uv \in E \mid u \in S \text{ and } v \in T\}$$

Random Cut

for each vertex $v \in V$

uniform & independent $Y_v \in \{0,1\}$

$$Y_v = 1 \implies v \in S$$

$$Y_v = 0 \implies v \in T$$

for each edge $uv \in E$

$$Y_{uv} = \begin{cases} 1 & Y_u \neq Y_v \\ 0 & Y_u = Y_v \end{cases} \quad |C(S,T)| = \sum_{uv \in E} Y_{uv}$$

$$\mathbf{E}[|C(S,T)|] = \sum_{uv \in E} \Pr[Y_u \neq Y_v] = \frac{|E|}{2} \ge \frac{OPT}{2}$$

Random Cut

for each vertex $v \in V$

uniform & 2-wise independent $Y_v \in \{0,1\}$

$$Y_v = 1 \implies v \in S$$

$$Y_v = 0 \implies v \in T$$

for each edge $uv \in E$

$$Y_{uv} = \begin{cases} 1 & Y_u \neq Y_v \\ 0 & Y_u = Y_v \end{cases} \quad |C(S,T)| = \sum_{uv \in E} Y_{uv}$$

$$\mathbf{E}[|C(S,T)|] = \sum_{uv \in E} \Pr[Y_u \neq Y_v] = \frac{|E|}{2} \ge \frac{OPT}{2}$$

Derandomization

for each vertex $v \in V$

uniform & 2-wise independent $Y_v \in \{0,1\}$

$$Y_v = 1 \implies v \in S$$
$$Y_v = 0 \implies v \in T$$

for each edge $uv \in E$

$$\mathbf{E}[|C(S,T)|] = \sum_{uv \in E} \Pr[Y_u \neq Y_v] = \frac{|E|}{2} \ge \frac{OPT}{2}$$

$$V = \{v_1, v_2, \dots, v_n\}$$

 $Y_{v_1}, Y_{v_2}, \ldots, Y_{v_n}$ constructed from $\lceil \log_2(n+1) \rceil$ bits

try all $2^{\lceil \log_2(n+1) \rceil} = O(n^2)$ possibilities!

2-wise Independent Variables

random source: uniform and independent

$$X_0, X_1 \in [p]$$

Goal: uniform and 2-wise independent

$$Y_0, Y_1, \dots, Y_{p-1} \in [p]$$
 prime p

for
$$i \in [p]$$
 $Y_i = (X_0 + i \cdot X_1) \mod p$

uniformity:
$$\forall i, a \in [p]$$
 $\Pr[Y_i = a] = \frac{1}{p}$

2-wise independence: $\forall i \neq j, a, b \in [p]$

$$\Pr[Y_i = a \land Y_j = b] = \frac{1}{p^2}$$

uniform and independent $X_0, X_1 \in [p]$

for
$$i \in [p]$$
 $Y_i = (X_0 + i \cdot X_1) \bmod p$

uniformity:
$$\forall i, a \in [p]$$

$$\Pr[Y_i = a]$$

$$= \Pr\left[(X_0 + i \cdot X_1) \bmod p = a \right]$$

$$= \sum_{j \in [p]} \Pr[X_1 = j] \cdot \Pr[(X_0 + ij) \bmod p = a]$$

$$= \frac{1}{p} \sum_{j \in [p]} \Pr\left[X_0 \equiv (a - ij) \pmod{p}\right]$$

$$=\frac{1}{p}$$

uniform and independent $X_0, X_1 \in [p]$

for
$$i \in [p]$$
 $Y_i = (X_0 + i \cdot X_1) \bmod p$

2-wise independence: $\forall i \neq j, a, b \in [p]$

$$\Pr[Y_i = a \land Y_j = b]$$

$$= \Pr[(X_0 + iX_1) \mod p = a \land (X_0 + jX_1) \mod p = b]$$

$$\begin{cases} (X_0 + iX_1) \equiv a \pmod{p} \\ (X_0 + jX_1) \equiv b \pmod{p} \end{cases}$$

has unique solution $X_0 = x_0, X_1 = x_1$

$$= \Pr[X_0 = x_0 \land X_1 = x_1] = \frac{1}{p^2}$$

Perfect Hashing

$$S = \{ a, b, c, d, e, f \} \subseteq [N]$$

```
uniform
```

$$h \mid [N] \rightarrow [m]$$

Table
$$T$$
:

$$m = O(n^2)$$

birthday!

UHA: Uniform Hash Assumption

```
search(x):
          retrieve h;
```

check whether
$$T[h(x)] = x$$
;

Universal Hash Family

(Carter-Wegman 1977)

universe [N]range |m|

hash family \mathcal{H} $\forall h \in \mathcal{H}$ $h:[N] \to [m]$

$$\forall h \in \mathcal{H}$$

$$h:[N]\to [m]$$

 \mathcal{H} is 2-universal if for uniform random $h \in \mathcal{H}$

 \forall distinct $x_1, x_2 \in [N]$

$$\Pr[h(x_1) = h(x_2)] \le \frac{1}{m}$$

"locally" like a uniform random hash function!

Universal Hash Family

(Carter-Wegman 1977)

universe [N] range [m]

hash family \mathcal{H} $\forall h \in \mathcal{H}$ $h:[N] \to [m]$

$$\forall h \in \mathcal{H}$$

$$h:[N]\to[m]$$

 \mathcal{H} is k-universal if for uniform random $h \in \mathcal{H}$

 \forall distinct $x_1, x_2, \ldots, x_k \in [N]$

$$\Pr[h(x_1) = h(x_2) = \dots = h(x_k)] \le \frac{1}{m^{k-1}}$$

"locally" like a uniform random hash function!

2-Universal ${\cal H}$

prime p for $a, b \in [p]$ define $h_{a,b} : [p] \to [p]$

$$h_{a,b}(x) = (a \cdot x + b) \bmod p$$

hash family $\mathcal{H} = \{h_{a,b} \mid a,b \in [p]\}$

 ${\cal H}$ is 2-universal

$$x_1 \neq x_2$$
 random $a, b \in [p]$

 $h_{a,b}(x_1)$ and $h_{a,b}(x_2)$ are 2-wise independent

2-Universal ${\cal H}$

universe [N] range [m] prime $p \ge N$

for $a, b \in [p]$ define $h_{a,b} : [N] \to [m]$

$$h_{a,b}(x) = ((a \cdot x + b) \bmod p) \bmod m$$

hash family $\mathcal{H} = \{h_{a,b} \mid 1 \le a \le p-1, b \in [p]\}$

 ${\cal H}$ is 2-universal

2-Universal ${\cal H}$

universe [N] range [m] prime $p \ge N$

for
$$a, b \in [p]$$
 define $h_{a,b} : [N] \to [m]$

$$h_{a,b}(x) = ((a \cdot x + b) \bmod p) \bmod m$$

hash family
$$\mathcal{H} = \{h_{a,b} \mid 1 \le a \le p-1, b \in [p]\}$$

 ${\cal H}$ is 2-universal

$$x_1 \neq x_2$$
 random $1 \leq a \leq p-1, b \in [p]$
$$\Pr[h_{a,b}(x_1) = h_{a,b}(x_2)] = \frac{|\{(a,b) \mid h_{a,b}(x_1) = h_{a,b}(x_2)\}|}{p(\not p\mathcal{H} \mid 1)}$$

for $a, b \in [p]$ define $h_{a,b} : [N] \to [m]$

$$h_{a,b}(x) = ((a \cdot x + b) \bmod p) \bmod m$$

$$x_1 \neq x_2$$
 random $1 \leq a \leq p-1, b \in [p]$

$$\Pr[h_{a,b}(x_1) = h_{a,b}(x_2)] = \frac{|\{(a,b) \mid h_{a,b}(x_1) = h_{a,b}(x_2)\}|}{p(p-1)} \le \frac{1}{m}$$

observation: $(a \cdot x_1 + b) \mod p \neq (a \cdot x_2 + b) \mod p$

$$\begin{cases} (a \cdot x_1 + b) \bmod p = u \\ (a \cdot x_2 + b) \bmod p = v \end{cases} \qquad u \neq v$$

each (u,v) corresponds to exact one (a,b)

$$|\{(a,b) \mid h_{a,b}(x_1) = h_{a,b}(x_2)\}|$$

$$= |\{(u, v) \mid u \neq v, u \equiv v \pmod{m}\}| \leq p(p-1)/m$$

universe [N] range [m] prime $p \ge N$

for
$$a, b \in [p]$$
 define $h_{a,b} : [N] \to [m]$

$$h_{a,b}(x) = ((a \cdot x + b) \bmod p) \bmod m$$

hash family
$$\mathcal{H} = \{h_{a,b} \mid 1 \le a \le p-1, b \in [p]\}$$

 \mathcal{H} is 2-universal

 \forall distinct $x_1, x_2, \dots, x_n \in [N]$

uniform random $h \in \mathcal{H}$

$$\forall i \neq j$$
 $\Pr[h(x_i) = h(x_j)] \leq \frac{1}{m}$

Collision Number

 ${\cal H}$ is 2-universal

uniform random $h \in \mathcal{H}$

$$\forall$$
 distinct $x_1, x_2, \ldots, x_n \in [N]$

$$\forall i \neq j$$
 $\Pr[h(x_i) = h(x_j)] \leq \frac{1}{m}$

$$\forall i \neq j$$
 $X_{ij} = egin{cases} 1 & h(x_i) = h(x_j) & \text{collision} \\ 0 & h(x_i) \neq h(x_j) \end{cases}$

collision no.:
$$X = \sum_{i < j} X_{ij}$$
 $\mathbf{E}[X] = \sum_{i < j} \mathbf{E}[X_{ij}] \le \frac{n^2}{2m}$ birthday: $\Pr[X \ge 1] \le \frac{1}{\mathbf{E}[X]} \le \frac{2m}{n^2} = \frac{1}{2}$ $n = 2\sqrt{m}$

birthday:
$$\Pr[X \ge 1] \le \frac{1}{\mathbf{E}[X]} \le \frac{2m}{n^2} = \frac{1}{2}$$
 $n = 2\sqrt{m}$

Perfect Hashing

$$S = \{x_1, x_2, \dots, x_n\} \subseteq [N]$$

2-universal
$$h$$
 $[N] \rightarrow [m]$

Pr[perfect] > 1/2

Table *T*:

h is from 2-universal \mathcal{H}

search(x): retrieve h;

check whether T[h(x)] = x;

(Fredman, Komlós, Szemerédi, 1984)

Goal: O(n) space, O(1) worst-case search time

for a set S of n items:

- search time: O(1)
- space ?

Goal:
$$\sum_{i=1}^{n} |B_i|^2 = O(n)$$

n itmes

for a set S of n items:

uniform random $h \in \mathcal{H}$

$$\sum_{i=1}^{B_1} |B_i|^2 = O(n)$$

Collision #:
$$\sum_{i=1}^{n} {|B_i| \choose 2} = \frac{1}{2} \sum_{i=1}^{n} |B_i| (|B_i| - 1)$$

$$= \frac{1}{2} \left(\sum_{i=1}^{n} |B_i|^2 - \sum_{i=1}^{n} |B_i| \right) = \frac{1}{2} \left(\sum_{i=1}^{n} |B_i|^2 - n \right)$$

n itmes

for a set S of n items:

uniform random $h \in \mathcal{H}$

$$\sum_{i=1}^{n} |B_i|^2 = O(n)$$

$$\sum_{i=1}^{n} |B_i|^2 = n + 2 \cdot (\text{collision } \#) \qquad \mathbf{E}[\text{collision } \#] \le \frac{n}{2}$$

$$\mathbf{E}[\text{collision } \#] \le \frac{n}{2}$$

$$\mathbf{E} \left| \sum_{i=1}^{n} |B_i|^2 \right| \leq 2n \qquad \text{Markov!} \quad \frac{\leq 4n \text{ with}}{\text{prob } \geq \frac{1}{2}.}$$

$$\leq 4n$$
 with prob $\geq \frac{1}{2}$.

(Fredman, Komlós, Szemerédi, 1984)

Goal: O(n) space, O(1) worst-case search time

