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Qutline

® Distributed Sampling Problem
® Gibbs Distribution (distribution defined by local constraints)

® Algorithmic ldeas

W ocal Metropolis Algorithm
® [OCAL Jerrum-Valiant-Vazirani
® |ocal Rejection Sampling

we N .
W  Distributed Simulation of Metropolis (with ideal parallelism)

MCMC: Markov chain Monte Carlo



Single-Site Markov Chain

Start from an arbitrary coloring €[g]”

at each step:

for a uniform random vertex v

propose a random color c€|q];

change Vv's color to c if it’s proper;

Metropolis Algorithm
(g-coloring)



Single-Site Markov Chain In 1960s

Each vertex holds an independent rate-1 Poisson clock.

When the clock at v rings:

propose a random color cE|g];

change Vv's color to c if it’s proper;

Metropolis Algorithm
(g-coloring)

. . discrete time
continuous time 1 .
0(nT) sequential steps



Distributed Simulation of
Continuous-Time Process

Goal: Give a distributed algorithm that perfect simulates
the time 7 continuous Markov chain.

(Have the same behavior given the same random bits.)

do NOT allow adjacent vertices update
their colors in the same round:

» O(4T) rounds

|Feng, Hayes, Y. "19]:

O(T + log n) rounds w.h.p.
(under some mild condition)




2-Phase Paradigm

for each vertex v € V:

Phase I:

e locally generate all update times 0 <, <f, < -+ <ty <T
and proposed colors ¢y, ¢y, ..., ¢y € [q];

e send the initial color and all (¢, ¢;){<;<;, to all neighbors;

Phase Il:

® Fori=1,2,...., M, do:
once having received :
resolve the i-th update of v and send the result

(“Accept / Reject”) to all neighbors;




for each vertex v € V:

® Fori=1,2,...,.M, do:
once having received :
resolve the i-th update of v and send the result

(“Accept / Reject”) to all neighbors;

—1P “enough info” to resolve
's the i-th update at v: (#/, c;
m > (', ¢;')
— 3 .
curr-color = M-----7-~ all adjacent updates before ¢
f .
0 " |have been resolved and received by v

3 apath v, v, ...,V

Hrounds > L » T>t">t2>>->tt>0
[ ) i
which occurs w.p. <(e7/L)L

» #rounds = O(AT + log n) w.h.p.




Resolve Update In Advance

“enough info” to resolve the i-th update at v: (¢, ¢)

fc¢ | JS,@0:“Accept!”

U~y

: set of possible colors
of u at time ¢




Resolve Update In Advance

“enough info” to resolve the i-th update at v: (¢, ¢)

t--l.tS.-

fc¢ | JS,@0:“Accept!”

U~y

b S,

: set of possible colors
of u at time ¢

If Ju ~vst S, (1) ={c}:
“Reject!”




to resolve the i-th update at v: (%, ¢)

Construct S, (7) for every neighbor u of v;

upon ¢ & U S, (0):

u~y

send “Accept!” to all neighbors and i++;
upon Jdu ~ vs.t. S (1) = {c}:

send “Reject!” to all neighbors and i++;
upon receiving “Accept!” or “Reject!” from neighbor u:

update S, (7) accordingly;

o lo
K5
A } 5,(f) : current set of
curr-color = Ml--=--7-5 possible colors of

h v/ u at time ¢




to resolve the i-th update at v: (%, ¢)

Construct 5, (7) for every neighbor u of v;

|”

upon recelvmg cc .'.

#round > L » Ja p h vl,‘ Do s VI #paths < AL

L T > t ¢ > T’

along the path good events do not happen
/>CA

for constant C>0 » #rounds = O(T" + log n) w.h.p.




The Metropolis Algorithm

Each vertex holds an independent rate-1 poisson clock.

Start from an arbitrary X&|[qg]”

When the clock at v rings:

let b=X, and propose a random c&[g];

/| change X, to ¢ with prob. f} (Xy,);

Metropolis filter:
fi . g™ — [0,1]

b € |q]: current color of v
c € |q]: proposed color of v




2-Phase Paradigm

for each vertex v € V:

Phase I:

e locally generate all update times 0 <, <f, < -+ <ty <T
and proposed colors ¢y, ¢y, ..., ¢y € [q];

e send the initial color and all (¢, ¢;){<;<;, to all neighbors;

Phase Il:

® Fori=1,2,...., M, do:
once having received :
resolve the i-th update of v and send the result

(“Accept / Reject”) to all neighbors;




to resolve the i-th update at v: (¢, ¢)

to execute the

o Fori=12,....M, do: o
o= Do Wy 9 . . Metropoli filter
once having received enough information;

resolve the i-th update of v and send the result
(“Accept / Reject”) to all neighbors;

M
M } 5.(f) : set of possible colors
curr-color = M---=-7-5, of u at time ¢

curr-color = b

proposal = ¢ /, (7) gives a biased coin

|dea: Couple all these coins!



to resolve the i-th update at v: (¢, ¢)

Construct §,(7) for every neighbor u of v;

let b be Vs current color and:

P Acc = min fb,c(T);
Te@urvvsu(t)

PRej 21— max Ip..();
TE@MNVSM(I) ,

sample a uniform random f € [0,1];
upon f < Py

send “Accept!” to all neighbors and i++;
upon f > 1 — Pg,;:

send “Reject!” to all neighbors and i++;

upon receiving “Accept!” or “Reject!” from neighbor u:

update S, (#) accordingly and recalculate Py and Pg,;;




Universal Distributed Simulation
of Metropolis Algorithm

Metropohs A|go|~ithm; let 5=X, and propose a random cE[q];
continuous-time 1’ change X, to ¢ with prob. f; (Xy,));

Lipschitz condition: 3 constant C>0:

C
V(u,v) € E,Va,a',b€lq]l: E|J[ /fg’c] < A

u,a,d

A
where 6, ../, . = max |f (6) —f, (7]

o, T differ onl, at u
oy=a,ty;=>b

» #rounds = O(T + log n) w.h.p.



Lipschitz condition

3 constant (>0

Necessary condition
for mixing

-colorin
q g o>CA q =
: : 3 constant C>0) 5
Ising model with . C | — 218l « =
temperature ] — e 28l « = A
A

3 constant (>0

with fugacity A C
A< K

hardcore model

(A — 12! e
(A—2)A ~ A-2




Summary

® Universal distributed perfect simulation of
Metropolis algorithms, with ideal parallelism under
mild Lipschitz condition for Metropolis filter.

e Open problem: distributed simulation of
general class of single-site Markov chains.



Qutline

® Distributed Sampling Problem
® Gibbs Distribution (distribution defined by local constraints)

® Algorithmic ldeas Feng, Hayes, Y., *19]
® [ocal Metropolis Algorithm [Feng, Sun, Y., PODC’17]

® [OCAL Jerrum-Valiant-Vazirani [Feng, Y., PODC’ 18]
® [ocal Rejection Sampling [Feng, Vishnoi, Y., STOC’19]

® Distributed Simulation of Metropolis



Local Computation

Locally Checkable Labeling (LCL)
problems:

® (CSPs with local constraints.

® Construct a feasible solution:
vertex/edge coloring, Lovasz local lemma

® Find local optimum: MIS,MM

® Approximate global optimum:
maximum matching, minimum vertex network G( V,E)
cover, minimum dominating set

Quest: “Find a solution to the locally defined problem.”




“What can be sampled locally?”

® CSP with local constraints.

e Sample a uniform random
solution. E 'S
® Distribution L (over solutions) *

described by local rules. C

® uniform LCL solution

® Ising model / RBM/
tensor network... network G(V,E)

Quest: “Generate a sample from the locally defined distribution.”




Markov Random Fields

® Each vertex corresponds to a network G(V,E):
variable with finite domain [g].

® Each edge (u,v)EF imposes a

binary constraint: 4, 20Elg]
A, [q" ={0,1}
® Gibbs distribution u :
Vo € [q]" :
p(0) H Ay (0, 0,) X € [q]V follows

(u,v)er

® |ocal conflict colorings:
[Fraigniaud, Heinrich, Kosowski ’16]



Markov Random Fields

® Gibbs distribution u : network G(V,E):
Voelql": u« || A.l0.0)
(u,v)eE XE
® vertex g-coloring: Auy &g
Yo 1
A = 0
u,v
= 1 O_
® independent set:
A _ 1 1 > V
w= 11 0 X € |q]" follows u

® |ocal conflict colorings: Au,v e {0,1}9%4
[Fraigniaud, Heinrich, Kosowski *16]



Markov Random Fields

® Each vertex corresponds to a network G(V,E):
variable with finite domain [g].

® Each edge (u,v)EF imposes a

binary constraint: Auy s
A, [q1* =[0,1]
"soft" constraint
® Gibbs distribution u :
Vo € [q]v ;
(o) H Ay (0, 0,) X € [q]Y follows u

(u,v)er

® |ocal conflict colorings:
[Fraigniaud, Heinrich, Kosowski ’16]



Distributed Sampllng

® |nstance: a Gibbs distribution p

® Output: random Y € [¢]”
® approx. sampling:
dTV(Ya //t) S €
® perfect sampling;

Y ~ u

network G(V,E)

Empirical studies in machine learning:

'Kandasamy, et al, AISTAT'1S8] ‘Gonzalez, et al, AISTAT 11]
'Dasklakis, et al, NIPS'18] Yan, et al, NIPS’09]

De Sa, et al, ICML’16 best paper] 'Smyth, et al, NIPS’09]

De Sa, et al, NIPS’15] 'Doshi-Velez, et al, NIPS’09]
'Ahmed, et al, WSDM’12] ‘Newman, et al, NIPS’08]




Distributed Sampllng

® |nstance: a Gibbs distribution p

® Output: random Y € [¢]”
® approx. sampling:
dTV(Ya //t) S €

® perfect sampling:

Y ~ u

network G(V,E)

|[Feng, Sun, Y. "17]:

Easy regime Hard regime

® O(Alog n)-round is easy e can be Q(Diam)-hard

® O(log n)-round is possible when Diam = no(0)

® ((log n)-round is necessary




Phase Transition

Corerelation decay:
Vor, 15 € [q]°
dpy(p, (- | op), u,( - | 7))
< exp(—=£2(r))

Hard regime: there is long-range correlation

® (A-1)-coloring on triangle-free graph .
. , } Q(Diam)-hard
® independent set when A=6 or higher

Easy regime: various forms of correlation decays

® Dobrushin-Shlosman condition

® Uniqueness condition (spatial mixing)



Qutline

® Distributed Sampling Problem
® Gibbs Distribution (distribution defined by local constraints)

® Algorithmic ldeas
® |ocal Metropolis Algorithm [Feng, Sun, Y., PODC’17]
e [OCAL Jerrum-Valiant-Vazirani [Feng, Y., PODC’ 18]
® [ocal Rejection Sampling [Feng, Vishnoi, Y., STOC’19]

® Distributed Simulation of Metropolis



Single-Site Markov Chain

Metropolis for g-coloring: G(V,E):

starting from an arbitrary X € [¢]” Auy

at each step:

pick a uniform random vertex v;

propose a random color c&|g];

change X(v) to c if it’s proper;

Metropolis for general MRF:

pick a uniform random vertex v;

propose to change X(v) to a random color cE€[q];

A, (X, ©) }

. e O
accept the change with probability mm{l,m} =minq 1, [] A, (XG0, X()

ueN()

|[Bubley, Dyer, 97]: path-coupling works » mixing in O(n log n) steps



The Local Metropolis Algorithm

proposals: ¢, <«—>c,«<—>cy

current: X, X, X,

starting from an arbitrary X € [¢g]¥, at each step:

each vertex v&V independently proposes a random c,&[q];

each edge (u,v)EE passes its test independently with probability:
Au,v(Xu’ C,) - Au,v(cu’ X,) - Au,v(cu’ C,)

each vertex v&V accepts to change to its proposed value ¢,
if all incident edges pass their test;

® converge to the correct Gibbs distribution . [Feng, Sun, Y. ’17]



The Local Metropolis Algorithm

proposals: ¢, <«—>c,«<—>cy

current: X, X, X,

For g-coloring, at each step:

each vertex v&V independently proposes a random color ¢,&[g];
each vertex v&V accepts to change to its proposed color ¢y if:

X, #Fc,ANc,#F X ANcC,F#C,;

[Feng, Sun, Y. ’17], [Fischer, Ghaffar1 18], [Feng, Hayes, Yin ’18]:

® Converges in O(log n) rounds when:

path-coupling works for Dobrushin-Shlosman condition
(sequential) Metropolis chain _ (2+8)A-coloring




LOCAL Jerrum-Valiant-Vazirani

[Jerrum, Valiant, Vazirani ’86]: (for self-reducible problems)

approximate
counting

suelp

Poly-time TM

perfect
sampling

LOCAL JVV [Feng, Y. ’18]: (for self-reducible problems)

SLOCAL LOCAL
perfect » perfect
sampling A sampling

. LOCAL
correlation » A DDrOX »
decay imI‘DeI?*enc.e
“strong ) /\ . J /\ L
spatial mixing™ | |1 inded local JVV
msg/comput. reduction

4

network | O(log3 1)

decomposition | rounds

® (2+90)A-coloring; 1.733A-coloring on triangle-free graph;
e Conjecture: (1+0)A-coloring



Local Rejection Sampling
Vo € [Q]V: H(o) H A(0,,0,)  where Ae : [q]z — [0,1]

e=(u,v)eE

a Moser-Tardos style algorithm [Feng, Vishnoi, Y. *19]:

each v € Vind. samples a random a,&|¢];
each e=(u,v) € E samples F.€{0,1} ind. with Pr[F. = 0] = Ac(0ou,0v);
while de€ E s.t. F.=1 do:

resample o, for allv e R £ U e;
¢€E:F,=1
for each e=(u,v) € E that eNR # D, resample F.&{0,1} ind.as:
Ao, 0) u,v € R (internal edge)
Pr[F,=0] =3 AJ,.0)

A (o,, 099)

minA,(o,-) u& R,v ER (boundary edge)

each v € V returns o,;




Local Rejection Sampling

[Feng, Vishnoi, Y. ’19], [Feng, Guo, Y. ’19]

a Moser-Tardos style algorithm:

® Pe rfeCt Sadm PI i ng’ Las Vegas each v € V' ind. samples a random a,€[¢];

each e=(u,v) € E samples F.€{0,1} ind. with Pr[F. = 0] = Ae(0u,0v);
while de€ E s.t. F.=1 do:

® parallel/distributed (CONGEST) | reampleatoraivers |J «

e€E:F =1
for each e=(u,v) € E that eNR # J, resample F.€{0,1} ind. as:

® O(log n)-round when converge Pr[Fe=0]={Ae(GM’GV) u,vER (internal edge)

AF w \") .
n ((0 6|d) minA, o, -) u€ R,v €ER (boundary edge)
\Oy> 6\9

each v € V returns oy;

® works for dynamic input

® require stronger types of correlation decay:

® (O(A?)-coloring (for a variant of the algorithm)



Local
Metropolis

Local
Rejection
Sampling

Features/Limitations

synchronous parallel
Markov chain

Monte Carlo sampling
CONGEST model

perfect sampling
abuses LOCAL model
O(log3 n) rounds

Moser-Tardos style
Las Vegas, perfect sampling
CONGEST model

works on dynamic input

Fast regimes

path-coupling works for
sequential process
(Dobrushin-Shlosman cond.)

(2+0)A-coloring

needs only necessary
correlation decay

conjecture:
(1+0)A-coloring

requires faster
correlation decay

O(A?)-coloring




Universal
Simulation
of
Metropolis

Local
Rejection
Sampling

Features/Limitations

Monte Carlo sampling
CONGEST model

perfect sampling
abuses LOCAL model
O(log3 n) rounds

Moser-Tardos style
Las Vegas, perfect sampling
CONGEST model

works on dynamic input

Fast regimes

as long as sequential
Metropolis algorithm has
O(n log n) mixing time

needs only necessary
correlation decay

conjecture:
(1+0)A-coloring

requires faster
correlation decay

O(A?)-coloring




Thank you!
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Feng, Sun, Y. What can be sampled locally? PODC’17. arxiv: 1702.00142.



