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• Variables:  with finite domains 


• (local) Constraints: 


• each  is defined on a subset vbl(c) of variables


 


• CSP formula:   


 


• Example (k-SAT):   Boolean variables 


 

V = {x1, x2, …, xn} Q1, …, Qn

C = {c1, c2, …, cm}

c ∈ C

c : ⨂
i∈𝗏𝖻𝗅(c)

Qi → {𝚃𝚛𝚞𝚎, 𝙵𝚊𝚕𝚜𝚎}

∀x ∈ Q1 × Q2 × ⋯ × Qn

Φ(x) = ⋀
c∈C

c (x𝗏𝖻𝗅(c))
V = {x1, x2, x3, x4, x5}

Φ = (x1 ∨ ¬x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x3 ∨ ¬x4 ∨ ¬x5)

Constraint Satisfaction Problem
Φ = (V, Q, C)

clausek-CNF



• Variables take independent random values 


• Violation Probability: each  is violated with prob. ≤ p 

• Dependency Degree: each  shares variables with ≤ D 
other constraints , i.e. 


• LLL [Erdős, Lovász, 1975]:


  ⟹  solution exists


• Constructive LLL [Moser, Tardos, 2010]:


 ⟹  solution can be found very efficiently

X1, X2, …, Xn

c ∈ C

c ∈ C
c′ ∈ C 𝗏𝖻𝗅(c) ∩ 𝗏𝖻𝗅(c′ ) ≠ ∅

epD ≤ 1

epD ≤ 1

Lovász Local Lemma (LLL)



Lovász Local Lemma (LLL)
• (k, d)-CNF:   


• Uniform random 


• Violation probability:        


• Dependency degree: 


• LLL:      ( )


Φ = (x1 ∨ ¬x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x3 ∨ ¬x4 ∨ ¬x5)

X1, X2, …, Xn ∈ {𝚃𝚛𝚞𝚎, 𝙵𝚊𝚕𝚜𝚎}

p = 2−k

D ≤ dk

k ≳ log d k ≥ log2 d + log2 k + O(1)

c1 c2 c3

x1 x2 x3 x4 x5

constraint width

= k

variable degree

≤ d

a SAT solution exists 

and can be found in O(dkn) timeepD ≤ edk2−k ≤ 1

LLL

Moser-Tados



• : uniform distribution over all satisfying solutions of μ Φ

Sampling & Counting

generate a uniform random ;


if  then accept else reject;


 is the distribution of 

∀x ∈ Q1 × Q2 × ⋯ × Qm

Φ(x) = 𝚃𝚛𝚞𝚎

μ (x ∣ accept)

Rejection Sampling

SAT solutions may be exponentially rare!

Input: a CSP formula 

Output :

• (sampling)  uniform random satisfying solution

• (counting)   # of satisfying solutions

Φ = (V, Q, C)



• exact counting is #P-hard


•  


• Application:  inference in probabilistic graphical models

Sampling & Counting
Input: a CSP formula 

Output :

• (sampling)              uniform random satisfying solution

• (counting)                             # of satisfying solutions

Φ = (V, Q, C)

an estimation of 
almost

Almost Uniform 
Sampling 

Approximate 
Counting

self-reduction
[Jerrum, Valiant, Vazirani 1986]

adaptive simulated annealing
[Štefankovič, Vempala, Vigoda 2009]

c : ⨂
i∈𝗏𝖻𝗅(c)

Qi → ℝ≥0μ(x) ∝ Φ(x) = ∏
c∈C

c (x𝗏𝖻𝗅(c))
Inference: Pr

X∼μ
[Xi = ⋅ ∣ XS = xS]

where eachGibbs

distribution



• Sampling almost uniform k-SAT solution under LLL-like condition?


• Random walk in solution space (Markov chain Monte Carlo, MCMC):

Sampling k-SAT Solutions

“the solution space (and hence the natural 
Markov chain) is not connected”

Mathematics and Computation [Wigderson 2020]:

Rapid Mixing Slow (Torpid) Mixing Not Mixing

We ere here!



• Sampling almost uniform SAT solution under LLL-like condition?

Sampling k-SAT Solutions

(k,d)-CNF Condition Complexity Technique

Hermon, Sly, Zhang ’16 monotone CNF [1]

MCMC

Guo, Jerrum, Liu ’17 s ≥ min(log dk, k/2) [2]
 Partial Rejection Sampling

Bezáková et al  ’16 NP-hard lower bound

k ≳ 2 log d (dk)O(1)n log n

k ≳ 2 log d (dk)O(1)n

k ≤ 2 log d − C

[1] Monotone CNF:  all variables appear positively, e.g. 
[2] s:  two dependent clauses share at least 𝑠 variables.

Φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x3 ∨ x4 ∨ x5)

Moitra  
STOC’17 JACM’19 Coupling + LPk ≳ 60 log d nO(d2k2)

Feng, Guo, Y., Zhang ’20 Projected MCMCk ≳ 20 log d Õ(d2k3n1.000001)

c1 c2 c3

x1 x2 x3 x4 x5

constraint width

= k

variable degree

≤ d

LLL cond.:

 k ≳ log d



Main Theorem (for CNF)

For any sufficiently small , any (k,d)-CNF satisfying





• Sampling algorithm:

draw almost uniform SAT solution in time 


• Counting algorithm:

count # SAT solutions approximately in time 

ζ ≤ 2−20

k ≥ 20 log d + 20 log k + 3 log
1
ζ

Õ(d2k3n1+ζ)

Õ(d2k3n2+ζ)

[Feng, Guo, Y., Zhang ’20]



Markov Chain for k-SAT
Start from an arbitrary satisfying 


At each step:


• pick  uniformly at random


• resample  

x ∈ {𝚃, 𝙵}V

i ∈ V

xi ∼ μi( ⋅ ∣ xV∖{i})
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(x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ x7 ∨ x5) ∧ (x4 ∨ ¬x5 ∨ x6)

T

F

• : uniform distribution over all SAT solutions 


• : marginal distribution of  cond. on current values of all other variables

μ x ∈ {𝚃, 𝙵}V

μi( ⋅ ∣ xV∖{i}) xi

Glauber Dynamics
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Markov Chain for k-SAT
(x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ x7 ∨ x5) ∧ (x4 ∨ ¬x5 ∨ x6)

T

F

• : uniform distribution over all SAT solutions 


• : marginal distribution of  cond. on current values of all other variables

μ x ∈ {𝚃, 𝙵}V

μi( ⋅ ∣ xV∖{i}) xi

x5

Glauber Dynamics

Start from an arbitrary satisfying 


At each step:


• pick  uniformly at random


• resample  

x ∈ {𝚃, 𝙵}V

i ∈ V

xi ∼ μi( ⋅ ∣ xV∖{i})
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Markov Chain for k-SAT
(x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ x7 ∨ x5) ∧ (x4 ∨ ¬x5 ∨ x6)

T

F

• : uniform distribution over all SAT solutions 


• : marginal distribution of  cond. on current values of all other variables

μ x ∈ {𝚃, 𝙵}V

μi( ⋅ ∣ xV∖{i}) xi

x5 ∈{T, F}

Glauber Dynamics

Start from an arbitrary satisfying 


At each step:


• pick  uniformly at random


• resample  

x ∈ {𝚃, 𝙵}V

i ∈ V

xi ∼ μi( ⋅ ∣ xV∖{i})
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Markov Chain for k-SAT
(x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ x7 ∨ x5) ∧ (x4 ∨ ¬x5 ∨ x6)

T

F

• : uniform distribution over all SAT solutions 


• : marginal distribution of  cond. on current values of all other variables 
(easy to compute by accessing the adjacent variables)


• The Markov chain has stationary distribution 


• If rapidly mixing:  

μ x ∈ {𝚃, 𝙵}V

μi( ⋅ ∣ xV∖{i}) xi

μ

τ𝗆𝗂𝗑(ϵ) = max
X0

min {t ∣ dTV(Xt, μ) ≤ ϵ} = poly (n,1/ϵ)

x2F=

Glauber Dynamics

The Solution Space is an Expander!

conditional independence

(spatial Markovian)

Start from an arbitrary satisfying 


At each step:


• pick  uniformly at random


• resample  

x ∈ {𝚃, 𝙵}V

i ∈ V

xi ∼ μi( ⋅ ∣ xV∖{i})



• In the LLL regime (even very far from the critical threshold):


• Idea: projecting onto a lower dimension to improve connectivity

The Connectivity Barrier

Rapid Mixing Slow (Torpid) Mixing Not Mixing

We ere here!



• :  uniform distribution over SAT solutions of  


• A set  of marked variables 


• : distribution of  where 


•  is a joint distribution: it is no longer a uniform distribution 
(Gibbs distribution) over solutions of any (weighted) CSP

μ Φ

M ⊆ V

μM XM X ∼ μ

μM

Projected Measure

c1 c2 c3

x1 x2 x3 x4 x5

c1 c2 c3

x1 x2 x3 x4 x5
marked marked



Our Algorithm (Projected MCMC)

Start from a uniform random 


Repeat for sufficiently many steps:


• pick  uniformly at random


• resample  

x ∈ {𝚃, 𝙵}M

i ∈ V
xi ∼ μi( ⋅ ∣ xM∖{i})

Properly construct a set  of marked variablesM ⊆ V

Draw  according to  conditional on xV∖M μ xM

{Sampling

xM ∼ μM

• The idealized Glauber dynamics for  is rapidly mixing


• It is efficient to draw from  (to implement the idealized Glauber dynamics)


• It is efficient to extend  to an 

μM

μi( ⋅ ∣ xM∖{i})

xM ∼ μM x ∼ μ

There exists an efficiently constructible subset  of variables s.t.:M ⊆ V



• Construct a good  of marked variables such that:


• each clause contains ≥ 0.11k marked variables 

• each clause contains ≥ 0.51k unmarked variable 


• Constructive LLL (Moser-Tardos):

M ⊆ V

Marking/Unmarking Variables
For a (k,d)-formula (corresponds to a k-uniform hypergraph of max-degree d):

[                     ]
unmarkedmarked

each clause 

contains k variables

0.11k ≤ ∑
i∈𝗏𝖻𝗅(c)

xi ≤ 0.49k, ∀c ∈ C

xi ∈ {0,1}, ∀i ∈ V

k ≳ 20 log d A good  can be constructed 

in time  w.h.p.

M
Õ(dkn)



Our Algorithm (Projected MCMC)

Start from a uniform random 


Repeat for sufficiently many steps:


• pick  uniformly at random


• resample  

x ∈ {𝚃, 𝙵}M

i ∈ V
xi ∼ μi( ⋅ ∣ xM∖{i})

• The idealized Glauber dynamics for  is rapidly mixing


• It is efficient to draw from  (to implement the idealized Glauber dynamics)


• It is efficient to extend  to an 

μM

μi( ⋅ ∣ xM∖{i})

xM ∼ μM x ∼ μ

Properly construct a set  of marked variablesM ⊆ V

Draw  according to  conditional on xV∖M μ xM

{Sampling

xM ∼ μM

There exists an efficiently constructible subset  of variables s.t.:M ⊆ V✓



•  In general, it is no easier than sampling/counting SAT solutions

Inference in the Solution Space
Sample variable(s) conditional on a partial assignment:

draw  xi ∼ μi( ⋅ ∣ xM∖{i}) extend  to xM ∼ μM x ∼ μ



• Clauses satisfied by the partial assignment deconstructs  into 
connected components


• For good , w.h.p. all components are of sizes 

Φ

M ⊆ V O(dk log n)

Inference in the Solution Space
Sample variable(s) conditioning on a partial assignment:

draw  xi ∼ μi( ⋅ ∣ xM∖{i})

(on a good  )M ⊆ V

 is easy to draw xi

k ≥ 20 log d + 20 log k + 3 log
1
ζ

Rejection sampling 
succeeds w.p. n−ζ

in every

component



Our Algorithm (Projected MCMC)

Start from a uniform random 


Repeat for sufficiently many steps:


• pick  uniformly at random


• resample  

x ∈ {𝚃, 𝙵}M

i ∈ V
xi ∼ μi( ⋅ ∣ xM∖{i})

• The idealized Glauber dynamics for  is rapidly mixing


• It is efficient to draw from  (to implement the idealized Glauber dynamics)


• It is efficient to extend  to an 

μM

μi( ⋅ ∣ xM∖{i})

xM ∼ μM x ∼ μ

Properly construct a set  of marked variablesM ⊆ V

Draw  according to  conditional on xV∖M μ xM

{Sampling

xM ∼ μM

There exists an efficiently constructible subset  of variables s.t.:M ⊆ V✓

✓
✓



Rapid Mixing of Projected Chain

Start from a uniform random 


Repeat for sufficiently many steps:


• pick  uniformly at random


• resample  

x ∈ {𝚃, 𝙵}M

i ∈ V
xi ∼ μi( ⋅ ∣ xM∖{i})

• Use path coupling [Bubley, Dyer ’97]  to bound the mixing time.

• Use disagreement coupling [Moitra ’17] to bound the discrepancy of path coupling.

• Use local uniformity [Haeupler, Saha, Srinivasan ’11] to bound the discrepancy of 
disagreement coupling.

For a good :  assuming M ⊆ V k ≥ 20 log d + 20 log k + 3 log
1
ζ

The idealized Glauber dynamics for the projected measure :μM

The idealized Glauber dynamics for  rapidly mixes 
in  steps

μM
O(n log n)



Our Algorithm (Projected MCMC)

Start from a uniform random 


Repeat for sufficiently many steps:


• pick  uniformly at random


• resample  

x ∈ {𝚃, 𝙵}M

i ∈ V
xi ∼ μi( ⋅ ∣ xM∖{i})

• The idealized Glauber dynamics for  is rapidly mixing


• It is efficient to draw from  (to implement the idealized Glauber dynamics)


• It is efficient to extend  to an 

μM

μi( ⋅ ∣ xM∖{i})

xM ∼ μM x ∼ μ

Properly construct a set  of marked variablesM ⊆ V

Draw  according to  conditional on xV∖M μ xM

{Sampling

xM ∼ μM

There exists an efficiently constructible subset  of variables s.t.:M ⊆ V✓

✓
✓

✓



Main Theorem (for CNF)

For any sufficiently small , any (k,d)-CNF satisfying





• Sampling algorithm:

draw almost uniform SAT solution in time 

ζ ≤ 2−20

k ≥ 20 log d + 20 log k + 3 log
1
ζ

Õ(d2k3n1+ζ)

[Feng, Guo, Y., Zhang ’20]

• Counting algorithm:

FPRAS for # SAT solutions in time Õ(d2k3n2+ζ)

Simulated Annealing [Štefankovič, Vempala, Vigoda ’09]



• Variables:  with finite domains 


• (local) Constraints: 


• each  is defined on a subset  vbl(c) of variables


 


• CSP formula:   


 


• Example (k-SAT):   Boolean variables 


 

V = {x1, x2, …, xn} Q1, …, Qn

C = {c1, c2, …, cm}

c ∈ C

c : ⨂
i∈𝗏𝖻𝗅(c)

Qi → {𝚃𝚛𝚞𝚎, 𝙵𝚊𝚕𝚜𝚎}

∀x ∈ Q1 × Q2 × ⋯ × Qn

Φ(x) = ⋀
c∈C

c (x𝗏𝖻𝗅(c))
V = {x1, x2, x3, x4, x5}

Φ = (x1 ∨ ¬x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x3 ∨ ¬x4 ∨ ¬x5)

Constraint Satisfaction Problem
Φ = (V, Q, C)

clause



• Variables:  with finite domains 


• (atomic) Constraints: 


• each  forbids an assignment on a subset vbl(c) of variables


 


• CSP formula:   ,      


• Sampling: draw almost uniform SAT solution 

V = {x1, x2, …, xn} Q1, …, Qn

C = {c1, c2, …, cm}

c ∈ C

c(x𝗏𝖻𝗅(c)) = {𝙵𝚊𝚕𝚜𝚎 x𝗏𝖻𝗅(c) = a forbidden pattern σc ∈ ⨂i∈𝗏𝖻𝗅(c) Qi

𝚃𝚛𝚞𝚎 otherwise

∀x ∈ Q1 × Q2 × ⋯ × Qn Φ(x) = ⋀
c∈C

c (x𝗏𝖻𝗅(c))

x

CSP with Atomic Constraints

x𝗏𝖻(c) ≠ σc, ∀c ∈ C
xi ∈ Qi, ∀i ∈ V

(CNF with general domains)



• In the LLL regime (even very far from the critical threshold):


• In general, there is no good  such that  is well-connectedM ⊆ V μM

The Connectivity Barrier

Rapid Mixing Slow (Torpid) Mixing Not Mixing

We ere here!

✗



• Variables:  with domains 


• Compression:   for every variable  with 


• For Boolean variables ,

• marked variable:  with  and  is identity mapping


• unmarked variable:  with 

V = {x1, x2, …, xn} Q1, …, Qn

hi : Qi → Σi xi |Qi | ≥ |Σi |

Qi = {𝚃, 𝙵}
hi : Qi → Σi |Σi | = 2 hi

hi : Qi → Σi |Σi | = 1

State Compression
[Feng, He, Y. ’20]

:  Shannon entropyH( ⋅ )

• A good compression: independent random 
(X1, …, Xn) ∈ Q1 × ⋯ × Qn

∀c ∈ C : 0.11 ∑
i∈𝗏𝖻𝗅(c)

H(Xi) ≤ ∑
i∈𝗏𝖻𝗅(c)

H(hi(Xi)) ≤ 0.49 ∑
i∈𝗏𝖻𝗅(c)

H(Xi)



• Variables:  with domains 


• Compression:   for every variable  with 


• A good compression: independent random 


V = {x1, x2, …, xn} Q1, …, Qn

hi : Qi → Σi xi |Σi | ≤ |Qi |

(X1, …, Xn) ∈ Q1 × ⋯ × Qn

∀c ∈ C : 0.11 ∑
i∈𝗏𝖻𝗅(c)

H(Xi) ≤ ∑
i∈𝗏𝖻𝗅(c)

H(hi(Xi)) ≤ 0.49 ∑
i∈𝗏𝖻𝗅(c)

H(Xi)

State Compression
[Feng, He, Y. ’20]

original space of 
SAT solutions


∈ Q1 × ⋯ × Qn

space of compressed 
SAT solutions


∈ Σ1 × ⋯ × Σn

Mapped to a y = h((x)) ∼ ν
x ∼ μ Well connected!



• Variables:  with domains 


• Compression:   for every variable  with 


• A good compression: independent random 


V = {x1, x2, …, xn} Q1, …, Qn

hi : Qi → Σi xi |Σi | ≤ |Qi |

(X1, …, Xn) ∈ Q1 × ⋯ × Qn

∀c ∈ C : 0.11 ∑
i∈𝗏𝖻𝗅(c)

H(Xi) ≤ ∑
i∈𝗏𝖻𝗅(c)

H(hi(Xi)) ≤ 0.49 ∑
i∈𝗏𝖻𝗅(c)

H(Xi)

State Compression
[Feng, He, Y. ’20]



• Variables:  with domains 


• Compression:   for every variable  with 


• A good compression: independent random 


V = {x1, x2, …, xn} Q1, …, Qn

hi : Qi → Σi xi |Σi | ≤ |Qi |

(X1, …, Xn) ∈ Q1 × ⋯ × Qn

∀c ∈ C : 0.11 ∑
i∈𝗏𝖻𝗅(c)

H(Xi) ≤ ∑
i∈𝗏𝖻𝗅(c)

H(hi(Xi)) ≤ 0.49 ∑
i∈𝗏𝖻𝗅(c)

H(Xi)

State Compression
[Feng, He, Y. ’20]

original space of 
SAT solutions


∈ Q1 × ⋯ × Qn

space of compressed 
SAT solutions


∈ Σ1 × ⋯ × Σn

 y ∼ ν

Easy to recover  given  x ∼ μ h(x) = y



Our Algorithm (State Compression)

Start from a random  in 


Repeat for sufficiently many steps:


• pick  uniformly at random


• resample  

y Σ1 × ⋯ × Σn

i ∈ V
yi ∼ νi( ⋅ ∣ yV∖{i})

Construct a good compression  (using Moser-Tados)h

Draw  according to  conditional on x μ h(x) = y

• A good compression: independent random 
(X1, …, Xn) ∈ Q1 × ⋯ × Qn

∀c ∈ C : 0.11 ∑
i∈𝗏𝖻𝗅(c)

H(Xi) ≤ ∑
i∈𝗏𝖻𝗅(c)

H(hi(Xi)) ≤ 0.49 ∑
i∈𝗏𝖻𝗅(c)

H(Xi)



• Variables take independent random values 


• Violation Probability: each  is violated with prob. ≤ p 

• Dependency Degree: each  shares variables with ≤ D 
other constraints


• LLL:     ⟹  solution exists


• Sampling lower bound [Bezáková et al  ’16]:


 is necessary for sampling

X1, X2, …, Xn

c ∈ C

c ∈ C

epD ≤ 1

pD2 ≲ 1

Lovász Local Lemma (LLL)



Main Theorem (for Atomic CSP)

For atomic CSP with violation prob. p and dependency deg. D


 


• Sampling algorithm:

draw almost uniform SAT solution in time 


• Counting algorithm:

count # SAT solutions approximately in time 

pD350 ≲ 1

Õ(D3n1.000001)

Õ(D3n2.000001)

[Feng, He, Y. ’20]



• Fast sampling:    time 


• [Jain, Pham, Vuong ’21]: use information percolation to bound mixing,


 for atomic CSP


• [He, Sun, Wu ’21]: use CFTP to get perfect sampler, unified analysis, 


 for atomic CSP


• Deterministic approximate counting:    time


• [Guo, Liao, Lu, Zhang ’18]: adaptive marking/unmarking,               


 for hypergraph coloring


• [Jain, Pham, Vuong ’20]: adaptive marking/unmarking, refine Moitra,             


 for general CSP

O(n1.000001)

pD7.043 ≲ 1

pD5.714 ≲ 1

nO(poly(D))

pD16 ≲ 1

pD7 ≲ 1

Follow-Ups and Related Works



• Fast (near-linear time) sampling algorithm for general (non-
atomic) CSP solutions.


• Truly polynomial-time (  where  is universal constant) 
deterministic approximate counting for CSP solutions.


• The sharp LLL condition for sampling CSP solutions:


•  for -CNF?


• For general CSP? 


•  Sampling LLL in non-variable framework:


• Bad events  in probability space 


• Draw a sample  avoiding all bad events. 

nc c

k ≳ 2 log d (k, d)

pD350 ≲ 1

A1, …, Am Ω

s ∈ Ω

Open Problems



Thank you!
• [Moitra ’17]: Approximate counting, the Lovász local lemma, and inference in 

graphical models. STOC’17, JACM’19.


• [Guo, Liao, Lu, Zhang ’18]: Counting hypergraph colorings in the local lemma 
regime. STOC’18, SICOMP’19.


• [Feng, Guo, Y., Zhang ’20]: Fast sampling and counting k-SAT solutions in the 
local lemma regime. STOC’20.


• [Feng, He, Y. ’21]: Sampling constraint satisfaction solutions in the local 
lemma regime. STOC’21.


• [Jain, Pham, Vuong ’20]: Towards the sampling Lovász local lemma. FOCS’21. 


• [Jain, Pham, Vuong ’21]: On the sampling Lovász local lemma for atomic 
constraint satisfaction problems. arXiv:2102.08342.


• [He, Sun, Wu ’21]: Perfect Sampling for (Atomic) Lovász Local Lemma. 
arXiv:2107.03932.


