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MCMC Sampling

Markov chain for sampling X = (X, X,,....X ) ~ u
® Gibbs sampling (Glauber dynamics, heat-bath)

pick a random i; :Glauber, ’63]
resample X; ~ (- [N(V)); ‘Geman, Geman, ’34]

® Metropolis-Hastings algorithm

pick a random i;

| 'Metropolis et al, 53]
propose a random c; - . ,
Xi = ¢ w.p.  1(X ") u(X); Hastings, "34]

® Analysis: coupling methods
|Aldous, ’83] [Jerrum, *95] [Bubley, Dyer *97]

may give O(n log n) upper bound for mixing time




Computational Phase Transition

hardcore model: graph G(V,E), max-degree A, fugacity A>0

approx sample independent set [ in G w.p. X /llll

(A = B=DED e [Weitz, STOC06]: If i<, n0oz®) time.

(A —-2)2

Sly, FOCS’10 best paper]: If 1>/,
NP-hard even for A=0(1).

| Efthymiou, Hayes, Stefankovié,
Vigoda, Y., FOCS’16]:
If A<\c, O(n log n) mixing time.

A phase transition occurs at /.



Sampling wvs Counting

[Jerrum-Valiant-Vazirani *86]:

{ exact

MCMC Sampling
Markov chain for sampling X = (X,,X,,...,X,)) ~ u
® Gibbs sampling (Glauber dynamics, heat-bath)

pick a random ; [Glauber, ’63]
resample X; ~ su( - IN(V)); [Geman, Geman, ’84]

® Metropolis-Hastings algorithm

pick a random i;

_ [Metropolis et al, *53]
propose a random ¢; . ,
Xi = ¢ w.p. < u(X ") u(X); [Hastlngs, 84]

® Analysis: coupling methods
[Aldous, ’83] [Jerrum, *95] [Bubley, Dyer *97]

may give O(n log 1) upper bound for mixing time

approx} sampling <::‘> vol(Q)

Poly-Ti )
X=X.X....X,) et approx inference

Turing

X~Q Machine Pr[X; = - | X = o]

for all self-reducible problems
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Computational Phase Transition

I l hardcore model: graph G(V,E), max-degree A, fugacity A>0
1]

ANI **
tpartment, Cornell Univer,

—_—

approx sample independent set I in G w.p. & 4

Ay A-DETY e [Weitz, STOC 06]: If 2</c, nOlogA) time.
e [Sly, FOCS’10 best paper]: If >/,
NP-hard even for A=0(1).

[Efthymiou, Hayes, Stefankovic,
Vigoda, Y., FOCS’16]:
If A<)c, O(n log n) mixing time.

If A'is large enough, and there is no small cycle.

—

| niaﬁi—deg A

A phase transition occurs at /..

Big Data?



Sampling and Inference
for Big Data

® Sampling from a joint
distribution (specified by a
probabilistic graphical model).

® Inferring according to a
probabilistic graphical model.

® The data (probabilistic
graphical model) is BIG.




V' ® Parallel/distributed algorithms for sampling?
e PTIME = Polylog(n) rounds



Local Computation

“What can be computed locally?”
[Noar, Stockmeyer, STOC’93, SICOMP’935]

the LOCAL model [Linial ’87]: —

T

~
® Communications are g J

synchronized.

® |n each round: unlimited local
computation and communication
with neighbors.

N

—

/D

® Complexity: # of rounds to
terminate in the worst case.

® In 7 rounds: each node can collect information up to distance .

PLOCAL: ¢=polylog(n)

Al



“What can be sampled locally?”

® Joint distribution defined by
local constraints:

® Markov random field E Y

® Graphical model

® Sample a random solution
from the joint distribution:

® distributed algorithms
(in the LOCAL model) network G( V,E)

Q: “What locally definable joint distributions
are locally sample-able?”




MCMC Sampling

Classic MCMC sampling:

Markov chain X;— X1

G(V,E):

pick a uniform random vertex v;
update X(v) conditioning on X(N(v));

O(n log n) time when mixing

Parallelization:

® Chromatic scheduler [folklore] [Gonzalez et al., AISTAT 11]:
Vertices in the same color class are updated in parallel.

® O(A log n) mixing time (A is max degree)
® “Hogwild!” [Niu, Recht, R¢, Wright, NIPS’11][De Sa, Olukotun, R¢, ICML’16]:

All vertices are updated in parallel, ignoring concurrency issues.
® \Vrong distribution!



Crossing the Chromatic # Barrier

Sequential Parallel
O(n log n) === O(A log n)

parallel speedup
=0(n /A)

A = max-degree
¥ = chromatic no.

Do not update adjacent vertices simultaneously.

I::> It takes =y steps to update all vertices at least once.

Q: “How to update all variables simultaneously and
still converge to the correct distribution?”




Markov Random Fields
(MRF)

Voelql”: uo)x|[]uw) [] ¢.0.0)

veV e=(u,v)EE

e Each vertex v&V:a variable over
domain [g] with distribution L,

e Each edge e=(u,v)EE:a symmetric
binary constraint:

¢, gl X[gq] — [0,1]

G(V,E)



The Local-Metropolis Algorithm
|[Feng, Sun, Y., What can be sample locally? PODC’17]

proposals: ¢,<—> g, «<—>0w

current: X, X, 'X,,

Markov chain X;— Xi+1:

each vertex v&V independently proposes a random o, ~ v, ;
each edge e=(u,v) passes its check independently with prob:

¢(u’ v) ¢( X) ¢(uav

each vertex v&€V update X, to o, if all its edges pass checks;

® | ocal-Metropolis converges to the correct distribution .



The Local-Metropolis Algorithm

|[Feng, Sun, Y., What can be sample locally? PODC’17]

each vertex v&V independently proposes a random o, ~ 1, ;
each edge e=(u,v) passes its check independently with prob:
¢.X,, 0,) - 9.(0,,X,) - ,(0,,0,);

each vertex v&V update X, to oy if all its edges pass checks;

® [ocal-Metropolis converges to the correct distribution u.

MRF: uo) «[]ut) [ ¢d0.0)

vev e=(u,v)EE
® under coupling condition for Metropolis-Hastings:
® Metropolis-Hastings: O(n log n) time
® (lazy) Local-Metropolis: O(log ) time



Lower Bounds
|[Feng, Sun, Y., What can be sample locally? PODC’17]

Approx sampling from any MRF requires (log n) rounds.

® for sampling: O(log n) is the new criteria of “local”

If />/¢, sampling from hardcore model requires Q(diam) rounds.

(A — 1)(A_1> ° . .
Ao(A) = . strong separation: sampling vs other
(A —2) local computation tasks
-------- SN T S S ® Independent set is trivial to
A W HCH‘C] """""""" construct locally (e.g. &).

® The lower bound holds not because
of the locality of information, but

because of the locality of correlation.

max-deg A



v ® For parallel/distributed computing:
sampling = approx counting/inference”

e PTIME = Polylog(n) rounds



Example: Sample Independent Set

(hardcore model)

u: distribution of independent sets /in G X AN

o Y& {0,1}”indicates an
independent set

e Each v&EV returnsa Y, {0,1},
such that Y= (Y )er ~ U

® Or: drv(Y, u) < l/poly(n)

network G(V,E)



Inference (Local Counting)

u: distribution of independent sets /in G X AN

uy - marginal distribution at v conditioning on ¢ €{0,1}5.

el 1y py(y) = Pr Yo =y|¥s =0

® Each v € § receives oy as input.

® Each v € V' returns a marginal
distribution fi,, such that:

= u(0) = Pr|Y,, =0|Vj<i:Y, =0
E Yoou network G(V,E)

Z: partition function (counting)

1
Z




Decay of Correlation

uy - marginal distribution at v conditioning on o €{0,1}%.

strong spatial mixing (SSM):

vV boundary condition B&{0,1 }7-sphere(v);
drv (ug, uy?) < poly(n) - exp(—(r))

SSM  (iff 2<A. when u is the
_~~_  hardcore model)

N

approx. inference is solvable
in O(log n) rounds

in the LOCAL model




Locality of Counting & Sampling

|[Feng, Y., PODC’ 18]

For all self-reducible graphical models:

Correlation Inference: . Sampling:
Decay
"""" local approx. : local approx.
SSM . ' .
_________ inference , sampling

with additive error < easy

: N
NZ O(log? n) facto>

local approx. : > local exact
inference : sampling

distributed
Las Vegas sampler

with multiplicative error



Locality of Sampling

Correlation Inference:
Decay
§SM ' local approx. local approx.
________ inference sampling
each v can compute a fiy, return a random Y = (1))vey
within O(log n)-ball whose distribution [ ~
s.t. dTV (:ufuwuv) — po]_}];(n) dTV ('u 'LL) — p01317(fn,)

sequential O(log n)-local procedure:

® scan vertices in V' in an arbitrary order vi, v, ..., vy

: YooYy,
e fori=1,2,...,n: sample Y, according to [, " i—1




Network Decomposition

(C,D) -network-decomposition of G

® classifies vertices into clusters;
® assign each cluster a color in [C];
® cach cluster has diameter <D;
® clusters are properly colored.

(C,Dy-ND: (C,D)-ND of G

Given a (C,D)"- ND:

sequential r-local procedure: = O(log n)

® scan vertices in V' in an arbitrary order vi, vo, ..., vy

- . Yoo Yo,
e fori=1,2,...,n: sample Y, accordingto f," i—1

can be simulated in O(CDr) rounds in LOCAL model




Network Decomposition

(C,D) -network-decomposition of G

® classifies vertices into clusters;
® assign each cluster a color in [C];
® cach cluster has diameter <D;
® clusters are properly colored.

(C,Dy-ND: (C,D)-ND of G

(O(log n), O(log n))"-ND can be
constructed in O(7 log? n) rounds w.h.p.

'‘Ghaffari, Kuhn, Maus, STOC’17]:

r-local SLOCAL algorithm: O(rlog?n)-round LOCAL alg.:
vV ordering 7=(vi, v2, ..., vu), | |INID returns w.h.p. the Y@
returns random vector ¥ for some ordering 7




Locality of Counting & Sampling

|[Feng, Y., PODC’ 18]

For all self-reducible graphical models:

Correlation Inference: . Sampling:
Decay
"""" local approx. : local approx.
SSM . ' .
_________ inference , sampling

with additive error < easy

: N
NZ O(log? n) facto>

local approx. : > local exact
inference : sampling

distributed
Las Vegas sampler

with multiplicative error



Boosting Local Inference

additive error:

....... . A 1
' oM | ::> IoFaI approx. drv (83, 147) < Sorm
o, - inference o
multiplicative error:
each v computes a /i, ol no
o P MU Moy (O)’ :uv(l) c [e—l/poly(n)’el/poly(n)}
within r-ball 17 (0) " pg (1)

local self-reduction
SSM > both are achievable with » = O(log n)

boosted sequential r-local sampler: 7= O(log n)

® scan vertices in V' in an arbitrary order vi, vo, ..., v,

- . Yoo Yo,
e fori=1,2,...,n: sample Y, according to f," i—1

. . . _1/n? (o n>2
multiplicative error: Vo € {0,1}" : e < % <el



SLOCAL JVV

Scan vertices in V' in an arbitrary order vi, v2, ..., V:
pass 1: sample Y€&€ {0,1}7 by boosted sequential 7-local sampler ji;

Voelq” : eV <

A

o) gy T r = O(log n) j

plo) —
pass 1’: construct a sequence of ind. sets D=Y, Y1, ..., ¥, =Y;
s.t. V0O<i<n: e®Yiagrees with Yover vy, ..., v

(¢ ¥; and Y;. differ only at v; )
vi samples F,, € {0,1} independently with Pr[F,, = 0] = g,

(Y1) 3,2 _5/n?
where |q,, = — - e c |e , 1
[ H(Yz') y [ ]

<
Each vE&V returns: O(log n)-local ]

e ¥,E{0,1} to indicate the ind.set; \tocompute
o I, &{0,1} indicate failure at v.




Scan vertices in V' in an arbitrary order vi, v2, ..., Vi:

pass 1: sample Y& {0,1}" by boosted sequential r-local sampler fi;

A

oo Lo

pass 1’: construct a sequence of ind. sets U=Y,, Y1, ..., ¥, =Y;
s.t. V0<i<n: Y agrees with Yover vy, ..., v
* Yiand Y. differ only at v;

Vo elq]” @ eV <

vi samples F,, € {0,1} independently with Pr[F,, = 0] = g,

/l(Y’i—l) —3/n” —5/n”
where v, — = - C c |e ? 1
(Y ;) | |
Vo € {0,1}"
. - - A - (Y i-1) —3/n?
Pr[Y:a/\Vz:Fm:O]:u(a)qu :,u(a)H Y e /"
i=1 i=1 Y s) Y,=Y=0
_ /1(0') . la(@) . e—% O( {/1”0”1 o is ind. set
(o) 0 otherwise



Locality of Counting & Sampling

|[Feng, Y., PODC’ 18]

For all self-reducible graphical models:

Correlation Inference: . Sampling:
Decay
"""" local approx. : local approx.
SSM . ' .
_________ inference , sampling

with additive error < easy

: N
NZ O(log? n) facto>

local approx. : > local exact
inference : sampling

distributed
Las Vegas sampler

with multiplicative error



Local Exact Sampler

hardcore model: distribution of independent sets I Al

[Feng, Y., PODC’18]; Afd
NECTSy '
If )\<)‘C(A)_ (A—Q)A

® strong spatial mixing holds [Weltz ’06];

® 3 O(log3 n)-round distributed Las Vegas sampler.

|[Feng, Sun, Y., PODC’17]:

If />, any approx sampler requires ((diam) rounds.




Sampling wvs Counting

[Jerrum-Valiant-Vazirani 86]: for all self-reducible problems

rox countin
{ exact appro &

approx} sampling <:::> vol(Q)

Poly-Ti )
X=X.X....X,) T approx inference

Turing

X~Q Machine Pr[X; = - | X = o]
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MCMC Sampling ~  Computational Phase Transition

Markov chain for sampling X = (X, X,,....X,) ~ u ‘ hardcore model: graph G(V.E), max-degree A, fugacity >0

® Gibbs sampling (Glauber dynamics, heat-bath) approx sample independent set / in G w.p. X Al
pick a random i [Glauber, "63 ] n(a) = B=DE e [Weitz, STOC?06]: If 7</ie, nOUog ) time.
resample X; ~ (- [N()); [Geman, Geman, ’84] ‘ (A—-2)4

A 'me — e [Sly, FOCS’10 best paper]: If >/,
— M NP-hard even for A=0(1).

® Metropolis-Hastings algorithm

pick a random i;

[Metropolis et al, *53] [Efthymiou, Hayes, Stefankovi¢,

propose a random ¢;

ety | [Hastings, 84 Eay—— | ViewY.FoCSlg]
B R : If A<)c, O(n log n) mixing time.
L4 Anal)’SiS: COUPIing methods max—deg A If A is large enough, and there is no small cycle.

[Aldous, ’83] [Jerrum, ’95] [Bubley, Dyer *97]

A phase transition occurs at /..
may give O(n log 1) upper bound for mixing time

Hold for Big Data (local computation)!




Distributed Las Vegas Sampler

Las Vegas (certifiable failure):

e FEach v&V returns in fixed rounds:
® |ocal output Y,&{0,1};
e |ocal failure F,e{0,1}.

e Succeeds w.h.p.: Y ,er E[F)] =0(1).

® Conditioning on success, ¥ ~ 1.

Y v dynamic

o sampler
Las Vegas (zero failure):

® FEach v&J returns in random rounds:

® |ocal output Y,&{0,1}.

e Correctness: Y ~ L.




v ® Dynamic sampling algorithms?

e PTIME = Polylog(n) incremental cost



Graphical Model

Voelgl': uo) « [ute)]] oL

veV eckE

e Each v&V: a variable with domain
[q] following distribution v,

® Each eEL is a set of variables and

corresponds to a constraint
(factor)

¢, : [q]° = [0,1]

@ O
hypergraph (V,E)



Dynamic Sampling

e distribution u over all o&|q

<o—>o<1'[u<a>1'[¢<a>

veV eckE

current sample: X ~ u

dynamic update:

® adding/deleting a constraint e
. . new distribution
® changing a function v, or ¢ # ,

u

® adding/deleting an independent variable v

Question:

Obtain X’ ~ '’ from X ~ u with small incremental cost.
17 17




Dynamic Sampling

Input: a graphical model which defines distribution u
a sample X ~ 1, and an update changing ¢ to u’

b

Output: a new sample X’ ~ u

® inference/learning tasks where the graphical model is
changing dynamically
® video processing
® online learning with dynamic or streaming data

® sampling/inference/learning algorithms which
adaptively and locally change the joint distribution

® stochastic gradient descent

® approximate counting / self-reduction



Dynamic Sampling

Input: a graphical model which defines distribution u
a sample X ~ 1, and an update changing ¢ to u’

b

Output: a new sample X’ ~ u

Goal:

transforma X~utoa X’ ~u’
by local changes

Current sampling techniques are not powerful enough:
® ; could be changed significantly by dynamic updates;

® Monte Carlo sampling does not know when to stop;
® notions such as mixing time give worst-case estimation.




Rejection Sampling
e distribution u over all c&[q]"":

uo) « | [uion [ | e

veV eck

distribution v, over [¢]

b, [ql° — [0,1] ® o ©

e cach v € Vindependently samples X,&[q] according to v, ;

® cach e € E is passed independently with probability ¢e(X.);

e X is accepted if all constraints e € E are passed.

e 4 distribution of X conditioning on accept

® Probability of accept is exponentially small!



For general graphical models:

ion I: l '
Question |[Feng, Vishnoi, Y., STOC’19]

(dynamic sampling)

Given a X ~ i, when u — u’
transform Xtoa X’ ~u .
® (X,R) < Resample(X,R);

Resample(X,R) :
o e each e € E*(R) computes «, = IIliIlX ¢, (x) P (X,)
[} Xe* XenR=AenR
QueStlon II . ® each v € R resamples X, €[¢] independently according to ¢,;
® cach e € E7(R) is passed independently with prob. . ¢e(Xe);
(otherwise e is violated)

(rejection sampling) ST

Dynamic Sampler

Upon receiving an update to the graphical model :
® Let R includes the variables affected by the update;

Make rejection sampling
great again!

(when part of X is rejected, only resample the
rejected part while still being correct)

[Guo, Jerrum, Liu, STOC’17]
for Boolean CSP



Dynamic Sampler
[Feng, Vishnoi, Y., STOC’19]

Upon receiving an update to the graphical model :

® |et R includes the variables affected by the update;
o while R+ :

® (X,R) « Resample(X, R);

Resample(X,R) :
® each ¢ € E(R) computes «, = min ¢, (x,)/¢,(X,)

xe: XeﬂR=XenR

® ecach v € R resamples X, €|¢g] independently according to ¢;
® each e € Ef(R) is passed independently with prob. x.:¢e(Xe);

P (otherwise e is violated)
e R Uy e
ecE: violated ¢




Correctness of Sampling
[Feng, Vishnoi, Y., STOC’19]

Upon receiving an update to the graphical model :

® Let R includes the variables affected by the update;

o while R+ :
® (X,R) « Resample(X,R);

Resample(X,R) :
® each ¢ € E*(R) computes Kk, = min ¢, (x,)/¢,(X,)

xe: xeﬂR=Xer'\R

® each v € R resamples X, €[¢q] independently according to ¢.;
® cach e € E*(R) is passed independently with prob. x. ge(Xe);

(otherwise e is violated)
® R « U , e,
ecE: violated ¢

Correctness:

Assuming input sample X ~ u, upon termination, the dynamic
sampler returns a sample from the updated distribution y".




Correctness of Sampling
[Feng, Vishnoi, Y., STOC’19]

Upon receiving an update to the graphical model :

® Let R includes the variables affected by the update;

o while R+ :

® (X,R) < Resample(X,R); Resample(X, R) :

® each ¢ € E*(R) computes Kk, = min ¢, (x,)/¢,(X,)

xe: xeﬂR=Xer'\R

® each v € R resamples X, €[¢q] independently according to ¢.;
® cach e € E*(R) is passed independently with prob. x. ge(Xe);

(otherwise e is violated)
® R « U , e,
ecE: violated ¢

Conditional Gibbs Property:

A random (X,R) is conditionally Gibbs w.r.t. u if conditioning on any
choice of R and Xk, the distribution of the rest X, is correct.

Equilibrium:
If (X,R) is conditionally Gibbs w.r.t. u’, then so is (X",R’).




Fast Convergence

Resample(X,R) :
® each e € £*(R) computes K, = miPX ¢.(x,) ¢, (X,)

Upon receiving an update to the graphical model :
® Let R includes the variables affected by the update;
e while R+

® cach e € Ef(R) is passed independently with prob. ke @e(Xe);

® (X,R) < Resample(X,R); (otherwise e is violated)
e R « U ) e;
ecE: violated e

® each v € R resamples X, €[q] independently according to ¢;

Sufficient Condition for Fast Convergence:

If for the graphical model with max-edge-degree d:

|
Vee E, mng,(x)>4/1 ———
X D) \/ d+1

then O(1) incremental cost per update in expectation.

® [asVegas (good for simulation)
® parallel & distributed (good for systems)
® better static sampling algorithm



® Parallel/distributed algorithms for sampling
o Feng, Sun, Y.: What can be sampled locally? PODC’17.

> Feng, Hayes, Y.: Distributed Sampling Almost-Uniform Graph Coloring
with Fewer Colors. arXiv: 1802.06953.

- Feng, Hayes, Y.: Fully-Asynchronous Distributed Metropolis Sampler
with Optimal Speedup. arXiv:1904.00943.

® For parallel/distributed computing:
sampling = approx counting/inference

o Feng, Y.: On local distributed sampling and counting. PODC’18.

® Dynamic sampling algorithms
© Feng, Vishnoi, Y.: Dynamic Sampling from Graphical Models. STOC’19.
o Feng, He, Sun, Y.: Dynamic MCMC Sampling. arXiv:1904.11807.

> Feng, Guo, Y.: Perfect sampling from spatial mixing. arXiv:1907.06033.






