Cell-Probe Proofs and Nondeterministic
Cell-Probe Complexity

Yitong Yin*

Department of Computer Science, Yale University
yitong.yin@yale.edu.

Abstract. We study the nondeterministic cell-probe complexity of static
data structures. We introduce cell-probe proofs (CPP), a proof system
for the cell-probe model, which describes verifications instead of compu-
tations in the cell-probe model. We present a combinatorial characteri-
zation of CPP. With this novel tool, we prove the following lower bounds
for the nondeterministic cell-probe complexity of static data structures:

— We show that there exist data structure problems which have super-
constant nondeterministic cell-probe complexity. In particular, we
show that for the exact nearest neighbor search (NNS) problem or
the partial match problem in high dimensional Hamming space, there
does not exist a static data structure with Poly(n) cells, each of
which contains n°™® bits, such that the nondeterministic cell-probe
complexity is O(1), where n is the number of points in the data set
for the NNS or partial match problem.

— For the polynomial evaluation problem, if single-cell nondeterminis-
tic probes are sufficient, then either the size of a single cell is close
to the size of the whole polynomial, or the total size of the data
structure is close to that of a naive data structure that stores results
for all possible queries.

1 Introduction

We study the problem of nondeterministic cell-probe complexity of static data
structures.

Given a set Y of data instances, and a set X of possible queries, a data
structure problem can be abstractly defined as a function f mapping each pair
consisting of a query z € X and a data instance y € Y to an answer. One of
the most well-studied examples of data structure problems is the “membership
query”: X = [m] is a data universe, ¥ = ([TT'Z]), and f(z,y) = 1if z € y and
f(z,y) = 0 if otherwise.

There are some other important examples of data structure problems:

Exact nearest neighbor search (NNS): given a metric space U, let
X=UandY = (Z), and for every z € X and y € Y, f(z,y) is defined as
the closest point to x in y according to the metric.

* Supported by a Kempner Foundation Fellowship and NSF grant CNS-0435201.

2 Yitong Yin

Partial match: X = {0,1,%}4, Y = ({O’i}d), and f(z,y) € {0,1} such that
for every x € X and y € Y, f(x,y) = 1 if and only if there exists z € y
having either x; = z; or x; = * for every 1.

Polynomial evaluation: X = 2% is a finite field, Y = 2*? is the set of all
(d — 1)-degree polynomials over the finite field 2¥, and f(x,y) returns the
value of y(x).

A classic computational model for static data structures is the cell-probe
model [11]. For each data instance y, a table of cells is constructed to store y.
This table is called a static data structure for some problem f. Upon a query =z,
an all-powerful algorithm tries to compute f(z,y), based on adaptive random
access (probes) to the cells.

The cell-probe model is a clean and general model for static data structures
and serves as a great tool for the study of lower bounds. Previous research on
static data structures in the cell-probe model has focused on the complexity of
adaptive cell-probes. In this work, we focus on the complexity of nondeterministic
cell-probes and the tradeoff between the number of probes needed and with
space. We speculate that it is an important problem because: (1) in considering
the complexity of data structures, nondeterminism is a very natural extension
to the cell-probe model; (2) instead of adaptive computations, nondeterministic
cell-probes capture the question of verification, which is a natural and important
aspect of data structures.

Although nondeterministic cell-probe complexity is an important problem,
there are few general tools and techniques for studying it, especially for the case
of static data structures. In fact, because of the great generality of the cell-
probe model, even for deterministic cell-probe complexity, super-constant lower
bounds for static data structures are rare. Nondeterminism grants the cell-probe
model extra power and makes non-trivial lower bounds even rarer. For many
standard examples of data structure problems, such as membership query, it is
easy to construct a data structure that has standard space usage and constant
nondeterministic cell-probe complexity.

It is thus worth asking whether there exists any data structure problem such
that in data structures with feasible sizes (polynomial in the size of data set),
the nondeterministic cell-probe complexity is super-constant. More importantly,
it calls for a general technique to prove lower bounds on the nondeterministic
cell-probe complexity of static data structures.

1.1 Owur contribution

In this paper, we initiate the study of nondeterministic cell-probe complexity
for static data structures. As a first step, we characterize the power of a single-
cell nondeterministic probe. Although at first glance this may seem like a very
restricted case, by applying a trivial parameter reduction, we show that the case
of a single-cell probe is actually a canonical case for all nondeterministic cell-
probe mechanisms, and is thus sufficient to prove super-constant lower bounds
for general nondeterministic cell-probe mechanisms.

Cell-Probe Proofs and Nondeterministic Cell-Probe Complexity 3

We introduce cell-probe proofs, a proof system in the cell-probe model. This
notion of proofs corresponds to considering verifications instead of computations
in the cell-probe model. Unlike the fully adaptive computations in the traditional
cell-probe model, the formulation of cell-probe proofs shows a combinatorial
simplicity. We introduce a combinatorial structure that fully characterizes which
problems have single-cell proofs, and general cell-probe proofs are reduced to this
case.

With these novel tools, we show following lower bounds on nondeterministic
cell-probe complexity:

— We show that there exist static data structure problems with super-constant
nondeterministic cell-probe complexity. In particular, we show that for the
exact nearest neighbor search (NNS) problem or partial match problem in
high dimensional Hamming space, there does not exist a static data structure
with Poly(n) cells, each of which contains n°?) bits, such that the nonde-
terministic cell-probe complexity is O(1), where n is the number of points
in the data set for the NNS or partial match problem.

— For the polynomial evaluation problem, if for a static data structure, the
single-cell nondeterministic probes are sufficient to answer queries, then ei-
ther the size of the single cell is close to the size of the whole polynomial, or
the total size of the data structure is close to that of the naive data structure
that stores results for all possible queries.

1.2 Related work

To the best of our knowledge, there is no general technique for proving lower
bounds for nondeterministic cell-probe complexity of static data structures. Nor
do there exist any non-trivial lower bounds for this question. Previous work on
static data structures in the cell-probe model have focused on the complexity of
adaptive cell-probes. The most important tool for proving such lower bounds is
asymmetric communication complexity as introduced by Miltersen et al. in [10].

In [6], Fredman and Saks introduce the chronogram method. This powerful
technique is specialized for proving the query/update trade-off for dynamic data
structures, especially for the problems which are hard only in the dynamic case.
It is worth noting that the chronogram method can prove nondeterministic lower
bounds for certain dynamic data structure problems. This is formally addressed
by Husfeldt and Rauhe in [7], and recently by Demaine and Patragcu in [5].
However, as pointed in [7], this is only a by-product of the nondeterministic
nature of chronogram method and can only yield amortized query/update trade-
offs for dynamic data structure problems with a certain property. Because of the
unique structure of the chronogram method, this technique can not be utilized
to prove lower bounds for static data structures.

2 Cell-probe proofs

A static data structure problem or just data structure problem, is rep-
resented as a boolean function f: X x Y — {0,1}. For the purposes of proving

4 Yitong Yin

lower bounds, we only consider decision problems. We refer to each y € Y as
data and each z € X as a query. For each pair of z and y, f(z,y) specifies the
result of the query = to the data structure that represents the data y.

In the cell-probe model (c.f. [11,6]), the data instance y is preprocessed and
stored in cells, and for each query z, the value of f(x,y) is decided by adaptive
probes to the cells. Formally, a cell-probe scheme consists of a table structure
and a query algorithm. The table structure 7' : Y x I — {0,1}" specifies a
table T, : I — {0, 1} for each data instance y, which maps indices of cells
to their contents. Given a query x, the query algorithm makes a sequence of
probes i1, 12, ... to the cells, where i depends on x and all previous cell probes
(11, Ty (1)), (B2, Ty(i2)), - - -, (-1, Ty (ik—1)). The value of f(x,y) is decided at
last based on the collected information.

In this work, we focus on nondeterministic cell-probes. Given a query z
to a data instance y, a set of ¢ cells iy,149,...,4; are probed nondeterministi-
cally, such that the value of f(x,y) is decided based on the probed information
(i2. Ty (). {iz. Ty (). - (1. T i)

In order to formally characterize nondeterministic cell-probes for data struc-
tures, we introduce a new concept, cell-probe proofs, which formalizes the
notion of proofs and verifications in the cell-probe model. For a specific data
structure problem f, a cell-probe proof system (CPP) may be defined for f as
described below.

We can think of a cell-probe proof system as a game played between an
honest verifier and an untrusted prover. Both of them have unlimited computa-
tional power. Given an instance of data, a table of cells is honestly constructed
according to the rules known to both prover and verifier. Both the prover and
the verifier know the query, but only the prover can observe the whole table and
thus knows the data. The prover tries to convince the verifier about the result
of the query to the data by revealing certain cells. After observing the revealed
cells, the verifier either decides the correct answer, or rejects the proof, but can
not be tricked by the prover into returning a wrong answer.

Formally, a cell-probe proof system (CPP) consists of three parts:

— A table structure 7 : Y x I — {0, 1}°. For any data y, a table T,, : I — {0,1}®
is a mapping from indices of cells to their contents.

— A prover P. For every « and y, Py, C I is a set of cells. We refer to Py, as
a proof and {(i,T,(7)) | i € Py} as a certificate.

— A verifier v, which maps the queries with the certificates to the answers
{0,1, L}. Given an instance of data y, for any query x, both of the following
conditions hold:

(Completeness) 3P,, C I :v(x,{(i,Ty(i)) | i € Pry}) = f(z,y), and

(Sownduess) P € 15 ol (60 |1 P = { {0

An (s,b,t)-CPP is a CPP such that for every z and y: (1) the table has s
cells, i.e. |I| = s; (2) each cell contains b bits; (3) each proof consists of ¢ cell
probes, i.e. |Pyy| = t.

Cell-Probe Proofs and Nondeterministic Cell-Probe Complexity 5

Ezample: For the membership problem|[11], where X = [m] and Y = ([71’;]), and
f(z,y) = 1if and only if z € y, a naive construction shows a 2-cell proof: with a
sorted table storing y, if x € y, the proof is the cell that contains z, if x & y, the
proof consists of two consecutive cells which are the predecessor and successor
of x. The same CPP also works for predecessor search|2].

The notion of cell-probe proofs captures the necessary information to answer
queries, and characterizes the nondeterministic probes in the cell-probe model.
It is natural to see that for a cell-probe scheme, for any query, the cells probed
by an adaptive algorithm contain a cell-probe proof. This can be seen as a data
structure counterpart of P C NP.

It is important to note that although a data structure problem is nothing
but a boolean function, CPP is very different from the certificate complexity of
boolean functions [4]. In CPP, the prover and the verifier communicate with each
other via a table structure, which distinguishes CPP from standard certificate
complexity. For any data structure problem, the table structure can always store
the results for all queries, making one cell-probe sufficient to prove the result,
which is generally impossible in the model of certificate complexity.

Unlike adaptive cell-probes, CPP has a static nature, which is convenient for
reductions. As stated by the following lemma, any CPP can be trivially reduced
to 1-cell proofs.

Lemma 1 (reduction lemma). For any data structure problem f, if there
exists an (s,b,t)-CPP, then there exists an (s',bt,1)-CPP.

Proof. Just store every t-tuple of cells in the (s,b,t)-CPP as a new cell in the
(st,bt,1)-CPP. 0

3 Characterization of CPPs

We now introduce a combinatorial characterization of CPP. Given a set system
F C2Y forany y € Y, we let F(y) = {F € F |y € F}. For convenience, for
a partition P of Y, we abuse this notation and let P(y) denote the set F € P
that y € F.

Definition 1. We say a set system F C 2¥ is an s x k-partition of Y, if F is
a union of s number of partitions of Y, where the cardinality of each partition
is at most k.

This particular notion of partitions of Y fully captures the structure of cell-
probe proofs. In this extended abstract, we only provide the characterization
of 1-cell proofs. As shown by Lemma 1, this is a canonical case for cell-probe
proofs.

Theorem 1. There is an (s,b,1)-CPP for f : X x Y — {0,1}, if and only if
there exists an s x 20-partition F of Y, such that for every x € X and every
y €Y, there is an F € F(y) that |f(z, F)| = 1.

6 Yitong Yin

Proof. (=) Given a table structure T : Y x I — {0,1}", define the map of
the table structure as a s x 2° matrix M such that M;; = {y € Y | T,(i) = j},
i.e. M;; is the set of such data set y that the content of the ¢’s cell of the table
storing y is j. It is clear that each row ¢ of M is a partition of Y with at most
2% partition sets, because each data set y has one and only one value of T (i),
and there are at most 2° possible values for a cell, therefore the matrix M is an
s x 2b-partition F of Y, where each M;; is an F € F.

If there is an (s,b,1)-CPP of f, due to the completeness of CPP, for every
x € X and every y € Y, there exists a cell ¢ that (i, j) becomes the certificate
where j = T,(¢), and due to the soundness of CPP, there must not be any other
y' € Y such that Ty (i) = j and f(z,y’) # f(x,y). Note that by definition of M,
M;; contains all 3 such that T, (i) = j, thus |f(x, M;;)| = 1.

(<=) Assuming that F is an s x 2%-partition of Y such that for every = and
every y there is an F' € F(y) that |f(z, F)| = 1, we rewrite F in the form of an
s x 2° matrix M that M;; is the F' € F which is indexed as the jth partition
set in the ith partition. We can define our table structure 7 : Y x I — {0,1}®
in the way that T, (4) is assigned with the unique j that y € M,;. Because each
row of M is a partition of Y, such T is well-defined.

For every x € X and every y € Y, there is an F € F(y) that |f(z, F)| = 1,
i.e. there is an M;; > y that |f(x, M;;)| = 1, then we use (4, j) as the certificate.
Since for every = and y, there exists such ¢, the corresponding CPP is complete,
and since f(z,-) is constant on such M;;, the CPP is also sound. a

Let Vi = {y € Y | f(z,y) = 0} and Y = {y € YV | f(z,y) = 1}. An
alternative characterization is that there is a (s,b,1)-CPP for a problem f :
X xY — {0,1}, if and only if there exists an s x 2*-partition F of Y, such that
{Y§’,Y{" } e x is contained by the union-closure of F. Note that this statement
is equivalent to the statement in Theorem 1, so we state it without proof. With
this formulation, we get some intuition about 1-cell proofs, that is, a problem
f: X xY — {0,1} has simple proofs, if and only if there exists some set system
F C 2Y with a simple structure, such that the complexity of F matches the
complexity of the problem.

4 Nearest neighbor search

We consider the decision version of nearest neighbor search, A-near neighbor
(A-NN), in a high dimensional Hamming cube {0,1}%. Here X = {0,1}¢, Y =
({Oi}d) and f(z,y) € {0,1} answers whether there exists a point in y within
distance \ from the x. As in [3,1], we assume that d = w(logn) Nn°M) to make
the problem non-trivial.

We prove that with the above setting, there does not exist a (Poly(n), n°®), 1)-
CPP for the A-NN problem, thus due to Lemma 1, a super-constant lower bound
holds for the problem. To show this, we show the same lower bound for the par-
tial match problem[9, 8], which is an instantiation of the A-NN problem as shown
in [3].

Cell-Probe Proofs and Nondeterministic Cell-Probe Complexity 7

The partial match problem is defined as follow: The domain is a Hamming
cube {0,1}%, where d = w(logn) N n°"), and each data instance y is a set of n

points from the domain, i.e. Y = ({O’i}d). The set of queries is X = {0, 1,*}%.
Given a data instance y € ({Oi}d) and a query x € {0,1,*}4, f(z,y) =1 if and
only if there is a z € y such that z matches = except for the bits assigned with
LL*” .

Theorem 2. There is no (s,b,1)-CPP for the partial match problem, if s =
Poly(n) and b = n°W),

Proof. We denote the problem as f. From the characterization of (s,b,1)-CPP
given in Theorem 1, it is sufficient to show that for any s x 2° partition F of Y,
there exist z € X and y € Y such that for all F' € F(y), |f(z, F)| = 2. We prove
this with the probabilistic method. With some distribution of z and y, we show
that for any s x 2° partition F of Y, Pr[VF € F(y),|f(z, F)| = 2] > 0.

For the rest of the proof, we assume that y is uniformly selected from Y, and
x is generated by uniformly choosing » = 2logn bits and fixing each of them
uniformly and independently at random with 0 or 1, and setting the other bits
to “x”.

We then prove two supporting lemmas. Recall that for a partition P of Y,
P(y) denotes the set F' € P that y € F.

Lemma 2. For any partition P of Y, if |P| < 2°, where b = n°M), then

2d Q1)
< n < —w(1))
e Pl < (%) /2] <

Proof. Welet P = {F|, Fy, ..., Fy} where k < 2° and let p; = |F;|/|Y|. Because
P is a partition of Y, we know that). p; = 1. We define a random variable
Z = |P(y)|/|Y|. Since y is picked uniformly at random from Y, it holds that
Z = p; with probability p;. Since there are at most 2 different P(y), by union
bound,

9d
Pr [|7)(y)| < ()/QTLQ(I)} <2".Pr [Z = p; where p; < g—n?®
Y n
2(1)

— 2b7n
— @
O

For simplicity, we generalize the notation of f to arbitrary point set A C
{0,1}¢, where f(x,A) is conventionally defined to indicate whether there is a
z € A that matches x

Lemma 3. For any A C {0,1}%, if |A| > (1 —27%)2¢ for k = Llogn, then

Pr{f(z, 4) = 0] < n=«Ww,

8 Yitong Yin

Proof. We let B = {0,1}%\ A be the complement of A in the d-dimensional cube.
Note that |B| < 2¢7%. According to our definition of the distribution of x, z is
in fact a random (d — r)-dimensional subcube in {0,1}%, and f(z, A) = 0 only
if the cube specified by x is contained in B. This chance is maximized when B
itself is a cube. Thus without loss of generality, we can assume that B is the set
of z € {0,1}% whose first k bits are all ones. Therefore,

Prf(z, A) = 0] < Pr[z’s first k bits are all ones] <

We then prove that for all s x 2° partitions F of Y, the probability Pr[3F €
F(y), f(xz, F) = {1}] and Pr[3F € F(y), f(x, F) = {0}] are both very small.

For any F' € F(y), we have y € F, thus 3F € F(y), f(z, F) = {1} implies
that f(x,y) = 1, therefore for an arbitrary s x 2° partition F of Y,

Pri3F € F(y), /(. F) = {1}] < Pr{f(z,y) = 1]
< zg[ﬂz € y, x matches z|
<n-27"
=o(1).

To bound the probability Pr[3F € F(y), f(x,F) = {0}], we observe that each
s x 2% partition F is just a union of s many partitions of Y, each of which is
with cardinality at most 2°, therefore, by union bounds, it holds that

Pr[3F € F(y), f(o, F) = {0}] < 5- Prf(z, P(y) = {0}]. (1)

z,y

for some partition P of Y where |P| < 2°. Tt is then sufficient to show that for
arbitrary such partition P, the probability Pr[f(z, P(y)) = {0}] is very small.

We choose a threshold k = ilogn, and separate the case that |P(y)| <
((1_2;k)2d) and the case that |P(y)| > ((1_2:)?1). According to Lemma 2, for
any partition P of Y with |P| < 2%, the probability that |P(y)| < ((1_2;)20[) =
(2:)/2"9(1) is at most n—«),

Welet Ay = UP(y) = U, ep(y,) ¥ Note that 4, € {0, 1}4, and f(z,P(y)) =
{0} implies that f(z,A,) = 0. For such P(y) that |P(y)| > ((1_2:)%)7 by

the Pigeonhole Principle, it holds that |4, > (1 —27%)29. Due to Lemma 3,
f(z, Ay) = 0 with prohibitively small probability. Putting these together, it holds

Cell-Probe Proofs and Nondeterministic Cell-Probe Complexity 9

for an arbitrary partition P of Y with |P| < 2° that

n

Pr[f(z, P(y)) = {0}] < Pr [P(y) . <<1 - gkmﬂ
+Pr [f(x,P(y)) = {0} ’ P(y)| > ((1 - 2k)2d)]

n
<n=“W 4 pr [f(z,Ay) ~0 \ 14, > (1 - 2*)2(1}
< n—v@)
Combining with (1), we have that
Pr[3F € F(y), f(z, F) = {0}] < s-n~M = o(1).
z,Y

Therefore, for an arbitrary s x 2° partition F of Y, it holds that
PIVE € F(y), |f(r, F) = 2] 2 1~ PrEF € F(y), f(x, F) = {1}
~PI3F € F(y), £ (2, F) = {0)]
>1-0(1).

It follows that for any s x 2° partition F of Y, where s = Poly(n) and b = n°(}),
there exist x € X and y € Y such that for every F' € F(y), it holds that
|f(z, F)| = 2. By Theorem 1, there is no (s,b,1)-CPP for f with the above
range of s and b. a

In [3], it is shown that the partial match problem can be reduced to the
A-NN problem. Because the reduction only involves mapping between instances
of problems, the existence of an (s, b, 1)-CPP for A-NN implies the existence of
a CPP for partial match with essentially the same parameters. The following
corollary is implied.

Corollary 1. There does not exist a (Poly(n),n°™ 1)-CPP for the nearest
neighbor search problem with n points in d-dimensional Hamming space where
d = w(logn) Nn°W,

Due to Lemma 1, the following super-constant lower bound on the nondeter-

ministic cell-probe complexity holds.

Corollary 2. There does not exist a (Poly(n),n°™, 0(1))-CPP for the near-
est neighbor search problem or the partial match problem with n points in d-
dimensional Hamming space where d = w(logn) N no.

5 Polynomial evaluation

Let 2F be a finite field. Let Y = 2*¢ be the set of all polynomials of degree
< (d — 1) over the finite field 2. Throughout this section, we assume that
d <2k,

10 Yitong Yin

Let X = 22* be the set of all pairs of elements of the finite field 2. A
decision version of the polynomial evaluation problem f is defined as: for every
query (z,z) € X and every data instance g € Y, f((x,z2),g9) =1 if g(z) = z and
f((z, 2),g) = 0 otherwise. Intuitively, a polynomial g is preprocessed and stored
as a data structure, so that for each query (z,z), the data structure answers
whether g(z) = 2.

There are two naive upper bounds for one-cell proofs:

1. A (1,kd,1)-CPP: store the whole polynomial in a single cell, and on each
query, one probe reveals the whole polynomial;

2. A (2% k,1)-CPP: each cell corresponds to an input z, and the cell stores the
value of g(x), thus on each query (z, z), one probe to the cell corresponding
to x answers whether g(z) = z.

We are going to prove that the above naive upper bounds are essentially
optimal for single-probe proofs. We show that for any (s,b, 1)-CPP, either b is
close to large enough to store a whole polynomial as in (1), or the total storage
size s - b is exactly as large as in (2).

We first prove two lemmas. For any subset P C Y, let 7(P) = [{x € 2F |
Yg1,92 € P,gi1(x) = g2(x)}|, which represents the number of such assignments
of x that all polynomials in P yield the same outcome. It is trivial to see that
for |P| <1, 7(P) = 2.

Lemma 4. If |P| > 1, it holds that

log |P
7(P)<d-— ng' .

Proof. We write 7(P) briefly as 7. Let x1, 23, . .., z, be such that all polynomials
in P yield the same outcomes. We arbitrarily pick other x, 1,z 42,...,24. For
any two different polynomials g1, g € P, it can never hold that g1 (z;) = go(x;)
foralli=7+4+1,742,...,d, since if otherwise, g1 = go by interpolation. Recall
that g is a polynomial over the finite field 2%, thus for an arbitrary g € P and
an arbitrary z, there are at most 2¥ possible values for g(x). Therefore, due to
Pigeonhole Principle, in order to guarantee that no two polynomials in P agree
onall 2,41,2,49,...,24, it must hold that 2¥(¢=7) > |P|, i.e. 7(P) < d — %.

(|

Lemma 5. Given a partition P of Y, let g be a uniformly random polynomial
inY. E{T(P(g))} represents the expected number of the input xs such that all
polynomials in the partition block P(g) yield the same outcome, where the expec-
tation is taken over random g. For any partition P of Y such that |P| < 2° and
b < k(d—1)—logk, it holds that

E{r(P@) < 7.

Cell-Probe Proofs and Nondeterministic Cell-Probe Complexity 11

Proof. Let Py, P, ..., Py denote the partition blocks, and let g1, ¢o, ..., gy be
b

the respective cardinalities. Naturally we have that Z?:l ¢i = 2F4. We assume

that ¢; =0fori=1,2,...,mg, g =1fori=mg+1,mg+2,...,m,and ¢; > 1

for i > m. For those P; that i < m, |P;| = ¢; < 1, thus 7(P;) = 2¥. According to

Lemma 4,

b
<X 0 1 — @
E{r(P(9))} = Z WT(Pi) + Z WT(PO + Z QﬁT(Pi)
i=1 i=mo+1 i=m+1
2k 2 qi log g;
S(m*mo)'WJr Z kad(d k2>' (2)
1=m-+1

Recall that E?imH g =2k 57" q; = 28 —m 4+ my. According to Lagrange
multipliers, (2) is maximized when all ¢; for i = m + 1,m +2,...,2" are equal.
Thus (2) is less than or equal to

m—mo 2" —m+mg log(2k4 — m + mg) — log(2° — m)
9k(d—1) okd d- k :

Let € = #5772, The above formula becomes

log 2%4(1 — €) —log 2°(1 — 27°(2*de + mo))>
k

2% + (1 —¢) <d

< 2Fe 4 %(1 —€) (b+log(l —2"7b¢) —log(1 —¢)).

Note that 0 < e < 2°7%, By standard analysis, if b < k(d — 1) — logk, the
above function of € is maximized when e = 0, i.e. E{7(P(g))} < 2. O

With the above lemmas, we can prove the following theorem.

Theorem 3. For any (s,b,1)-CPP for the polynomial evaluation problem with
parameters k and d where d < 2%, either b > k(d—1) —logk ors-b>k- 2k

Proof. We will prove that there does not exist an (s, b, 1)-CPP for the polynomial
evaluation problem if b < k(d — 1) —logk and s-b < k - 2%,

Let be a uniformly random element of 2¥, and let ¢ be a uniformly random
polynomial from Y. For any partition P of Y that |P| < 2°, according to Lemma
9,

b

Eg[vghgz € P(9),91(x) = g2(2)] = %E{T(p(g»} < —

Therefore, for any s x 2° partition F of Y, it holds that,
Eg[EIF € ‘F(g)vv.glvg2 € Fa gl(m) = 92(1')}
<s- fgwgla% € P(9), 91(x) = g2()]
s-b

2k

IN

<1

12 Yitong Yin

where the first inequality is due to the observation that F is a union of s instances
of 20-partitions of Y. Therefore, for any s x 2° partition F of Y,

Pr[VF € F(g)391,92 € F,g1(x) # g2(z)] > 0.

z,9

By probabilistic methods, we know that for any s x 2° partition F of Y, there
exists some (z,2) € X and some g € Y such that g(z) = z, but for all F' € F(g),
there exists h € F such that h(z) # z.

According to Theorem 1, we know that there does not exist (s,b,1)-CPP
with the given range of s and b. ad

Acknowledgment. I would like to thank James Aspnes for helpful discussions
and editing assistance, and Dana Angluin for her comments on an early version
of the paper.

References

1. Barkol, O., Rabani, Y.: Tighter lower bounds for nearest neighbor search and
related problems in the cell probe model. Journal of Computer and System Sciences
64(4) (2002) 873-896

2. Beame, P., Fich, F.: Optimal bounds for the predecessor problem and related
problems. Journal of Computer and System Sciences 65(1) (2002) 38-72

3. Borodin, A., Ostrovsky, R., Rabani, Y.: Lower bounds for high dimensional nearest
neighbor search and related problems. Proceedings of the thirty-first annual ACM
Symposium on Theory of Computing (1999) 312-321

4. Buhrman, H., de Wolf, R.: Complexity measures and decision tree complexity: a
survey. Theoretical Computer Science 288(1) (2002) 21-43

5. Demaine, E., Patragcu, M.: Logarithmic lower bounds in the cell-probe model.
SIAM Journal of Computing 35(4) (2006) 932-963

6. Fredman, M., Saks, M.: The cell probe complexity of dynamic data structures.
Proceedings of the twenty-first annual ACM Symposium on Theory of Computing
(1989) 345-354

7. Husfeldt, T., Rauhe, T.: Hardness results for dynamic problems by extensions of
Fredman and Saks’ chronogram method. Proceedings of the 25th International
Colloquium on Automata, Languages and Programming (1998) 67-78

8. Indyk, P., Goodman, J., O’Rourke, J.: Nearest neighbors in high-dimensional
spaces. Handbook of Discrete and Computational Geometry, chapter 39 (2004)

9. Jayram, T., Khot, S., Kumar, R., Rabani, Y.: Cell-probe lower bounds for the
partial match problem. Journal of Computer and System Sciences 69(3) (2004)
435-447

10. Miltersen, P., Nisan, N., Safra, S., Wigderson, A.: On data structures and asym-
metric communication complexity. Journal of Computer and System Sciences 57(1)
(1998) 37-49

11. Yao, A.: Should tables be sorted? Journal of the ACM 28(3) (1981) 615-628

