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Turing’s Proof (1936)

230 A. M. Toring [Nov. 12,

Entscheidungsproblem (1928):
No such algorithm exists!

Give an algorithm which
determines the validity of
mathematical statements.

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO
THE ENTSCHEIDUNGSPROBLEM

By A. M. TurIxG.

[Received 28 May, 1936.—Read 12 November, 1936.]

Is Mathematics decidable?

The “computable” numbers may be described briefly as the real
numbers whose expressions as a decimal are calculable by finite means.
Although the subject of this paper is ostensibly the computable numbers.

DaV|d H | I bert Alan TU rl ng it is almost equally easy to define and investigate computable functions

The Birth of (Theoretical) Computer Science

recognizable

decidable

EXPSPACE
EXPTIME
PSPACE=NPSPACE

 Computation is incomplete: not all problems are computable

e “What makes a problem easy/hard to resolve by computer?”



Los Alamos National Lab (1945 ~ 1947)
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Monte Carlo Method

(Electronic Numerical Integrator and Computer)
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Los Alamos National Lab (1 945 ~ 1947)

von Neumann Architecture THE BEGINNING of the
MONTE CARLO METHOD

Codename Monte Carlo Independently
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Computational Sampling

Draw a random sample X = (X, ..., X,) according to distribution x.

* (Can solve the problems [e.q. neutron diffusion in the core of a nuclear weapon]
that were difficult to solve using conventional, deterministic methods.

 Boltzmann distribution (Gibbs measure) in statistical physics:

(locally interacting

particle states) H (X) X CAP (_ﬁ zj HAJ'(XAJ'))

o Statistical inference/algorithms in data science:
(locally constrained 1w(X) H]f](XSJ)

random variables)

Integration in high dimension , reliability of complex system, ...
Rn



Milestones in Theory of Computing

Draw samples X ~ 4 = Approximate u(B) = J du, and many more ...
B
 Computational complexity of exact computation:

* |eslie Valiant (1979) (Turing award 2010): #P-completeness.

. Toda’s Theorem (1991) (Gédel Prize 1998): Np¥ C #P

* Bulatov (2013), Dyer-Richerby (2013), Cai-Chen (2017) (Godel Prize 2021):
Complexity dichotomy.

 Monte Carlo method for approximate computing:

., Dyer-Frieze-Kannan (1991) (Fulkerson Prize 1991): Integration [ f(x) dx of
convex f and volume vol(B) of convex body B. B

» Jerrum-Sinclair (1989) (Gédel Prize 1996): Partition function Z-(/).
» Jerrum-Sinclair-Vigoda (2004) (Fulkerson Prize 2006): Permanent perm(A).



Graphical Model

(Markov random field / factor graph / weighted CSP .

» Hypergraph # = (V, E) & o o ﬁ
» vertex v € V corresponds to a variable of domain g/ / )

« hyperedge e € £ (which is a vertex subset e C V')
is associated with a constraint f, : [q]° = R

.
\@

- Gibbs distribution u over all configurations ¢ € [g]": o -
uo) | [ £ @ 9
eck
H eE-][é(Ge)
= — where Z := is called the partition function
e Z D |56 p

ae[q]v eck




Markov chain Monte Carlo (MCMC)

Glauber dynamics [Glauber 1963], Gibbs sampler [Geman-Geman 1984]

Draw a random sample X € [g]" according to Gibbs distribution y.

The Markov chain maintains an X € [g]", at each step:
e pick v € V uniformly at random;

- update the evaluation of X, according to its marginal distribution p,( - | Xy,))-

Random walk fmw ﬁ:;% 1"’] * The Markov chain has stationary distribution /.
in configuration | % j%‘ﬁ " e Mixing time:
space [q]" | . mes J ()
e 7(e) ;== max min{r >0 | dpry(X", u) < €}




Outline

e Computational Phase Transition of Sampling
» Critical phenomenon for sampling pairwise interacting variables

 Computational phase transition for higher-order interactions
(sampling Lovasz local lemma)

e New Paradigm for Computational Sampling
* Parallelism of computational sampling
 Marginal (modular) sampling

 Dynamic sampling
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Pennies on a Carpet
(hard spheres in 2D square) nXx Okd

 Drop n pennies on a square-shape carpet at random.
What is the probability that no two pennies will overlap?

* |In 1-dimension (n needles on a line segment);

_ n d
("” ”d) if £ > nd —~
C—d el a1 — ;
0 otherwise 0 £

In 2_dimension: Nothing is known about this problem. aS Of 1979~98.

Hard spheres model: This problem is one of the

most important problems of statistical mechanics. If we

could answer it we would know, for example, why water boils
at 1009C, on the basis of purely atomic computations. Glan-CaHO ROta
(MIT 18.313)

Jerrum-Guo (2021): Monte Carlo algorithm for simulating 2D hard spheres



Computational Phase Transition

STATE OF MATTER
For sampling from

_ Gibbs measure _
Physical o r N Computational

Phase Transition W Complexity
S swom O \E
e Boltzmann distribution (Gibbs measure): \ | i\"
uX) o || fixy) \\i\
(9B PREANLA

* |ocally constrained random variables <= locally interacting particle states

* (Continuous change of strength of local interaction = sharp transition of global state
(state of matter / computational complexity)



Hardcore Model (\Veighted Independent Set)

« Sampling graph independent set with vertex weight A > 0O
(hardcore lattice gas model with fugacity 4 > 0)

* Ingraph G = (V, E) of maximum degree A:

1(l) A for independent set I in G

e Critical threshold (for phase transition of uniqueness of Gibbs measure on A-degree Bethe lattice):
A — 1)~ c
NN i
(A—2A A2

 Computational phase transition conjecture [Dyer-Frieze-Jerrum, FOCS "99]:
NP-hard if A > A.(A) [Sly, FOCS 10 best paper]

Sampling I ~ p |
ampling HIS {p0|y-time if A < A.(A)



Hardcore Sampler

Ind.
work

Condition Time
1
A< —— O(nlog n) [Bubley-Dyer, FOCS '97]
e ST e
A<= O(nlog n) [Luby-Vigoda, STOC ’97]
A < AL8) pOllog A) Weitz, STOC *06]
____________ non-Monte-Carlo |
A < A(A) O(nlogn) | [Efthymiou-Hayes-Stefankovi¢-Vigoda-Y.,
girth > 7, large A FOCS ’16]
A< (1=6)A.(A) 1 €Xp(0(1/9)) [Anari-Liu-Oveis Gharan, FOCS ’20]
A< (1=086)1.(A) pn 0(1/0) [Chen-Liu-Vigoda, FOCS ’20]
A< A(A) AO™)plog n [Chen-Liu-Vigoda, STOC *21]
A< A.(A) O(n*logn) [Chen-Feng-Y.-Zhang, FOCS ’21]
"""""""""" A<A(A)Y | o A ea
aceqrasgomua | O(nlogn) _|[Anari-Jain-Koehler-Pham-Vuong, STOG '22]
A< A(A) O(n log n) [Chen-Eldan, FOCS ’22]
A< A(A) O(nlogn) [Chen-Feng-Y.-Zhang, FOCS "22] /

The Markov chain:

(Gibbs sampler)

Starting from [ = @, at each step:
e pick a uniform v € V at random;

 if /U {v} is an independent set

4

[TU {v} with prob. —

I\{v}

] «—

: 1
with prob. 1_-|-/1

strong spatial mixing (SSM)
spectral independence
entropic independence
high-dimensional expander (HDX)
local-to-global argument
modified log-Sobolev inequality

field dynamics




Dy (Xe Il ) > %

. _ .

D= E |f L(0) D, : f(x)=(x—1)
Poincaré inequality: for Poincaré constant kp,;» < | >

sz(X(t) | 1) < Kpgin - D)(z(X(t_l) | ) = t_.. = O(n*logn)

Modified log-Sobolev (MLS) inequality: for MLS constant x; ¢ < 1
D X p) <y s Dy XV ) = ©_.. = O(nlogn)

|[Erbar-Henderson-Menz-Tetali ’16] proved a subcritical MLS inequality via Ricci curvature

[Welitz ’06] proved a decay of correlation property up to critical threshold, which was used in
[Anari-Liu-Oveis Gharan '20] [Chen-Liu-Vigoda ’20] to imply the mixing of Glauber dynamics
by a local-to-global argument in high dimension expanders, which was further refined in

[Chen-Liu-Vigoda ’21] to prove the fast mixing of ®(n)-block dynamics

[(Chen-Feng-Y.-Zhang ‘21, ’22] invented the field dynamics, which used the mixing of
block dynamics to lift the subcritical MLS inequality in [EHMT ’16] to the critical threshold



Random Walk Algorithm:
(Glauber Dynamics)

Starting from I = @, at each step:
« pick a uniform v € V at random;
Oca - O' O a rg umen - if /U {v} is an independent set
. A
L {IU {v} with prob. )

. 1
I\{v} with prob. )

» The transition matrix P for the random walk has size exp(£2(7n)) X exp(£2(n))

A cov(X,, Xj)

The correlation matrix Corr(, ) for u has size n X n

\/ Var(X;) Var(X))

* We prove (essentially) [Chen-Feng-Y.-Zhang, FOCS 21 FOCS ’22]:
|Corrf| = O(1) = 1 - K{Poin,MLS}(P/I) > (2 (1 — K{Poin,MLS}(Pmoo))

» When 4 < 4.(A), there is decay of correlation, then ||Corr|| = O(1), and

therefore the Poincare/MLS constant for subcritical case A/100 can be lifted
to the near critical regime with constant overhead



Computational Phase Transition

STATE OF MATTER
For sampling from

_ Gibbs measure _
Physical “ N Computational

& .\OQ DN %O %/.
> & % %
Phase Transition ww« & %5 Complexity
“ 9 ~ Solid
: 1:\ Freezing llp \( “\/Y
ST €m Melting " Sl

 [Chen-Feng-Y.-Zhang, FOCS ’21, ’22].

For pairwise negatively constrained Boolean variables X = (X, ..., X ) ~ u:
(@nti-ferromagnetic 1sing model / anti-ferromagnetic two-state spin systems)

Sampling X ~ u is {

poly-time within physical phase-transition cond.
NP-hard beyond physical phase-transition cond.

e [Jerrum-Sinclair, '92] (Godel Prize 1996): Sampling pairwise positively
constrained Boolean variables (ferromagnetic Ising model) in poly-time



Bipartite Hardcore Model (#BIS)

» Sampling independent set with vertex weight A > 0 in a bipartite graph.

e In bipartite graph G = (U, V, E):
u(l) o A" for independent set I in G

 #BIS (bipartite independent set): sampling independent set in bipartite graph

 Many sampling/approximate counting problems are #BIS-equivalent:
subclasses of #CSP, ferromagnetic spin systems, stable matchings, ...

 The computational complexity of #BIS is still unknown.
 [Chen-Liu-Y., FOCS '23]: For bipartite hardcore model with one-side

_ 1h\A-1
maximum degree A, sampling is poly-time tractable if A < 4.(A) = ((AA _1;) -




Higher-Order (k-wise) Interactions

» For k-wise interactions, consider hard constraints f: [g]° — {0,1}

u(o) « | | £.(0,)

u 1s the uniform distribution over all cce)il;traint satisfaction solutions
« Example: k-CNF (conjunctive normal form)
D=0xXVX%V)AXVIVX)AQXV X4V X5)
 SAT (Boolean satisfiability): determine whether there is a satisfying solution
 NP-complete (Cook-Levin theorem)

o Sample from u (SAT sampler) = SAT solver



Solving vs Sampling
* For Constraint Satisfaction Problem (CSP):

u(o) « | | £.(0,)

eck
* Lovasz local lemma (1975): pD < 1 == a SAT solution exists

., p=max Pr [f,(X) = 0]: max violation probability of any constraint
e X~|gl

. D=max|{e' :ene # @} |: max dependency degree of any constraint
e

Ciclust Clcond Csat,

* Connectivity of solution space:

el o ||

* The solution space can be highly disconnected

uniqueness extremality clustering condensation unsat

 Barrier: MCMC sampling crucially relies on connectivity of solution space



Overcome the Connectivity Barrier

Projected Markov chain:
Properly construct a subspace U C V;

Sample X;; ~ py; by simulating Gibbs sampler on y;;

to iImprove connectivity

* Fast sampler in near-linear time (under Lovasz local lemma like conditions pDO(l) < 1)
 SAT [Feng-Guo-Y.-Zhang, STOC 2020, JACM 2021] projected MCMC
 CSP with atomic constraints [Feng-He-Y., STOC 2021] “compressed” MCMC
» general CSP (constraint satisfaction problem) [He-Wang-Y., FOCS 2022] new algorithm

o “Sampling Lovasz local lemma” conjecture: “sampling is twice-local”
pD2 < 1 = sampling uniform satisfying solution is poly-time

o state-of-the-arts: pD5 < 1 “5-fold local lemma” [He-Wang-Y., FOCS 2022, SODA 2023}



Outline

e Computational Phase Transition of Sampling
» Critical phenomenon for sampling pairwise interacting variables

 Computational phase transition for higher-order interactions
(sampling Lovasz local lemma)

e New Paradigm for Computational Sampling
* Parallelism of computational sampling
 Marginal (modular) sampling

 Dynamic sampling



Markov chain Monte Carlo (MCMC)

Gibbs sampler [Geman-Geman 1984] for sampling X from Gibbs distribution u:

The Markov chain maintains an X € [g]", at each step:
e pick v € V uniformly at random;

- update the evaluation of X, according to its marginal distribution p,( - | Xy,))-

o Sequential algorithm that updates a single-site at each step.

 Generic lower bound [Hayes-Sinclair ’13]:

» any single-site dynamics requires at least {2(n 1og n) steps to converge




ldealized Parallel Process
Glauber dynamics [Glauber 1963] for sampling X from Gibbs distribution p:

The Markov chain for X & [q]V runs in continuous time:
e Each v € V holds a rate-1 Poisson clock;

- upon V’s clock rings: its state X, is updated atomically according to 4,( - | Xjy,)-

» |dealized (continuity and atomicity) parallel process
for the evolution of real physical world

 Barrier for concurrency: updates of adjacent sites
 O(A) overhead! EHR

L 3 ¢’
~h'
47 T
X, X,

e Fully & correctly parallelize MCMC?




Parallelism of MCMC Sampling

(Fundamental challenge in Theory of Parallel Computing)

* |n a seminal paper for parallel computing [Mulmuley-Vazirani-Vazirani, STOC ’87]:

o “[t IS possible to sample uniform perfect matching in NC (poly-log rounds)?”

e “Itis possible to estimate permanent in NC (parallel counterpart for P)?”

e |Later, [Shang-Hua Teng, 1992]

* Proved: classical MCMC sampling could not be efficiently parallelized
“via standard approaches of parallelization”

* Conjectured: permanent estimation cannot be done in poly-log rounds
(perhaps the only problem not known to be P-complete but conjectured intrinsically sequential)



Fully Parallelize MCMC Sampling

Continuous-time Glauber dynamics (1963):

Each v € V holds a Poisson clock;
upon v’s clock rings:

» X, is updated according to s,( - | Xy(,));

Algorithm 1: An iterative algorithm for simulating single-site dynamics

Input: initial configuration Xy € QY; update schedule T = (£?)ycv 0<i<m,;

assignment R = (R (y i) )vev,1<i<m, of random bits for resolving updates.

1 initialize £ < 0 and }/ZZ(JO) [i] < Xo(v) forallv € V,0 <i < my;
2 repeat

3

4
5
6

7

8

{—0+1;

forall v € V in parallel do X 0] « Xo(v);
forall updates (v,i), wherev € V, 1 < i < m,, in parallel do
let T € QN7 be constructed as:

Vi € N, 7 « XV [ju] for j, = max{j > 0| £ < £};
X [i] <~ Sample (PJ,R(U,,-));

end

9 until X(©) = X(¢-1).

» Suppose that all random choices have been generated:

. time ;" and a random seed R, € [0,1] for the ith update at v € V

Dynamical system for the Markov chain:

X,(v) < Sample (//t‘f, R(v,i))

where 7 € [g]M") satisfies Vu € N(v), 7, = Xu(u) for ' = max{z; : 1 < 1}
J



Fully Parallelize MCMC Sampling

Continuous-time Glauber dynamics (1963):

Each v € V holds a Poisson clock;
upon v’s clock rings:

» X, is updated according to s,( - | Xy(,));

Algorithm 1: An iterative algorithm for simulating single-site dynamics

Input: initial configuration Xy € QY; update schedule T = (£?)ycv 0<i<m,;

assignment R = (R (y i) )vev,1<i<m, of random bits for resolving updates.

1 initialize £ < 0 and }/Zz(,o) [i] < Xo(v) forallv € V,0 <i < my;
2 repeat

3

4
5
6

7

8

{+—¥{+1;

forall v € V in parallel do e 0] « Xo(v);
forall updates (v,i), wherev € V,1 < i < m,, in parallel do
let T € QN7 be constructed as:

Vi € N, 7 « XV [ju] for j, = max{j > 0| £ < £};
e [i] <~ Sample (PJ,R(U,,-));

end

9 until X(©) = X(¢-1).

 Key ideas:

* (Construct a dynamical system whose fixpoint corresponds to the correct evolution of the chain.

* Simulate this dynamical system by a locally-iterative message-passing parallel algorithm.

* A universal coupling of randomness to ensure fast stabilization to the correct fixpoint.

* Faithful parallel simulation of MCMC with no overhead [Liu-Y., STOC 2022]
(when the Dobrushin’s influence matrix is O(1)-normed)



Local Evaluating Random Vector

» Evaluate afew X ’sin X € [q]V drawn from a Gibbs distribution u
(statistical inference / estimation in selected dimensions)

* Classic MCMC: have to compute everything even just interested in 1 variable,
because all variables may be correlated

 Marginal (modular) sampling: with some local computational cost

evaluate X in X € [g]" drawn from a Gibbs distribution y




Classic MCMC: Forward Simulation

« MCMC since 1940s: simulate a dynamical system till it converges to a fixpoint

long enough evolution

arbitrary initial state X/ X* ~ u (fixpoint)

The Markov chain maintains an X € [g]", at each step:
e pick v € V uniformly at random;

- update the evaluation of X, according to its marginal distribution p,( - | Xy,))-

» For marginal sampler (which evaluates X¥):
It seems necessary to faithfully simulate everything...”?



Marginal Sampler via Backward Deduction

* Imagine an idealized Glauber dynamics:

X(_OO) —> eee

- XD XxEDLxO Ly

e Evaluate the X (O)(v) — sample from u,,

T
try to draw from p,
for unknown 7 € [g]MV

Resolve (ul, predul(O))

pred (7): last time u
Is updated before 7

T
try to draw from ¢,
for current = € [g]MV

Resolve(v,0)

Resolve (ud, predud(O))

Vv

X X
draw from g, '

* [Feng-Guo-Wang-Wang-Y., FOCS 2023]. with grand couplings, this terminates
within O(1) cost in expectation, and O(log n) cost with high probability




Dynamic Sampling

llll

SEBpeEmA

X~u

Dynamic Sampling problem: for dynamically changing distributions 4 — u’

dynamic update

with incremental cost

o Sampling/inference tasks on dynamically changing data:

 Online data, data streams, network environment, etc.

 Dynamically changing graphical models generated in:

* Locally-iterative algorithms for learning.

» Self-reduction procedure in approximate counting.

Classic random walks

fail on dynamic data

* Algorithmic Lipschitz: transform X ~ u to X’ ~ y’ with cost proportional to diff(u, u')



Dynamic Sampling

/

Dynamic Sampling problem: for dynamically changing distributions it — u

dynamic update , ,

X~pu ~ U

with incremental cost

Algorithm 1: Dynamic Sampler A d . I' I " h .
Input : a graphical model Z and a random sample X ~ uz; ¢ yn am IC Sam p I n g a g O rlt m .
Update: an update (D, ®p) which modifies Z to Z';

ROy e R b [Feng-Vishnoi-Y., STOC ’19]

2 while R # 0 do
3 L (X,R) <Local-Resample(Z’, X, R);

4 return X; » correct and efficient on dynamic data
Algorithm 2: Local-Resample(Z, X, R)
fnput :a graphieal model I = (V. B:la, @), confguation X € i and a R CV: * parallel, distributed, communication-efficient

1 for each e € ET(R), in parallel, compute k. = m Minge(gle: z,nr=X.nr Pe(T);

2 for each v € R, in parallel, resample X, € [g] independently according to distribution ¢,;

3 for each e € ET(R), in parallel, sample F, € {0,1} ind. with Pr[F, = 0] = k¢ - ¢e (Xe); o Las \/egas algOrith m fOr perfeCt Sam pl i ng

4 X' X and R' <~ U.cp.p.—1 6
5 return (X', R').




Summary

e Computational phase transition of sampling

e Parallel, marginal (modular), dynamic sampling

® Theme of future work:

* a unified and critical theory for sampling and solving
» classify efficient computing through efficient sampling

* Turing (1936): “What is computation?”
by investigating Hilbert’s Entscheidungsproblem

e |n 2023: “What is efficient (Monte Carlo) computation?”
by classitying: “What distributions are easy to sample?”

ENIAC



ks
‘ 3 \ !

Fa/ 43 R 4R 2R ] & XU S Xl5h7F EEE7) EER= RIS S AN
FRAF UC Berkeley ~ Edinburgh ARKF FARKE FRAF FRAF Edinburgh I SL N R B A S

* [Chen-Liu-Y. "23]: Unigueness and rapid mixing in the bipartite hardcore model. FOCS ’28.
* [Feng-Guo-Wang-Wang-Y. '23]: Towards derandomising Markov chain Monte Carlo. FOCS ’23.
* [Chen-Feng-Y.-Zhang ’22]: Optimal mixing for two-state anti-ferromagnetic spin systems. FOCS ’22.

* [He-Wang-Y. '22]: Sampling Lovasz local lemma for general constraint satisfaction solutions in near-linear time. FOCS ’22.

* [Liu-Y. '22]: Simple parallel algorithms for single-site dynamics. STOC ’22.

* [Chen-Feng-Y., Zhang '21]: Rapid mixing of Glauber dynamics via spectral independence for all degrees. FOCS ’21.

* [Feng-He-Y. ’21]: Sampling constraint satisfaction solutions in the local lemma regime. STOC ’21.

* [Feng-Guo-Y.-Zhang ’20]: Fast sampling and counting k-SAT solutions in the local lemma regime. STOC '20. JACM ’21.
* [Feng-Vishnoi-Y. '19]: Dynamic sampling from graphical models. STOC '19. SICOMP ’21.

» [Efthymiou-Hayes-Stefankovié-Vigoda-Y. *16]: Convergence of MCMC and loopy BP in the tree uniqueness region for the
nardcore model. FOCS '16. SICOMP ’19.




Thank you!
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Feng-He-Y. "21]: Sampling constraint satisfaction solutions in the local lemma regime. STOC 21.
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