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Sampling in High-Dimensional Space

Given an n-dimensional joint distribution g,
draw a sample X = (X, X,, ..., X,) ~ U.

* One of the earliest computer programs (nuclear Monte Carlo simulations on |
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Sampling in High-Dimensional Space

Given an n-dimensional joint distribution g,
draw a sample X = (X, X5, ..., X ) ~ u.

* One of the earliest computer programs (nuclear Monte Carlo simulations on ENIAC)

* Crucial for today’s computational tasks:

 Probabilistic inference: guessing possible values of X. given values of X
* Optimization via sampling: finding x with max u(x) by drawing X ~ u
* High-dimensional integration: calculating J or estimating volumes

Rn

e Statistical physics: simulating interacting particle systems

 Approximate counting: e.g. estimating Network Reliability



Gibbs Distribution

e High-dimensional distribution i described by local constraints:

e 1 variables on finite discrete domain €2

 aset € of local constraints (£, S) with scope $ C [n] and f: Q° — [0,1]

vxeQ:  um o [ Axg

(f,.5)€E

. For hard constraints f: Q> — {0,1}, the u is uniform distribution over
constraint satisfaction solutions

« Examples of Gibbs distributions: graphical model, Bayesian network, Boltzmann
machine, Markov random field, factor graph, spin system, weighted CSP, ...




Gibbs Sampler

(a.k.a. Glauber dynamics, heat-bath dynamics) [Glauber 1963]

the Markov chain maintains an x € "; at each step:
» pickanv € {1,2,...,n} uniformly at random;

» update x, randomly according to the marginal distribution ,( - | Xy,));
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Gibbs Sampler

(a.k.a. Glauber dynamics, heat-bath dynamics) [Glauber 1963]

the Markov chain maintains an x € "; at each step:
» pickanv € {1,2,...,n} uniformly at random;

» update x, randomly according to the marginal distribution ,( - | Xy,));

* The Gibbs sampler converges (mixes) to .

 Many other Markov chains converge to u, e.qg. the Metropolis algorithm [Metropolis 1953]

* The convergence rate (mixing time) depends on properties of u.
Trnix = maxmin {7 > 1| [|[P'(x, - ) — ull, < 1/e}

X

e What makes a family of distributions easy/hard to sample? New algorithms?



Outline

e Computational Phase Transition of Sampling
* Phase transition of probabilistic graphical models

* Phase transition of sampling constraint satisfaction solutions
(a.k.a. a sampling Lovasz local lemma)

e Network Algorithms for Gibbs Sampling

» Parallel/Distributed/Dynamic sampling algorithms

o Application: Network Reliability Estimation




Computational Phase Transition
of Sampling




Computational Phase Transition

STATE OF MATTER
o e, For Gibbs
Physical , S Sampling Computational
Phase Transition A o Complexity
B -, ¥ < X\
; vl n?g \ > /_ 0 |
e Gibbs distribution: \ | ;\+
(£S)EC ALY

* |ocally constrained random variables <= locally interacting particle states

* (Continuous change of strength of local interaction = sharp transition of global state
(state of matter / computational complexity)



Gibbs sampler:

Hardcore Model

maintain an independent set / C V-

Given a graph G(V, E) and a parameter A > O: * pickan v € V uniformly at random;
« if /U {v} is independent set then
V independent set I C V of G: {Iu{v} with prob. ——
I «
//l(]) X lu‘ I\{v} with prob.l—Jlr/1

Critical threshold (for phase transition of hardcore gas with fugacity A on A-degree Bethe lattice).

_ 1\A-1
A(A) 5 " -

¢

(A — Z)A A — 2 strong spatial mixing (SSM)
high-dimensional expander (HDX)
. . I |-to-global t
e 4> A.(A) = sampling is NP-hard [sly, FOCS 2010 best paper] o e ity
field dynamics
e A< A (A) Gibbssampler L -
pOlog b, , ), A0, logn — O(nzlog n) — O(n log n) op’umal |
[Weitz [Anarl Liu, Oveis Gharan [Chen, Liu, Vigoda [Chen, Feng, Y., Zhang [Chen, Feng, Y., Zhang, FOCS ’22] i
STOC '07] FOCS 20] R STOC 21] o FOCS 21] o [Chen Eldan FOCS 22] ’

for all Gibbs distributions with pairwise repulswe constraints on Boolean variables (ant/ ferromagnet/c two-state spin systems)



Constraint Satisfaction Solutions
. For hard constraints (Boolean decisions) f: Q> — {0,1)

vxeQ:  px o [ Axg
(1,5)e€
u 1s the uniform distribution over all constraint satisfaction solutions

« Example: k-SAT with variable degree d
CNF formula (xl V _'Xz V X3) AN (Xl V .XZ V X4) AN (X3 V _'.X4 V _'XS)

* Barrier: classic sampling algorithms rely on connectivity of solution space

Quniq Cclust Gcond Qsat,

[ oo [ oo | . | Satisfying solution exists when k 2> log d
. Y . . 0% - ,
: AR 1 ) : (Lovész local lemma)

e-* | | e - Sampling?

uniqueness extremality clustering condensation unsat




Overcome the Connectivity Barrier

Projected Markov chain:
Properly construct a subset U C V of variables;

Sample x;; ~ p;; by simulating Gibbs sampler on p;

Extend X, to a satistying solution X ~ u; Idea: project onto lower dimension
to Improve connectivity

 Efficiently construct a “good” subspace U C V-
» Gibbs sampler for y;; is fast-convergent (the subspace is well-connected) and efficient to implement

» itis efficient to extend a random partial solution x;, ~ p;; to a uniform satisfying solution x ~

 Fast sampler in near-linear time (under Lovasz local lemma like condition):

Quniq Cclust cond Qsat

e SAT [Feng, Guo, Y., Zhang, STOC 2020] . e || e e ]
« CSP with atomic constraints [Feng, He, Y., STOC 2021] 3 ®

‘o
uniqueness extremality clustering condensation unsat

» general CSP (constraint satisfaction problem) [He, Wang, Y., FOCS 2022]




Network Algorithms
for Gibbs Sampling



Distributed Gibbs Sampling

e Generate high-dimensional sample in a network:

» Eachnodev € {1,2,...,n} generates a random X,

» Altogether it follows the correct joint distribution



Distributed Gibbs Sampling

Generate high-dimensional samples

’5

Gibbs sampler for (: in a network:

maintain an x € ", at each step:

 pickarandomv € {1,2,...,n};

+ update x, according to s,( - | Xy(,));

» Classic sampling algorithms are intrinsically sequential.

 Barrier for parallelization: update of variable depends on neighbors’ states

EH R EH * concurrent updates of adjacent variables = fault
é" A“‘@TQ » correct parallelization: O(A) overhead:!

e |s it possible to correctly parallelize the Markov chain with linear speedup?



Distributed Gibbs Sampling

Generate high-dimensional samples

Gibbs sampler for (: in a network:
maintain an x € ", at each step:
» pickarandomv € {1,2,...,n};

+ update x, according to s,( - | Xy(,));

e |s it possible to correctly parallelize the Markov chain with linear speedup?

* a parallel chain called LocalMetropolis [Feng, Sun, Y., PODC 2017]

K N
&Q*’“‘;CT) * sampling by network decomposition [Feng, Y., PODC 2018]
Xy X,

* parallelize Metropolis algorithm [Feng, Hayes, Y., SODA 2021]



An ldealized Parallel “Sampling Algorithm”

Continuous-time Gibbs sampler for /i:

eachv € {1,2,...,n} holds a Poisson clock;

when the clock at v rings:
atomic

.(Update , according 6 i, - | Xyy)i ) operction

O(T) continuous-time duration < O(n71) discrete-time steps
* This is the original definition of Gibbs sampler [Glauber 1963].

* An idealized (continuous-time with atomic update operation) process that
models the evolution of physical world.

e Simulate this idealized process on computer network with no overhead?



Parallelize the Gibbs Sampler

Continuous-time Gibbs sampler for fi:
[Glauber 1963]

eachv € {1,2,...,n} holds a Poisson clock;

when the clock at v rings:

+ update x, according to s, ( - | Xy(,));

Algorithm 1: An iterative algorithm for simulating single-site dynamics

1
2

3

4
5
6

7

8

Input: initial configuration Xy € QY; update schedule T = (£?)ycv 0<i<m,;
assignment R = (R (y i) )vev,1<i<m, of random bits for resolving updates.

initialize ¢ < 0 and 2{(}0) [i] < Xo(v) forallv € V,0 <i < my;
repeat
L— {1417,

forall v € V in parallel do e 0] « Xo(v);
forall updates (v,i), wherev € V,1 < i < m,, in parallel do
let T € QN7 be constructed as:

Vi € N, 7 « XV [ju] for j, = max{j > 0| £ < £};
e [i] <~ Sample (PJ,R(U,,-));

end

9 until X(©) = X(¢-1).

e |deas:

* (Construct a dynamical system whose fixpoint corresponds to the correct evolution of the chain.

* Simulate this dynamical system by a locally-iterative message passing algorithm on the network.

* A universal coupling of random bits used in different iterations to ensure fast stabilization to fixpoint.

A much weakened Dobrushin’s condition (which is almost always satisfied)
— faithful parallel simulation of Gibbs sampler with linear speedup [Liu, Y., STOC 2022]

(all single-site dynamics)



Dynamic Sampling

Dynamic Sampling problem: for a dynamically changing graphical model u — '

dynamic update

with incremental cost

o Sampling/inference tasks on dynamically changing data:

 Online data, data streams, network environment, etc.

 Dynamically changing graphical models generated in:

e | ocally-iterative algorithms for learning. s
y J J Classic random walks
» Self-reduction procedure in approximate counting. fail on dynamic data

* Algorithmic Lipschitz: transform X ~ u to X’ ~ y’ with cost proportional to diff(u, u')



Dynamic Sampling

Dynamic Sampling problem: for a dynamically changing graphical model u — '

dynamic update , ,

with incremental cost

Algorithm 1: Dynamic Sampler * A dynamic sampling algorithm:
Input : a graphical model Z and a random sample X ~ uz; . -
Ull))date: anguppdate (D, ®p) which modifies Z topI’; g [Feng, VISh“Ol, Y., STOC 201 9]
Output: a random sample X ~ p7z;
e 2l do  correct and efficient on dynamic data
3 L (X,R) +Local-Resample(Z’, X, R); ' ' ' ' o
4 return X; e parallel, distributed, communication-efficient
Algorithm 2: Local-Resample(Z, X, R) * Las Vegas algorithm for perfect sampling

Input : a graphical model Z = (V, E, [q], ®), a configuration X € [¢]" and a R C V;
Output: a new pair (X', R’) of configuration X’ € [¢]" and subset R’ C V;
1 for each e € ET(R), in parallel, compute k. = m MiNgeigle: zonr=Xenr Pe(T);

2 for each v € R, in parallel, resample X, € [g] independently according to distribution ¢,; ° Based on Partial ReJeCtlon Sam pling
3 for each e € ET(R), in parallel, sample F, € {0,1} ind. with Pr[F, = 0] = k¢ - ¢e (Xe); [GUO, Jerrum, LIU, STOC 201 7]

4 X' X and R' <~ U.cp.p.—1 6
5 return (X', R').

* very different from Markov chains
(random walks).



Application:
Network Reliability Estimation




Network Reliability

[Valiant 1979]
. Given an undirected graph (a network) G(V, E), and parameters p € [0,1]*:
 each edge e € E fails independently with prob. p, p: t
s > >
» let G(p) denote the resulting network ps :

 (all-terminal) network reliability:

the probability that G(p) is connected

\ (1 o pe)Hpe

" ~~ , ; o etC

R]-,’(G) =

~ enumerating all
connected subgraphs




Computational Complexity of Counting

. LetA = {q;;} € R™" be a square matrix.

 Determinant: can be computed as fast as matrix multiplication

Z sgn( ) ﬁ a; (i
i=1

TES,

 Permanent: is #P-complete [Valiant 1979]
2 H“i,w‘)
res, 1=1

solvable in polynomial-time =— the polynomial hierarchy (PH) collapses
—> NP=P



Network Reliability

. Given an undirected graph (a network) G(V, E), and a parameter p € [0,1]*:
(@ll-terminal) network reliability: R3(G) = Y [ [ (1 =p) | | p.

C C E that peC e&C
connects V

the probabillity that the network remains connected
when each edge e € L fails independently with prob. p,

 The problem is #P-complete [Valiant 1979] [Jerrum 1981]:

. ﬁ(G) cannot be evaluated precisely in polynomial time unless NP=P

- Approximation by Monte Carlo method: return an estimation R3(G)

Pr (1= ORHG) < RH(G) < (1 + ORHG)| 2 1= o(1)



Network Reliability by Sampling

G(ﬁ): a subgraph of G obtained by removing each e € E independently with prob. p,

- A naive Monte Carlo estimation of network reliability R3(G):

forj = 1,2,..., k for a large enough k:
generate a GY) ~ G(p) by removing each ¢ € E independently with prob. D.;

] & .
return — z 1 [G(]) is connected];
k i=1

. Requires too many samples GV ~ G(p) if R3(G) is close to 0O nreliable network),

e Monte Carlo method based on self-reduction:

» Drawing samples C ~ G(p) conditioned on C being connected on V.



Network Reliability by Sampling

G(ﬁ): a subgraph of G obtained by removing each e € E independently with prob. p,

e Monte Carlo method based on self-reduction:

» Drawing samples C ~ G(p) conditioned on C being connected on V.

 Edge-contraction: ¢ CI ® N
Go=G| ) O mmp C
— C

O

R3(Gp) | R3(G1) | R3(Gy)
R3(G1) R3(Gy)  Ri(Gs)

. lelescopic product: R3(G) =

- R3(G3)

R3(G;)
. Rp’(Gz‘H)

can be estimated by sampling C ~ G, ;(p)|connected.



Markov Chain for Connected Subgraphs

G(ﬁ): a subgraph of G obtained by removing each e € E independently with prob. p,

e Monte Carlo method based on self-reduction:

» Drawing samples C ~ G(p) conditioned on C being connected on V.

* A natural Markov chain (Gibbs sampler) for connected subgraphs:
start with Cy, = E; and for each step = 0,1,2...:

pick an edge ¢ € E uniformly at random;

. . | m:. number of edges
if C, — {e} disconnects Vthen C,,; = C; otherwise |
C.U{e) withprob. 1 — p n: number of vertices
Cit1 = { ’

C,— {e} with prob. p,

- The chain mixes (converges) to G(p)|connected in O(m?log n) steps.

» Conjecture: the chain mixes in O(mlog n) steps.



Markov Chain for Connected Subgraphs

G(ﬁ): a subgraph of G obtained by removing each e € E independently with prob. p,

 Monte Carlo method based on self-reduction:
» Drawing samples C ~ G(p) conditioned on C being connected on V.

* A substantially more complicated Markov chain (matroid basis exchange)
for connected subgraphs:

« Each step (matroid basis exchange) requires O(m) computation.

» The chain mixes (converges) to G(p)|connected in O(m log n) steps
[Anari, Liu, Oveis Gharan, Vinzant, STOC 2019 best paper]

o Strongly log-concave distribution and high-dimension expander (HDX)

. Markov chain comparison = the Gibbs sampler mixes in O(m?log n) steps



Markov Chain for Connected Subgraphs

G(ﬁ): a subgraph of G obtained by removing each e € E independently with prob. p,

e Monte Carlo method based on self-reduction:

» Drawing samples C ~ G(p) conditioned on C being connected on

» The Gibbs sampler converges in O(Iflfl2 log n) steps. .’ O(n)

+ The matroid basis exchange chain converges in O(m logn) steps 7 %

[Anari, Liu, Oveis Gharan, Vinzant, STOC 2019 best paper]

» Each step (matroid basis exchange) requires O(m) Computaticn_

o Fastest estimation of network reliability runs in O(mn2 log n) [Guo, He, 2020]

* based on an ingenious reduction to sampling root-connected subgraph
via partial rejection sampling [Guo, Jerrum, Liu, ’17] / dynamic sampling [Feng, Nisheeth, Y. ’19]



Network Reliability Estimation

. Given an undirected graph (a network) G(V, E), and a parameter p € [0,1]*:
(@ll-terminal) network reliability: R3(G) = Y [ [ (1 =p) | | p.

C C E that peC e&C
connects V

the probabillity that the network remains connected
when each edge e € L fails independently with prob. p,

- Precisely evaluating R3(G) is #P-complete

 Approximation by Monte Carlo method in O(mnz) time

 Open problems:

e estimating network reliability in é(mn) time or less
» network algorithms for network reliability (on going project ...)



Computational Phase Transition
of Sampling

Network Algorithms
for Gibbs Sampling

Application:
Network Reliablility Estimation



Thank you!
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