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Sampling    vs    Counting

sampling
exact 
approx}{

X = (X1, X2, …, Xn )

approx counting
vol(Ω)

approx inference
Pr[Xi = ⋅ ∣ XS = σ]

(
[Jerrum-Valiant-Vazirani ’86]:  

Poly-Time 
Turing 

Machine

for all self-reducible problems

X ∼ Ω



MCMC Sampling

• Gibbs sampling (Glauber dynamics, heat-bath)

• Metropolis-Hastings algorithm

Markov chain for sampling X = (X1, X2, …, Xn ) ∼ μ

pick a random i;
resample Xi ~ µv( · |N(v));

pick a random i;
propose a random c;

Xi = c w.p. ∝ µ(X’)/µ(X);

[Glauber, ’63]  
[Geman, Geman, ’84]   

[Metropolis et al, ’53]  
[Hastings, ’84]   

• Analysis: coupling methods

[Aldous, ’83] [Jerrum, ’95] [Bubley, Dyer ’97]
may give O(n log n) upper bound for mixing time



Computational Phase Transition
hardcore model: graph G(V,E),  max-degree Δ, fugacity λ>0

approx sample independent set I in G w.p. ∝ λ|I|

�c(�) =
(�� 1)(��1)

(�� 2)�
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• [Weitz, STOC’06]:  If λ<λc, nO(log Δ) time.

• [Sly, FOCS’10 best paper]:  If λ>λc,     
NP-hard even for Δ=O(1).

[Efthymiou, Hayes, Štefankovič, 
Vigoda, Y., FOCS’16]:
If λ<λc, O(n log n) mixing time.

If Δ is large enough, and there is no small cycle.

A phase transition occurs at λc.



Big Data?



Sampling and Inference 
for Big Data

• Sampling from a joint 
distribution (specified by a 
probabilistic graphical model).

• Inferring according to a 
probabilistic graphical model.

• The data (probabilistic 
graphical model) is BIG.



• Parallel/distributed algorithms for sampling? 

• For parallel/distributed computing:    
sampling ≡ approx counting/inference?

• Dynamic sampling algorithms?

✓

✓

✓

• PTIME ⟹ Polylog(n) rounds

• PTIME ⟹ Polylog(n) rounds

• PTIME ⟹ Polylog(n) incremental cost



Local Computation

• Communications are 
synchronized.

• In each round:  unlimited local 
computation and communication 
with neighbors.

• Complexity:  # of rounds to 
terminate in the worst case.

• In t rounds:  each node can collect information up to distance t.

the LOCAL model [Linial ’87]:

“What can be computed locally?” 

[Noar, Stockmeyer, STOC’93, SICOMP’95]

PLOCAL:  t = polylog(n)



“What can be sampled locally?”

network G(V,E)

• Joint distribution defined by 
local constraints:

• Markov random field

• Graphical model

• Sample a random solution 
from the joint distribution:

• distributed algorithms 
(in the LOCAL model)

Q:  “What locally definable joint distributions
are locally sample-able?”



MCMC Sampling
G(V,E):

vv

Classic MCMC sampling:

Parallelization:

• Chromatic scheduler [folklore] [Gonzalez et al., AISTAT’11]:  
Vertices in the same color class are updated in parallel.

• “Hogwild!” [Niu, Recht, Ré, Wright, NIPS’11][De Sa, Olukotun, Ré, ICML’16]: 
All vertices are updated in parallel, ignoring concurrency issues.

pick a uniform random vertex v;

update X(v) conditioning on X(N(v));

Markov chain Xt → Xt+1 :

O(n log n) time when mixing

• O(Δ log n) mixing time (Δ is max degree)

• Wrong distribution!



Crossing the Chromatic # Barrier

Sequential Parallel

O(n log n) O(Δ log n)

∆ = max-degree 

parallel speedup 
= θ(n /Δ)

Q:  “How to update all variables simultaneously and 
still converge to the correct distribution?”

χ = chromatic no.

Do not update adjacent vertices simultaneously.
It takes ≥χ steps to update all vertices at least once.



Markov Random Fields

G(V,E)

• Each vertex v∈V: a variable over 
domain [q] with distribution

• Each edge e=(u,v)∈E: a symmetric 
binary constraint:

Xv∈[q]
u v

(MRF)

νv

ϕe : [q ] × [q ] → [0,1]

νv
ϕe

∀σ ∈ [q ]V : μ(σ) ∝ ∏
v∈ V

νv(σv) ∏
e= (u ,v)∈E

ϕe(σu , σv)



The Local-Metropolis Algorithm

Markov chain Xt → Xt+1 :

each vertex v∈V independently proposes a random                ;

each edge e=(u,v) passes its check independently with prob:

each vertex v∈V update Xv to σv if all its edges pass checks;

u v w
Xu Xv Xwcurrent:

proposals: σu σv σw

• Local-Metropolis converges to the correct distribution µ.

σv ∼ νv

ϕe(Xu , σv) ⋅ ϕe(σu , Xv) ⋅ ϕe(σu , σv);

[Feng, Sun, Y., What can be sample locally? PODC’17]  



The Local-Metropolis Algorithm

each vertex v∈V independently proposes a random                ;

each edge e=(u,v) passes its check independently with prob:

each vertex v∈V update Xv to σv if all its edges pass checks;

• Local-Metropolis converges to the correct distribution µ.

σv ∼ νv

ϕe(Xu , σv) ⋅ ϕe(σu , Xv) ⋅ ϕe(σu , σv);

μ(σ) ∝ ∏
v∈V

νv(σv) ∏
e= (u ,v)∈E

ϕe(σu , σv)MRF:

• under coupling condition for Metropolis-Hastings:

• Metropolis-Hastings:  O(n log n) time

• (lazy) Local-Metropolis:  O(log n) time

[Feng, Sun, Y., What can be sample locally? PODC’17]  



Lower Bounds

Approx sampling from any MRF requires Ω(log n) rounds.

• for sampling: O(log n) is the new criteria of “local”

If λ>λc, sampling from hardcore model requires Ω(diam) rounds.

• Independent set is trivial to 
construct locally (e.g. ∅).

• The lower bound holds not because 
of the locality of information, but 
because of the locality of correlation.

strong separation: sampling vs other 
local computation tasks

[Feng, Sun, Y., What can be sample locally? PODC’17]  
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• Parallel/distributed algorithms for sampling? 

• PTIME ⟹ Polylog(n) rounds

• For parallel/distributed computing:    
sampling ≡ approx counting/inference?

• PTIME ⟹ Polylog(n) rounds

• Dynamic sampling algorithms? 

• PTIME ⟹ Polylog(n) incremental cost

✓

✓

✓



Example:  Sample Independent Set

• Y ∈ {0,1}V indicates an 
independent set

• Each v∈V returns a Yv∈ {0,1},            
such that Y = (Yv)v∈V  ∼ µ 

• Or:  dTV(Y, µ) < 1/poly(n)

µ:  distribution of independent sets I in G

network G(V,E)

∝ λ|I|

(hardcore model)



Inference (Local Counting)

network G(V,E)

• Each v ∈ S receives σv as input.

• Each v ∈ V returns a marginal 
distribution       such that:µ̂�

v

dTV(µ̂�
v , µ

�
v )  1

poly(n)

:  marginal distribution at v conditioning on σ ∈{0,1}S.µ�
v

0

1 1

0

8y 2 {0, 1} : µ�
v (y) = Pr

Y ⇠µ
[Yv = y | YS = �]

1

Z
= µ(;) =

nY

i=1

Pr
Y ⇠µ

[Yvi = 0 | 8j < i : Yvj = 0]

Z:  partition function (counting)

µ:  distribution of independent sets I in G ∝ λ|I|



Decay of Correlation

strong spatial mixing (SSM): 

SSM

approx. inference is solvable 
in O(log n) rounds 

in the LOCAL model

G

v r B
σ

:  marginal distribution at v conditioning on σ ∈{0,1}S.µ�
v

∀ boundary condition B∈{0,1}r-sphere(v):

dTV(µ
�
v , µ

�,B
v )  poly(n) · exp(�⌦(r))

(iff λ≤λc when µ is the 
hardcore model)



Locality of Counting & Sampling

SSM

Correlation
Decay:

Inference: Sampling:

local approx.
sampling

local approx.
inference

local approx.
inference

local exact
sampling

with additive error

with multiplicative error

For all self-reducible graphical models:

O(log2 n) factor

easy

distributed
Las Vegas sampler

[Feng, Y., PODC’18]  



Locality of Sampling
Inference: Sampling:

local approx.
sampling

local approx.
inferenceSSM

Correlation
Decay:

sequential O(log n)-local procedure:

µ̂�
veach v can compute a

within O(log n)-ball

s.t.

• scan vertices in V in an arbitrary order v1, v2, …, vn

• for i=1,2, …, n:   sample       according to Yvi µ̂
Yv1 ,...,Yvi�1
vi

return a random Y = (Yv)v∈V

whose distribution µ̂ ⇡ µ

dTV (µ̂, µ)  1
poly(n)dTV (µ̂�

v , µ
�
v )  1

poly(n)



Network Decomposition

• scan vertices in V in an arbitrary order v1, v2, …, vn

• for i=1,2, …, n:   sample       according to Yvi µ̂
Yv1 ,...,Yvi�1
vi

Given a (C,D)r- ND:

can be simulated in O(CDr) rounds in LOCAL model

sequential r-local procedure: r = O(log n)

(C,D) -network-decomposition of G:

• classifies vertices into clusters;

• assign each cluster a color in [C];
• each cluster has diameter ≤D;

• clusters are properly colored.

(C,D)r-ND:   (C,D)-ND of Gr 

r = O(log n)



Network Decomposition

r-local SLOCAL algorithm:
∀ ordering π=(v1, v2, …, vn),

returns random vector Y(π)

O(rlog2n)-round LOCAL alg.:
returns w.h.p. the Y(π) 
for some ordering π

[Ghaffari, Kuhn, Maus, STOC’17]:

ND

(O(log n), O(log n))r-ND can be 
constructed in O(r log2 n) rounds w.h.p.

(C,D) -network-decomposition of G:

• classifies vertices into clusters;

• assign each cluster a color in [C];
• each cluster has diameter ≤D;

• clusters are properly colored.

(C,D)r-ND:   (C,D)-ND of Gr 



Locality of Counting & Sampling

SSM

Correlation
Decay:

Inference: Sampling:

local approx.
sampling

local approx.
inference

local approx.
inference

local exact
sampling

with additive error

with multiplicative error

O(log2 n) factor

easy

distributed
Las Vegas sampler

[Feng, Y., PODC’18]  
For all self-reducible graphical models:



Boosting Local Inference

SSM
local approx.

inference

µ̂�
veach v computes a

within r-ball

(

• scan vertices in V in an arbitrary order v1, v2, …, vn

• for i=1,2, …, n:   sample       according to Yvi µ̂
Yv1 ,...,Yvi�1
vi

boosted sequential r-local sampler: r = O(log n)

multiplicative error: e�1/n2

 µ̂(�)

µ(�)
 e1/n

2

8� 2 {0, 1}V :

both are achievable with r = O(log n)SSM
local self-reduction

additive error:
dTV (µ̂�

v , µ
�
v )  1

poly(n)

multiplicative error:
µ̂�
v (0)

µ�
v (0)

,
µ̂�
v (1)

µ�
v (1)

2
h
e�1/poly(n), e1/poly(n)

i



pass 1:   sample Y ∈ {0,1}V by boosted sequential r-local sampler    ;

SLOCAL JVV

pass 1’:   construct a sequence of ind. sets ∅=Y0, Y1, …, Yn =Y;

µ̂

Scan vertices in V in an arbitrary order v1, v2, …, vn :

s.t. ∀ 0 ≤ i ≤ n: • Yi agrees with Y over v1, …, vi 

• Yi and Yi-1 differ only at vi 

vi samples                   independently with

where

r = O(log n)

O(log n)-local 
to compute

e�1/n2

 µ̂(�)

µ(�)
 e1/n

28� 2 [q]V :

2 [e�5/n2

, 1]

Fvi 2 {0, 1} Pr[Fvi = 0] = qvi

qvi =
µ̂(Y i�1)

µ̂(Y i)
· e�3/n2

Each v∈V returns:

• Yv ∈{0,1} to indicate the ind. set;

• Fv ∈{0,1} indicate failure at v.



Pr[Y = � ^ 8i : Fvi = 0] = µ̂(�)
nY

i=1

qvi = µ̂(�)
nY

i=1

✓
µ̂(Y i�1)

µ̂(Y i)
· e�3/n2

◆�����
Y n=Y =�

= µ̂(�) · µ̂(;)
µ̂(�)

· e� 3
n

8� 2 {0, 1}V :

pass 1:   sample Y ∈ {0,1}V by boosted sequential r-local sampler    ;

pass 1’:   construct a sequence of ind. sets ∅=Y0, Y1, …, Yn =Y;

µ̂

Scan vertices in V in an arbitrary order v1, v2, …, vn :

s.t. ∀ 0 ≤ i ≤ n: • Yi agrees with Y over v1, …, vi 

• Yi and Yi-1 differ only at vi 

vi samples                   independently with

where

r = O(log n)e�1/n2

 µ̂(�)

µ(�)
 e1/n

28� 2 [q]V :

2 [e�5/n2

, 1]

Fvi 2 {0, 1} Pr[Fvi = 0] = qvi

qvi =
µ̂(Y i�1)

µ̂(Y i)
· e�3/n2

∝ {λ∥σ∥1 σ is ind. set
0 otherwise



Locality of Counting & Sampling

SSM

Correlation
Decay:

Inference: Sampling:

local approx.
sampling

local approx.
inference

local approx.
inference

local exact
sampling

with additive error

with multiplicative error

O(log2 n) factor

easy

distributed
Las Vegas sampler

[Feng, Y., PODC’18]  
For all self-reducible graphical models:



If                                 :  

• strong spatial mixing holds [Weitz ’06];

• ∃ O(log3 n)-round distributed Las Vegas sampler.

Local Exact Sampler
hardcore model:  distribution of independent sets I ∝ λ|I|

� < �c(�) =
(�� 1)��1

(�� 2)�

[Feng, Sun, Y., PODC’17]: 

If λ>λc, any approx sampler requires Ω(diam) rounds.

[Feng, Y., PODC’18]: 
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Hold for Big Data (local computation)!



Distributed Las Vegas Sampler

• Each v∈V returns in fixed rounds:

• local output Yv∈{0,1};

• local failure Fv∈{0,1}.

• Succeeds w.h.p.:  ∑v∈V E[Fv] = o(1). 

• Conditioning on success, Y ~ µ.

• Each v∈V returns in random rounds:

• local output Yv∈{0,1}.

• Correctness: Y ~ µ.

Las Vegas (certifiable failure):

Las Vegas (zero failure):
? ✓ dynamic 

sampler



• Parallel/distributed algorithms for sampling? 

• PTIME ⟹ Polylog(n) rounds

• For parallel/distributed computing:    
sampling ≡ approx counting/inference?

• PTIME ⟹ Polylog(n) rounds

• Dynamic sampling algorithms? 

• PTIME ⟹ Polylog(n) incremental cost

✓

✓

✓



Graphical Model

• Each v∈V:  a variable with domain 
[q] following distribution      

• Each e∈E is a set of variables and 
corresponds to a constraint 
(factor)

ϕe : [q ]e → [0,1]

constraint 
e

νv

νv

ϕe

hypergraph (V,E)

∀σ ∈ [q ]V : μ(σ) ∝ ∏
v∈ V

νv(σv)∏
e∈ E

ϕe(σe)



Dynamic Sampling
• distribution µ over all σ∈[q]V :

νvϕeu v

• adding/deleting a constraint e 

• changing a function νv or ,e 

• adding/deleting an independent variable v

current sample:  X ~ µ

μ(σ) ∝ ∏
v∈ V

νv(σv)∏
e∈ E

ϕe(σe)

dynamic update:

Obtain X’ ~ µ’ from X ~ µ with small incremental cost.   

Question:

new distribution

 µ’}

ϕ′�e

ν′�v



Dynamic Sampling
Input: 

Output: 

a graphical model which defines distribution µ 
a sample X ~ µ, and an update changing µ to µ’ 

a new sample X’ ~ µ’ 

• inference/learning tasks where the graphical model is 
changing dynamically
• video processing

• online learning with dynamic or streaming data

• sampling/inference/learning algorithms which 
adaptively and locally change the joint distribution
• stochastic gradient descent

• approximate counting / self-reduction



Dynamic Sampling

• µ could be changed significantly by dynamic updates;

• Monte Carlo sampling does not know when to stop;

• notions such as mixing time give worst-case estimation.

Goal:

transform a X ~ µ to a X’ ~ µ’  
by local changes

Current sampling techniques are not powerful enough: 

Input: 

Output: 

a graphical model which defines distribution µ 
a sample X ~ µ, and an update changing µ to µ’ 

a new sample X’ ~ µ’ 



Rejection Sampling
• distribution µ over all σ∈[q]V :

μ(σ) ∝ ∏
v∈ V

νv(σv)∏
e∈ E

ϕe(σe)

νv over [q]

ϕe : [q ]e → [0,1]

• each v ∈ V independently samples Xv∈[q] according to      ;

• each e ∈ E is passed independently with probability ,e(Xe); 

• X is accepted if all constraints e ∈ E are passed.

distribution

νv

constraint 
e

νv

ϕe

• µ:   distribution of X conditioning on accept

• Probability of accept is exponentially small!



Question I:  
(dynamic sampling) 
Given a X ~ µ, when µ → µ’ 

transform X to a X’ ~ µ’ .

Question II:  
(rejection sampling) 

Make rejection sampling 
great again!

(when part of X is rejected, only resample the 
rejected part while still being correct)

[Feng, Vishnoi, Y., STOC’19]  

For general graphical models:

[Guo, Jerrum, Liu, STOC’17]  
for Boolean CSP



Dynamic Sampler

• each e ∈ E+(R) computes 

• each v ∈ R resamples Xv ∈[q] independently according to ,v;

• each e ∈ E+(R) is passed independently with prob. κe·,e(Xe);

•                         

./01234/(X, R) :

R ← ⋃e∈E: violated e
e;

κe = min
xe: xe∩R= Xe∩R

ϕe(xe)/ϕe(Xe)

• Let R includes the variables affected by the update; 

• while R ≠ ∅ :

•   (X, R) ← ./01234/(X, R);

Upon receiving an update to the graphical model :

(otherwise e is violated)

[Feng, Vishnoi, Y., STOC’19]  



Correctness of Sampling

Correctness: 
Assuming input sample X ~ µ, upon termination, the dynamic 
sampler returns a sample from the updated distribution µ’.

[Feng, Vishnoi, Y., STOC’19]  



Correctness of Sampling

Equilibrium: 
If (X,R) is conditionally Gibbs w.r.t. µ’, then so is (X’,R’).

A random (X,R) is conditionally Gibbs w.r.t. µ if conditioning on any 
choice of R and XR, the distribution of the rest XV\S,  is correct.

Conditional Gibbs Property: 

[Feng, Vishnoi, Y., STOC’19]  



Fast Convergence

Sufficient Condition for Fast Convergence: 
If for the graphical model with max-edge-degree d: 

∀e ∈ E, min
x

ϕe(x) > 1 − 1
d + 1

then O(1) incremental cost per update in expectation.  

• Las Vegas (good for simulation)

• parallel & distributed  (good for systems)

• better static sampling algorithm 



• Parallel/distributed algorithms for sampling

• Dynamic sampling algorithms

• For parallel/distributed computing:    
sampling ≡ approx counting/inference

Feng, Y.: On local distributed sampling and counting. PODC’18.

Feng, Sun, Y.: What can be sampled locally?  PODC’17. 

Feng, Hayes, Y.: Distributed Sampling Almost-Uniform Graph Coloring 
with Fewer Colors.  arXiv: 1802.06953. 

Feng, Hayes, Y.: Fully-Asynchronous Distributed Metropolis Sampler 
with Optimal Speedup.  arXiv:1904.00943.

Feng, Vishnoi, Y.: Dynamic Sampling from Graphical Models. STOC’19. 

Feng, He, Sun, Y.: Dynamic MCMC Sampling.  arXiv:1904.11807. 

Feng, Guo, Y.: Perfect sampling from spatial mixing.  arXiv:1907.06033.



Thank you!


