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Turing’s Proof (1936)

• Computation is incomplete: not all problems are computable


• “What makes a problem easy/hard to resolve by computer?”

Entscheidungsproblem (1928):

David Hilbert Alan Turing

Is Mathematics decidable?

Give an algorithm which  
determines the validity of  
mathematical statements.

No such algorithm exists!

The Birth of (Theoretical) Computer Science
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Computational Sampling

• Can solve the problems [e.g. neutron diffusion in the core of a nuclear weapon] 
that were difficult to solve using conventional, deterministic methods.


• Boltzmann distribution (Gibbs measure) in statistical physics:


 


• Statistical inference/algorithms in data science:




• Integration in high dimension  ,  reliability of complex system, … 

μ(X) ∝ exp (−β∑j HΛj
(XΛj

))

μ(X) ∝ ∏j fj(XSj
)

∫ℝn

Draw a random sample  according to distribution .X = (X1, …, Xn) μ

(locally interacting 
particle states)  

(locally constrained 
random variables)  



Milestones in Theory of Computing

• Computational complexity of exact computation:

• Leslie Valiant (1979) (Turing award 2010): #P-completeness.

• Toda’s Theorem (1991) (Gödel Prize 1998): 

• Bulatov (2013), Dyer-Richerby (2013), Cai-Chen (2017) (Gödel Prize 2021): 

Complexity dichotomy.

• Monte Carlo method for approximate computing:


• Dyer-Frieze-Kannan (1991) (Fulkerson Prize 1991): Integration  of 
convex  and volume  of convex body .


• Jerrum-Sinclair (1989)  (Gödel Prize 1996): Partition function .

• Jerrum-Sinclair-Vigoda (2004) (Fulkerson Prize 2006): Permanent .

NPNP⋅⋅
⋅

⊆ #P

∫B
f(x) dx

f vol(B) B
ZG(β)

perm(A)

Draw samples     Approximate ,    and many more …X ∼ μ ⟹ μ(B) = ∫B
dμ



Graphical Model

• Hypergraph 


• vertex  corresponds to a variable of domain 


• hyperedge  ( which is a vertex subset  )   
is associated with a constraint  


• Gibbs distribution  over all configurations :


ℋ = (V, E)
v ∈ V [q]

e ∈ E e ⊆ V
fe : [q]e → ℝ≥0

μ σ ∈ [q]V

μ(σ) ∝ ∏
e∈E

fe(σe)

(Markov random field / factor graph / weighted CSP …)

•     where  is called the partition functionμ(σ) =
∏e∈E fe(σe)

Z
Z := ∑

σ∈[q]V
∏
e∈E

fe(σe)

v

e



Markov chain Monte Carlo (MCMC)
Glauber dynamics [Glauber 1963], Gibbs sampler [Geman-Geman 1984]

The Markov chain maintains an , at each step:


• pick  uniformly at random;


• update the evaluation of  according to its marginal distribution .

X ∈ [q]V

v ∈ V
Xv μv( ⋅ ∣ XN(v))

Random walk 
in configuration 

space [q]n

Draw a random sample  according to Gibbs distribution .X ∈ [q]V μ

• The Markov chain has stationary distribution .

• Mixing time: 

 

• New sampling algorithms?

μ

τ(ϵ) := max
X(0)∈[q]V

min{t ≥ 0 ∣ dTV(X(t), μ) ≤ ϵ}



Outline

• Computational Phase Transition of Sampling 

• Critical phenomenon for sampling pairwise interacting variables


• Computational phase transition for higher-order interactions                  
(sampling Lovász local lemma)


• New Paradigm for Computational Sampling 

• Parallelism of computational sampling


• Marginal (modular) sampling


• Dynamic sampling
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Pennies on a Carpet
(hard spheres in 2D square)
• Drop  pennies on a square-shape carpet at random.                                     

What is the probability that no two pennies will overlap?


• In 1-dimension (  needles on a line segment):





• In 2-dimension:  as of 1979~98.

n

n

( ℓ − nd
ℓ − d )

n
if ℓ ≥ nd

0 otherwise

(
`

(

`

Gian-Carlo Rota

(MIT 18.313)

}dn ×

Hard spheres model：

Jerrum-Guo (2021): Monte Carlo algorithm for simulating 2D hard spheres

0 ℓ

⏟d



Computational Phase Transition

• Boltzmann distribution (Gibbs measure):  

     

• locally constrained random variables  locally interacting particle states 


• Continuous change of strength of local interaction  sharp transition of global state 

(state of matter / computational complexity)

μ(X) ∝ ∏
( f,S)∈𝒞

f(XS)

⟺

⟹

P

NPPhysical  
Phase Transition

Computational 
Complexity

For sampling from

Gibbs measure



Hardcore Model (Weighted Independent Set)
• Sampling graph independent set with vertex weight 


(hardcore lattice gas model with fugacity )


• In graph  of maximum degree :


  for independent set  in 


• Critical threshold (for phase transition of uniqueness of Gibbs measure on -degree Bethe lattice):





• Computational phase transition conjecture [Dyer-Frieze-Jerrum, FOCS ’99]:


Sampling  is  

λ > 0
λ > 0

G = (V, E) Δ

μ(I) ∝ λ|I| I G

Δ

λc(Δ) ≜
(Δ − 1)Δ−1

(Δ − 2)Δ
≈

e
Δ − 2

I ∼ μ {NP-hard if λ > λc(Δ)
poly-time if λ < λc(Δ)

λ

λ

λ
λ

λ

[Sly, FOCS ’10 best paper]



Hardcore Sampler
The Markov chain:

(Gibbs sampler) 
Starting from , at each step:

• pick a uniform  at random;

• if  is an independent set


I = ∅
v ∈ V

I ∪ {v}

I ←
I ∪ {v} with prob.  λ

1 + λ

I∖{v} with prob.  1
1 + λ

Condition Time

[Bubley-Dyer, FOCS ’97]

[Luby-Vigoda, STOC ’97]

[Weitz, STOC ’06]

[Efthymiou-Hayes-Štefankovič-Vigoda-Y., 
FOCS ’16]

[Anari-Liu-Oveis Gharan, FOCS ’20]

[Chen-Liu-Vigoda, FOCS ’20]

[Chen-Liu-Vigoda, STOC ’21]

[Chen-Feng-Y.-Zhang, FOCS ’21]

[Anari-Jain-Koehler-Pham-Vuong, STOC ’22]

[Chen-Eldan, FOCS ’22]

[Chen-Feng-Y.-Zhang, FOCS ’22]

λ ≤ (1 − δ)λc(Δ)



non-Monte-Carlo

λ < λc(Δ)

O(n log n)

O(n log n)

nO(log Δ)

O(n log n)

nexp(O(1/δ))

nO(1/δ)λ ≤ (1 − δ)λc(Δ)

λ < λc(Δ) ΔO(Δ2)n log n

λ < λc(Δ) O(n2 log n)



balanced random walk
λ < λc(Δ)

λ < λc(Δ)

λ < λc(Δ)

O(n log n)

O(n log n)

O(n log n)



girth ,  large 

λ < λc(Δ)
≥ 7 Δ

strong spatial mixing (SSM) 
spectral independence 
entropic independence 

high-dimensional expander (HDX) 
local-to-global argument 

modified log-Sobolev inequality 
field dynamics 

… … Ind.

work{

λ ≤ 1
Δ − 1

λ ≤ 2
Δ − 2






• Poincaré inequality:  for Poincaré constant 


    


• Modified log-Sobolev (MLS) inequality:  for MLS constant  


   


• [Erbar-Henderson-Menz-Tetali ’16] proved a subcritical MLS inequality via Ricci curvature

• [Weitz ’06] proved a decay of correlation property up to critical threshold, which was used in 

[Anari-Liu-Oveis Gharan ’20] [Chen-Liu-Vigoda ’20] to imply the mixing of Glauber dynamics 
by a local-to-global argument in high dimension expanders, which was further refined in 
[Chen-Liu-Vigoda ’21] to prove the fast mixing of -block dynamics


• [Chen-Feng-Y.-Zhang ’21, ’22] invented the field dynamics, which used the mixing of 
block dynamics to lift the subcritical MLS inequality in [EHMT ’16] to the critical threshold 

Df := 𝔼
σ∼μ [f ( ν(σ)

μ(σ) )]
κ𝖯𝗈𝗂𝗇 < 1

Dχ2(X(t) ∥ μ) ≤ κ𝖯𝗈𝗂𝗇 ⋅ Dχ2(X(t−1) ∥ μ) ⟹ τ𝗆𝗂𝗑 = O(n2 log n)

κ𝖬𝖫𝖲 < 1
D𝖪𝖫(X(t) ∥ μ) ≤ κ𝖬𝖫𝖲 ⋅ D𝖪𝖫(X(t−1) ∥ μ) ⟹ τ𝗆𝗂𝗑 = O(n log n)

Θ(n)

  :  

 :  

Dχ2 f(x) = (x − 1)2

D𝖪𝖫 f(x) = x log x



Local-to-Global Argument

• The transition matrix  for the random walk has size 


• The correlation matrix  for  has size 


• We prove (essentially) [Chen-Feng-Y.-Zhang, FOCS ’21 FOCS ’22]:


   


• When , there is decay of correlation, then , and 
therefore the Poincare/MLS constant for subcritical case  can be lifted 
to the near critical regime with constant overhead

P exp(Ω(n)) × exp(Ω(n))

Corr(i, j) ≜
cov(Xi, Xj)

Var(Xi)Var(Xj)
μ n × n

∥Corr∥ = O(1) ⟹ 1 − κ{𝖯𝗈𝗂𝗇,𝖬𝖫𝖲}(Pλ) ≥ Ω (1 − κ{𝖯𝗈𝗂𝗇,𝖬𝖫𝖲}(Pλ/100))
λ < λc(Δ) ∥Corr∥ = O(1)

λ/100

Random Walk Algorithm:

(Glauber Dynamics) 
Starting from , at each step:

• pick a uniform  at random;

• if  is an independent set


I = ∅
v ∈ V

I ∪ {v}

I ←
I ∪ {v} with prob.  λ

1 + λ

I∖{v} with prob.  1
1 + λ



Computational Phase Transition

• [Chen-Feng-Y.-Zhang, FOCS ’21, ’22]: 

For pairwise negatively constrained Boolean variables :

(anti-ferromagnetic Ising model / anti-ferromagnetic two-state spin systems)


Sampling  is 


• [Jerrum-Sinclair, ’92] (Gödel Prize 1996): Sampling pairwise positively 
constrained Boolean variables (ferromagnetic Ising model) in poly-time

X = (X1, …, Xn) ∼ μ

X ∼ μ {poly-time within physical phase-transition cond.
NP-hard beyond physical phase-transition cond.

P

NPPhysical  
Phase Transition

Computational 
Complexity

For sampling from

Gibbs measure



Bipartite Hardcore Model (#BIS)
• Sampling independent set with vertex weight  in a bipartite graph.


• In bipartite graph :  


 for independent set  in 


• #BIS (bipartite independent set): sampling independent set in bipartite graph


• Many sampling/approximate counting problems are #BIS-equivalent: 
subclasses of #CSP, ferromagnetic spin systems, stable matchings, …


• The computational complexity of #BIS is still unknown.


• [Chen-Liu-Y., FOCS ’23]:   For bipartite hardcore model with one-side 
maximum degree ,  sampling is poly-time tractable if 

λ > 0

G = (U, V, E)

μ(I) ∝ λ|I| I G

Δ λ < λc(Δ) =
(Δ − 1)Δ−1

(Δ − 2)Δ



Higher-Order ( -wise) Interactionsk
• For -wise interactions, consider hard constraints  





 is the uniform distribution over all constraint satisfaction solutions 


• Example: -CNF (conjunctive normal form)





• SAT (Boolean satisfiability): determine whether there is a satisfying solution 

• NP-complete (Cook–Levin theorem)


• Sample from  (SAT sampler)   SAT solver

k f : [q]e → {0,1}

μ(σ) ∝ ∏
e∈E

fe(σe)

μ

k
Φ = (x1 ∨ ¬x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x3 ∨ ¬x4 ∨ ¬x5)

μ ⟹



• For Constraint Satisfaction Problem (CSP):





• Lovász local lemma (1975):        a SAT solution exists


• : max violation probability of any constraint


• : max dependency degree of any constraint


• Connectivity of solution space: 

• The solution space can be highly disconnected


• Barrier: MCMC sampling crucially relies on connectivity of solution space 

μ(σ) ∝ ∏
e∈E

fe(σe)

pD ≾ 1 ⟹
p = max

e
Pr

X∼[q]e
[ fe(X) = 0]

D = max
e

|{e′ : e ∩ e′ ≠ ∅} |

Solving vs Sampling



Overcome the Connectivity Barrier

• Fast sampler in near-linear time (under Lovász local lemma like conditions ):

• SAT [Feng-Guo-Y.-Zhang, STOC 2020, JACM 2021] projected MCMC 
• CSP with atomic constraints [Feng-He-Y., STOC 2021] “compressed” MCMC 
• general CSP (constraint satisfaction problem) [He-Wang-Y., FOCS 2022] new algorithm 

• “Sampling Lovász local lemma” conjecture:   “sampling is twice-local”

  sampling uniform satisfying solution is poly-time


• state-of-the-arts:   “5-fold local lemma” [He-Wang-Y., FOCS 2022, SODA 2023]

pDO(1) ≾ 1

pD2 ≾ 1 ⟹
pD5 ≾ 1

Projected Markov chain:

Properly construct a subspace ;

Sample  by simulating Gibbs sampler on ;

Recover from  a satisfying solution ;

U ⊆ V
XU ∼ μU μU

XU X ∼ μ Idea: project onto lower dimension 
to improve connectivity



Outline

• Computational Phase Transition of Sampling 

• Critical phenomenon for sampling pairwise interacting variables


• Computational phase transition for higher-order interactions                  
(sampling Lovász local lemma)


• New Paradigm for Computational Sampling 

• Parallelism of computational sampling


• Marginal (modular) sampling


• Dynamic sampling



Markov chain Monte Carlo (MCMC)

• Sequential algorithm that updates a single-site at each step.


• Generic lower bound [Hayes-Sinclair ’13]: 


• any single-site dynamics requires at least  steps to convergeΩ(n log n)

The Markov chain maintains an , at each step:


• pick  uniformly at random;


• update the evaluation of  according to its marginal distribution .

X ∈ [q]V

v ∈ V
Xv μv( ⋅ ∣ XN(v))

Gibbs sampler [Geman-Geman 1984] for sampling  from Gibbs distribution :X μ



Idealized Parallel Process

• Idealized (continuity and atomicity) parallel process 
for the evolution of real physical world


• Barrier for concurrency: updates of adjacent sites

•  overhead!


• Fully & correctly parallelize MCMC?

O(Δ)

The Markov chain for  runs in continuous time:


• Each  holds a rate-1 Poisson clock;


• upon ’s clock rings: its state  is updated atomically according to .

X ∈ [q]V

v ∈ V
v Xv μv( ⋅ ∣ XN(v))

Glauber dynamics [Glauber 1963] for sampling  from Gibbs distribution :X μ

ring!

xv xu

x′ v x′ u



Parallelism of MCMC Sampling
(Fundamental challenge in Theory of Parallel Computing)

• In a seminal paper for parallel computing [Mulmuley-Vazirani-Vazirani, STOC ’87]:


• “It is possible to sample uniform perfect matching in NC (poly-log rounds)?”

• “It is possible to estimate permanent in NC (parallel counterpart for P)?”


• Later, [Shang-Hua Teng, 1992]

• Proved: classical MCMC sampling could not be efficiently parallelized     


“via standard approaches of parallelization”

• Conjectured: permanent estimation cannot be done in poly-log rounds


(perhaps the only problem not known to be P-complete but conjectured intrinsically sequential)



Fully Parallelize MCMC Sampling
Continuous-time Glauber dynamics (1963): 


Each  holds a Poisson clock;

upon ’s clock rings:


•  is updated according to ;

v ∈ V
v

Xv μv( ⋅ ∣ xN(v))

• Suppose that all random choices have been generated:


• time  and a random seed  for the th update at 


• Dynamical system for the Markov chain: 





where  satisfies ,  for 

tv
i R(v,i) ∈ [0,1] i v ∈ V

Xt(v) ← Sample (μτ
v, R(v,i))

τ ∈ [q]N(v) ∀u ∈ N(v) τu = Xtu
j
(u) tu

j = max{tu
j′ 

: tu
j′ 

< tv
i }



Fully Parallelize MCMC Sampling

• Key ideas:

• Construct a dynamical system whose fixpoint corresponds to the correct evolution of the chain.


• Simulate this dynamical system by a locally-iterative message-passing parallel algorithm.


• A universal coupling of randomness to ensure fast stabilization to the correct fixpoint.


• Faithful parallel simulation of MCMC with no overhead [Liu-Y., STOC 2022]
(when the Dobrushin’s influence matrix is O(1)-normed)

Continuous-time Glauber dynamics (1963): 


Each  holds a Poisson clock;

upon ’s clock rings:


•  is updated according to ;

v ∈ V
v

Xv μv( ⋅ ∣ xN(v))



Local Evaluating Random Vector
• Evaluate a few ’s in  drawn from a Gibbs distribution 


(statistical inference / estimation in selected dimensions)


• Classic MCMC: have to compute everything even just interested in 1 variable, 

because all variables may be correlated


• Marginal (modular) sampling:   with some local computational cost

evaluate  in  drawn from a Gibbs distribution 

Xv X ∈ [q]V μ

Xv X ∈ [q]V μ



Classic MCMC:  Forward Simulation
• MCMC since 1940s:  simulate a dynamical system till it converges to a fixpoint


arbitrary initial state   (fixpoint)


• For marginal sampler (which evaluates ): 

It seems necessary to faithfully simulate everything…?

X(0)  long enough evolution  X* ∼ μ

X*v

The Markov chain maintains an , at each step:


• pick  uniformly at random;


• update the evaluation of  according to its marginal distribution .

X ∈ [q]V

v ∈ V
Xv μv( ⋅ ∣ XN(v))



• Imagine an idealized Glauber dynamics:





•  Evaluate the   sample from 


• [Feng-Guo-Wang-Wang-Y., FOCS 2023]: with grand couplings, this terminates 
within  cost in expectation, and  cost with high probability

X(−∞) → ⋯ → X(−2)→X(−1)→X(0) ∼ μ

X(0)(v) ⟹ μv

O(1) O(log n)

Marginal Sampler via Backward Deduction

Resolve(v,0)

Resolve(u1, 𝗉𝗋𝖾𝖽u1
(0)) Resolve(ud, 𝗉𝗋𝖾𝖽ud

(0)) draw from μXu1
⋯Xud

v

… 

: last time  
is updated before 
𝗉𝗋𝖾𝖽u(t) u

t

v

u1 u2 ud

try to draw from 

for unknown 

μτ
v

τ ∈ [q]N(v)
try to draw from 

for current 

μτ
v

τ ∈ [q]N(v)



                                X ∼ μ X′ ∼ μ′ 

dynamic update

with incremental cost

Dynamic Sampling

• Sampling/inference tasks on dynamically changing data:

• Online data, data streams, network environment, etc.


• Dynamically changing graphical models generated in:

• Locally-iterative algorithms for learning.


• Self-reduction procedure in approximate counting.


• Algorithmic Lipschitz: transform  to  with cost proportional to X ∼ μ X′ ∼ μ′ diff(μ, μ′ )

Dynamic Sampling problem:  for dynamically changing distributions μ → μ′ 

Classic random walks 
fail on dynamic data



                                X ∼ μ X′ ∼ μ′ 

dynamic update

with incremental cost

Dynamic Sampling

• A dynamic sampling algorithm: 

[Feng-Vishnoi-Y., STOC ’19]


• correct and efficient on dynamic data


• parallel, distributed, communication-efficient 

• Las Vegas algorithm for perfect sampling 

Dynamic Sampling problem:  for dynamically changing distributions μ → μ′ 



Summary
• Computational phase transition of sampling 

• Parallel, marginal (modular), dynamic sampling 

• Theme of future work: 
• a unified and critical theory for sampling and solving

• classify efficient computing through efficient sampling


• Turing (1936): “What is computation?” 

by investigating Hilbert’s Entscheidungsproblem 


• In 2023: “What is efficient (Monte Carlo) computation?” 

by classifying: “What distributions are easy to sample?” 

ENIAC
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