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Nearest Neighbor Search
(NNS)

metric space (X,dist) query T € X

database l access

= (y1,Y2,...,Yn) € X"
Y= (Y1, 42 Yn) data structure
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output: database point y; closest to the query point x

applications: database, pattern matching, machine learning, ...



Near Neighbor Problem

(-NN)
metric space (X,dist) query T € X

database l access

= (y1,Y2,...,Yn) € X"
Y= (Y1, 42 Yn) data structure

J— radius A4
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@ O T O ®  |preprocessing

A-NN: answer “yes” if 3y;that is </A-close to x

“no” if all y;are >A-faraway from x



Approximate Near Neighbor

(ANN)

metric space (X,dist) query T € X

database l access

= (y1,Y2,...,Yn) € X"
Y= (Y1, 42 Yn) data structure

J— radius A
VAR T S
@ o v @  |preprocessing
““\\ ’ ")/ . "',,,

e -—“"'épproximation ratio VZI

(y, A)-ANN: answer “yes” if 3y; that is </-close to x

“no” if all y;are >y/-faraway from x
arbitrary if otherwise



Approximate Near Neighbor

(ANN)

metric space (X,dist) query T € X

database l access

= (y1,Y2,...,Yn) € X"
y = (y1, 92 Yn) data structure

J—— radius A
VAR T S
@ o v @  |preprocessing
‘ _______ NIL
T ~ approximation ratio ‘)/21

Hamming space X = {0,1}¢ dist(x, 2) = ||z — z||]1

Hamming distance

100logn < d < n°W

Curse of dimensionality!



Cell-Probe Model

data structure problem:
f: XxY—=>Z7 query:L*EX

database algorithm A: /4
= Y (decision tree) “

t adaptive
I table ell-probes
@ @ © ® code T }w bits

—

e TV — Y8 s cells (wordS)
where X = {0, 1}*

protocol: the pair (A, T)
(s, w, f)=cell-probing scheme



Near-Neighbor Lower Bounds

Hamming space X = {0,1}¢

time: t cell-probes;

datalfagéosize) n
linapaspacecells; @ich of w bits)

Approximate Near-Neighbor (ANN)

Deterministic

Randomized

Randomized Exact

Near-Neighbor
(RENN)
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[Patrascu Thorup 2006]

* matches the highest

<nown lower bounds for any data structure pro

blems:

Polynomial Evaluation [Larsen’12], ball-inheritance (range reporting) [Gronlund, Larsen’16]



Why are data structure lower bounds
so difficult?

® (Observed by [Miltersen et al. 1995]) An w(log n) cell-probe
lower bound on polynomial space for any function in P would
prove P ¢ linear-time poly-size Boolean branching programs.

(Solved in [Ajta1 1999))

® (Observed by [Brody, Larsen 2012]) Even non-adaptive data
structures are circuits with arbitrary gates of depth 2:

f: XxY —Z J(x,y) fx’,y)
/i;é\n-in /.\

o Ce"S:RR.-‘?\ o LA
data y \./ \./ ..... \./\./

V1 Y2 Yn-1 Vn



Near-Neighbor Lower Bounds

Hamming space X = {0,1}¢

time: t cell-probes;

database size: n

space: s cells, each of w bits

Approximate Near-Neighbor (ANN)

Deterministic

Randomized

Randomized Exact

Near-Neighbor
(RENN)
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t=0 (e )
og n
[Patrascu Thorup 2006]

t =) (10 dﬂ)
& nd
[Wang Y. 2014]

[Panigrahy Talwar Wieder
2008, 2010]

t:Q(ld )
0og S

[Borodin Ostrovsky Rabani 1999]
[Barkol Rabani 2000]

t= 0 (o)
og T
[Patrascu Thorup 2006]




Average-Case Lower Bounds

® Hard distribution: [Barkol Rabani 2000] [Liu 2004] [PTW’08 *10]

e database: yi,....,y,&{0,1}4 ii.d. uniform

® query: uniform and independent x&{0,1 }4
® Expected cell-probe complexity:

® K (. ,)|# of cell-probes to resolve query x on database y|
® “Curse of dimensionality” should hold on average.

® |n data-dependent LSH [Andoni Razenshteyn 2015]: a
key step is to solve the problem on random input.



Average-Case Lower Bounds

Hamming space X = {0,1}¢

time: t cell-probes;

database size: n

space: s cells, each of w bits
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Average-Case Lower Bounds

Hamming space X = {0,1}¢

time: t cell-probes;

database size: n

space: s cells, each of w bits

Approximate Near-Neighbor (ANN)

Deterministic

Randomized

Randomized Exact

Near-Neighbor
(RENN)

o)
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' our result;
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[Panigrahy Talwar Wieder
2008, 2010]

t:Q(ld )
0og S

[Borodin Ostrovsky Rabani 1999]
[Barkol Rabani 2000]




Metric Expansion
[ Panigrahy Talwar Wieder 2010]

metric space (X,dist)

A-neighborhood: Vxe& X, Ni(x) = {z € X | dist(x,z) <1}
VACX, Ni(A) ={z€ X |IxEA s.t. dist(x,z) <A}

probability distribution u over X

e /-neighborhoods are weakly independent under u:
Vx&E X, u(Nix)) <0.99/n

* A-neighborhoods are (®,W)-expanding under u:
VACX, u(A)=1/® = u(Ni(A)) = 1-1/¥



Metric Expansion
[ Panigrahy Talwar Wieder 2010]

metric space (X,dist)  probability distribution 4 over X

* A-neighborhoods are (®,W)-expanding under u:
VACKX, u(A)=1/® = u(N,(A) = 1-1/¥

vertex expansion, "blow-up” effect



Main Theorem:

For (y, 4)-ANN in metric space (X,dist) where

e yA-neighborhoods are weakly independent under u:
U(Ny(x)) <0.99/nfor Vxe X

e /-neighborhoods are (®,W)-expanding under u:
VACX that u(A) = 1/® = u(Ni(A)) = 1-1/W

Vv deterministic algorithm that makes ¢ cell-probes in expectation

on a table of size s cells, each of w bits ( ),
under the input distribution:

database y=(y1, y2,...,yn) Where y1, y2,....yn~ U, i.i.d.
query  x ~ U, independently

B log ¢
::>t_Q(l SW )

0g n log W
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he Richness Lemma

@ f: X xY —{0,1}

Z’A} tlog s

5 >

<\W

cell-probing algorithm table (s cells, each of w bits)

re X

<

distributions 1 over X, v over Y

a-dense: density of 1s > a under uxv

monochromatic |-rectangle: AxB with ACX, BCY
s.t. V(x,y)€ AxB, f(x,y)=1

Richness lemma (Miltersen, Nisan, Safra, Wigderson, 1995)
has 1-rectangle AXB with

u(A) = 2-0(tlog )
{ V(B) = 2-0(tlog s+ mw)

fis 0.01-dense under uxv } >f

f has (s,w,f)-cell-probing scheme




A New Richness Lemma
f: X xY —={0,1} distributions 1 over X, v over Y

Richness lemmma (Miltersen, Nisan, Safra, Wigderson, 1995)
fis 0.01-dense under 1xv } >f has 1-rectangle AXB with

,l/i(A) > 7-0(tlog s)
f has (s,w,f)-cell-probing scheme { V(B) > 2-0(t log s+ tw)

New Richness lemmma

fis 0.01-dense under uxv } > V A €[320000¢,5],

f has average-case f has 1-rectangle AXB with
(s,w,t)-cell-probing scheme U(A) = 2-0(tlog (s/4))
under uxv V(B) = 2-0(Alog (s/A) + Aw)

when A=0(?), it becomes the richness lemma (with slightly better bounds)



f: X xY —={0,1} distributions x over X, v over Y

New Richness lemma

fis 0.01-dense under uxv } > Y A E[320000%,s5],
f has average-case f has 1-rectangle AXB with
(s.w,t)-cell-probing scheme U(A) = 2-0(tlog (s/2))
under uxv V(B) = 2-O(Alog (s/4) + Aw)

metric space (X,dist), query x&€X, database y=(y1,...,yn)EXy
~(y.1)-ANN:  f(z,9) /\g z, y;)

where 1 C.lst(a:', Yi) > YA
g(r,y;) = dist(z, y;) < A
x otherwise

S

Other examples: partial match, membership, range query, ...



New Richness lemma

fis 0.01-dense under uxv } V A €[320000¢,5],
f has average-case f has 1-rectangle AXB with
(s,w,)-cell-probing scheme U(A) = 2-0(tlog (s/))
under uxv V(B) = 2-0(Alog (s/A) + Aw)

e vA-neighborhoods are weakly independent under u:
U(N,(x)) <0.99/nfor Vxe X

> density of Os in g is <0.99/n under uxu = >

e A-neighborhoods are (®,W)-expanding under u:
VACKX, u(A) = 1/® = u(Ni(A)) = 1-1/¥

|::> g does not have 1-rectangle AXC with u(A)>1/® and u(C)>1/¥
I::> f does not have 1-rectangle AxB with u(A)>1/P and u*(B)>1/Yn

fis 0.01-dense
under uxun

choose A=0 (”ljf‘l’) so that w(B) = 2-O(Alog (/&) + Aw) > 1 /Pn

I:{> 1/®D = u(A) = 2-0(log (s/A) |:{> t =9 <1Oglogfu )

n log W




New Richness lemmma

---------------------------------------------

fis 0.01-dense under uxv } Y A E[320000¢,s],

: f has average-case f has 1-rectangle AXB with
- (s,w,1)-cell-probing scheme U(A) = 2-0(tlog (s/4))

' under uxv ’ V(B) = 2-O(Alog (s/A) + Aw)

>(0.0025-fraction (under v) of databases y&Y are “good:

>(.005-fraction of queries xX&X are positive

LtV d datab ,
S §00d database y {avg. cell-probes for positive queries < 80000z

positive

queries: \~ ’, /‘~,‘\
T\ 7 I
1y:

™

I:{> 3 A cells resolving 2-O(log (s/4) fraction (under u) positive queries



New Richness lemmma

fis 0.01-dense under uxv

f has average-case

(s,w,t)-cell-probing scheme

under uxv

}

V A€E[320000t1,s],

f has 1-rectangle AXB with
ﬂ( A) > 2-0(t log (s/N))
{ W(B) = 2-0(Alog (/) + Aw)

>(0.0025-fraction (under v) of databases y&Y are “good”:

s.t. V good database y,

3 A cells resolving 2-O(log (s/4) fraction (under u) positive queries

Ty - '

1

good y —> ® <

\)

m: positions & contents

Jw bits of these A cells

(Z)QM — 90(Alog X +Aw) possibilities

B : (2 2-O(Alog (/&) + Aw) fraction (under v) good y)|—> the same w

cell-probe model: once w is fixed,

A (the set of positive queries resolved by @ is fixed
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Average-Case Lower Bounds

Hamming space X = {0, 1}
time: t cell-probes;

database size: n
space: s cells, each of w bits
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